Modular Capacitive Touchpads Project

Proposal

Aaron Pfitzenmaier, Daniel Sheen

1 Overview

We will interface blocks of 16 capacitive touch sensors with the Nexys 4 FPGA. Each
block will have 4 ports to which other blocks of 16 sensors or the FPGA can be connected to.
The FPGA will be physically connected to only one block and communicate over 12C to all of
them. The FPGA will then process the inputs from all sensors and display the layout of the
blocks and the status of the sensors on a monitor. Communication between adjacent blocks will
also aid the FPGA in determining the overall layout. We will also use the sensors to control
various outputs.

This sensor system can be used for custom control systems, for instance, for embedded
touch sensing in work surfaces, or for basic projects without requiring complicated or expensive
capacitive touch sensor hardware. Essentially, we’re hoping it will be a nice tool for FPGA based
tinkering projects going forward, since it will provide a simple modular platform for creating and
using relatively arbitrary size and shape arrays of sensors for user interfaces.

Extensive test benches will be written to test all modules prior to integration into the

system.
2 Design

2.1 Goals and Scope
2.1.1 Baseline Goals
2.1.1.1 At least one working touch sensor block with 16 capacitive
Sensors.
2.1.1.2 Control and reading of block sensors by the FPGA.

2.1.1.2(a) I2C commands to switch sense line connections.



2.1.1.2(b) FPGA frequency/capacitance sensing.
2.1.1.3 FPGA outputs image of which sensors are pressed to the display.
2.1.1.4 programmable control of other FPGA outputs.
2.1.2 Expected Goals
2.1.2.1 Multiple working touch sensor blocks.
2.1.2.2 FPGA scans 12C address space to detect connected sensors
at startup.
2.1.2.3 FPGA automatically determines the layout of sensors at startup,
and displays it on screen.
2.1.2.4 Sensors are correctly mapped to an X,Y coordinate designation for
use for 1O functions (ie, keyboard, tracking, anything arbitrary you
might want to do with it)
2.1.3 Stretch Goals
2.1.3.1 Hot swappable sensor blocks
2.1.3.1(a) FPGA continually scans 12C address space during sensor
12C bus dead time (during sensor reads)
2.1.3.1(b) If a change is detected, wait for the current sensor scan
to complete, then halt sensor polling and remap sensor
layout.
2.1.3.1(c) resume normal operation and update display to new
layout without user intervention, don’t crash and burn it the

new layout conflicts with 1O definitions.



3. Touchpad Block Circuitry

(Aaron and Daniel design circuit, Aaron programs the PIC)

Y
To FRPGA
* SCL
< » 10/From
il oA " FPGA
R MCLR
Sensor Line 2 enable—|
—Meighbor Detect Output—»
-« Sensor Ling 1 enable— o o a4 Ta/From
Neighboring
PIC18LF2550 <Neighb0r Detect Inputs Modules

RC Oscillator RC Oscillator

Sensors v

Each block will have 4 connectors on each edge. These connectors will be used to
connect adjacent blocks as well as to the FPGA. Each connector will have the following I/O
pins:

e SDA/SCL for 12C communication with the FPGA
e 2 sensor data lines
e MCLR (active low PIC reset)
e Neighbor detect pins
The sensor data, MCLR, and I2C communication pins on one edge connector will be electrically

connected to their corresponding pins on the other 3 edge connectors so that the entire system



will all share the same sensor data lines, MCLR, SDA, and SCL. In order to prevent contentions
on the sensor data lines, tristate buffers will be placed between the sensor outputs on each block
and the sensor data lines themselves. Each block will be controlled by a PIC18LF2550 controller
which communicates with the FPGA over I12C and handles switching sensors to and from the
data lines in response to commands from the FPGA. This PIC will be clocked by the 8MHz
internal oscillator and instructions will take 0.5us to execute. (one instruction cycle = 4 clock
cylces)

The sensors themselves will be RC square wave oscillators with a no touch frequency of
approximately 100kHz. When the user touches one of the touchpads, their parasitic capacitance
to the circuit is added in parallel with the capacitor inside the RC oscillator, causing the output
frequency to decrease. This change in frequency will be measured by the capacitance sensing
module on the FPGA described below. Since each block has two sensor data lines, there will be
2 RC oscillators per block, each of which can be connected to 8 of the 16 sensors on a block. 8
input analog multiplexers will be used to control which sensors are connected to the oscillators
and tristate buffers will be used to switch the oscillators on each block to and from the sense
lines.

The neighbor detect pins will be used by the mapping module on the FPGA to determine
the layout in which all of the blocks are connected. The neighbor detect output pin on the PIC
will connect to each of the 4 edge connectors on a block. There will be one neighbor detect input
coming from each side of the block, making 4 neighbor detect inputs in total.

The external components (all of which are relatively inexpensive) needed to make a
single block are (excluding passive components such as resistors and capacitors, which are
available in lab):

e 2 Analog Multiplexers

e 1 18LF2550 PIC controller

e 2 tristate buffers

e 2 comparators (used in the RC oscillator)
e 2 tristate buffers

e 16 metallic touchpads (which we will make ourselves out of foil)



e 4 DB-9 connectors (the exact connector type we choose to use may change)

If time permits, we will use the EDS PCB mill to fabricate boards that have all 16 sensors as

copper pads and boards that contain all of the circuitry for a block.

4 FPGA Block Diagram

Outside world

FPGA

Sensor inerface module

oscillator inputs

capacitance
sensing (x2)

| readysignals
data signals

Control module

FSM control
max internal address

communications control

FSM control

communications control

K Start signals

sensor polling
module

internal address

write data

read data

current sensor
state BRAM

internal address

write data

WE:

prior sensor state
BRAM

max internal address

Mapping module

location(X.Y) p.

write data

read data

X,Y location to
internal address
map (BRAM and

SOMe conul %
I
ogic) read data

u

SER INTERACING

internal address
read data

internal address
read data

Display Module

| Outside world

internal address
read data

intenal address

read data

location (X,

read data

X.Y upper bounds

User corntrols (sequencing/sync)

User IO module

neighbor detect out-

GLOBAL RESET

VGA OUT >

User data out
key presses and such
and such

user controls
switches buttons etc

GLOBAL RESET In

Clock wizard

MAIN CLK (65MHz)___y

12C CLK (400KHz)___,

5 FPGA Implementation

5.1 Control module (Aaron and Daniel)

The control module will handle most of the communications with the sensor blocks. Its

primary function is to provide abstraction of the 12C addresses to an internal address space (a

mapping of [2C addresses to a number in the range [0, total number of touchpad blocks]) used by

the mapping and sensor polling modules to reference touchpad blocks. It also handles sequencing

for the operation of the sensor polling and mapping modules, conflict management if both the

mapping and polling modules request to use the I12C bus simultaneously, and synchronization

with the user interface (for instance, synchronizing with a display to poll the sensors once per

frame refresh).



During startup (or if the global reset is asserted), an FSM inside the control module will
send every possible 7 bit I2C address and listen for an ACK from each. If an ACK is detected,
that address will be added to a lookup table of addresses implemented using a BRAM, and
increments the max internal address pointer (which indicates the highest occupied address
occupied in the BRAM and thus the highest valid internal address). The maximum length of the
internal address (which we’ll call N from here on) will be a parameter shared by all modules.
The BRAM will thus need to be 2N deep by 7 bits wide.

After all 12C addresses have been searched and blocks assigned internal addresses, the
sequencing FSM inside the control module will switch I12C control over to the mapping module.
Once the mapping module has signaled it is finished, control of the 12C bus will be given to the
sensor polling module, which will then cycle through reading the capacitances of the touch
sensors. This can either occur continuously, or repeat once every time a sync pulse is sent to the
control module, depending upon the desires of the user.

If we implement hot swapping (a stretch goal at best), during the dead time while he
polling FSM is measuring the RC oscillator frequencies, the sequencing FSM will hand over
control of the 12C bus to an FSM responsible for searching the address space for changes. If a
change is detected, it will halt polling, remap the addresses, and trigger the mapping module to

update the location to address map, before resuming normal operation.

5.2 Mapping Module (the hardest one) (Daniel)

The mapping module will determine which sensor blocks are next to which, and then use
this information to construct a table which stores the internal address and sensor position for a
sensor at a given position in (X,y) coordinates. This will be used to allow the display and user 1O
to access the information from each sensor based on its physical location.

When it receives a start signal from the control module, the mapping module will execute
the following procedure for each sensor block (by repeating for address 0 through the max
internal address). Note that we need to handle the FPGA location separately.

1. Tell the sensor block at “address” to write it’s neighbor detect output pin high.



2. Request each sensor block in the rest of the address space to return which if any of its
neighbor detect inputs are currently high.

3. If one of the polled block’s pins is high, store that it is abutting the sensor at “address”,
otherwise just move on to the next one.

4. Repeat until this has been done for all currently valid addresses.

5. Finally, write the FPGA neighbor detect high, use the same procedure to check which
block is connected to the FPGA and which side the FPGA is attached to. This will be
saved in a special register as {internal address[N-1:0], side}. Note that side only needs to
be one bit, because since we aren’t using hermaphrodite connectors, the FPGA can only

connect to one of two sides of the board.

The data will be stored in a BRAM with a depth the same as the internal address space. At the
location corresponding to each used address, the adjacency information will be stored as follows
(where each address is N bits and the valid bit is a one bit flag to clarify whether there is in fact a

neighbor)

{left_wvalid, left address, top_valid, top_address, right_valid, right address, bottom_valid, bottom_address}

Once this information is stored, we will construct a second table of signed X,Y
coordinates based on the adjacency information. The values for X and Y will initially have to be
N+1 bits each to accommodate the sign bit. Data will be stored in a BRAM as
{valid, rotated, X, Y}, where valid indicates that the entry is current, and rotated is a 1 bit
number that indicates the orientation of the block. From this we then construct the conversion
table available to the user IO and display modules. The procedure to generate the addresses to
location map will be roughly as follows.

1. Start by assigning the block the FPGA is connected to the coordinates (0,0). If the side
the FPGA 1is connected to is the top, the value of the rotation bit will be defined as 0, if it

1s connected to the bottom it will be defined as 1.



2. Read the adjacency data for this block. In turn, for each neighbor which doesn’t yet have
an assigned location, assign a location as follows. base position(x,y), base address and
base rotated here refer to the xy coordinates and rotation of the block we’re looking at
the neighbors of. Plain x, y, rotated, address_right, etc refer to the values associated with
the neighbor block. We also need to determine the rotations for the adjacent blocks.

Left block: x = base rotated ? (base_position(x) +1) : (base position(x) - 1)

y = base_position(y)

rotated = (address_right == base address) ? base rotated : ~base rotated
Right block: x = base _rotated ? (base position(x) -1) : (base_position(x) + 1)

y = base position(y)

rotated = (address_left == base address) ? base rotated : ~base rotated
Top block: x=position(x)

y = base rotated ? (base position(y) -1) : (base position(y) +1)

rotated = (address_top == base_address) ? base rotated : ~base rotated
Top block: x=base position(x)

y =Dbase_rotated ? (base position(y) +1) : (base_position(y) -1)

rotated = (address_bottom==base address) ? base rotated : ~base rotated

3. For all addresses less than the max internal address check if there is now a defined
location. Repeat step 2 for each address that has a known location.

4. Check if all addresses now have a known location, if not, repeat step 3, if they do,
proceed to step 5.

5. Find the minimum X and Y values (this should require one more pass over this
BRAM’s address space) sign invert these and save them in another register (call these
invXmin, invYmin).

6. Write the valid bits for every location in the “X,Y location to internal address” BRAM
to zero.

7. For each address retrieve {valid, rotated, X, Y}, store the string {valid, address,

rotated} to the location {{X-+invXmin}[N-1:0], {X+invXmin}[N-1:0]} in the “X,Y



location to internal address” BRAM. This makes everything positive and drops the sign
bit from the location space. Logic internal to the Block containing the Bram will use the
rotated bit. Also, record the maximum X and Y coordinates that result from this
procedure.

8. Output the maximum X and Y bounds and assert done.

In practice, the “X,Y location to internal address” BRAM should be two BRAMs to allow us to
use one as a frame buffer and let us swap them in one cycle. This way we don’t ever present a
partial map to the user. Note that while not addressed in detail here, the “BRAM” will also have
a bit more logic to spit out the mapping of sensors on the blocks based on rotation. This will just
rely on a pair of 16 entry roms which we switch between based on the rotation bit (this is the

easiest part of this whole thing)

5.3 Capacitive Sensing Module (Aaron)

As mentioned in the Touchpad Block Circuit section, each of the sensor data lines will
carry a square wave with frequency dependent on the capacitance added to the block’s RC
oscillator by a touch. We plan on designing the oscillators to have a frequency of 100kHz when
touched and a frequency of no less than 25kHz when touched. The capacitive sensing modules
(one module for each sensor data line) will measure count the number of positive edges detected
from this square wave in a time period of approximately 0.75ms. This corresponds to 75 positive
edges with at the no touch frequency of 100kHz and 19 positive edges at the lowest anticipated
frequency of 25kHz, enough to make a reliable measurement.

The inputs to this module will be the two sensor data lines coming from the touchpad
blocks and a start signal coming from the polling module telling it to start counting positive
edges on the sensor data line. This module will output a ready signal that tells the polling module

a measurement is complete as well as output the number of positive edges counted.



5.4 Sensor Polling Module (Aaron)

The sensor polling module is responsible for polling the status of all touchpads in the system.
Polling will begin whenever the module receives a start pulse from the Control module. At this
point, the polling module will send an [2C command (through the Control module, as described
in Section 5.1) to touchpad blocks with internal addresses above 0 to disable their tristate buffers
connecting their RC oscillators to the sensor data lines. Commands will then be sent to the
touchpad with internal address 0 telling it to enable its tristate buffers and connect the first sensor
on each MUX to the corresponding RC oscillator. The polling module will then send a start pulse
to each of the capacitive sensing modules and wait until a done pulse is received from them.

After the two sensor data lines have been measured, the new values will be loaded into
the current sensor state BRAM, and the value that was previously in the current state BRAM will
be loaded into the prior state BRAM. (These two BRAMs will have 2*(N+2) addresses, each of
which stores an 8 bit number, where N is the length of the maximum internal address) A
command will then be sent telling the touchpad block to connect the second sensor on each
MUX to the RC oscillator and the same measurement process will be repeated.

Once all sensors on a touchpad block have been measured, commands will be sent to
enable the tristate buffers on the touchpad block with internal address 1 and disable the tristate
buffers on all other blocks. The same measurement process as described above will be used to
poll the sensors on this block. Once all touchpad blocks have been polled (we will know when all
blocks have been polled because the Sensor Polling module has the maximum internal address as
an input), the module will pulse its ‘done’ output, telling the control module it has completed.

As mentioned in the above section, the capacitive sensing module will take about 0.75ms
to read a sensor. The [2C command telling the touchpad block to switch its MUX outputs will be
20 bits long (Start+Stop+7 bit address+1 bit read/write+8 bit command+2 ACKs). At an 12C
clock frequency of 100kHz, this will take 20/100kHz = 0.2ms to complete. Assuming the PIC
can switch the multiplexers in under 100 instructions, this means reading the two sensor data
lines will take about 1ms. (Since the FPGA clock is significantly faster than [2C communication
and a PIC instruction cycle, the time it takes to do operations on the FPGA has been ignored

here.) This means we should be able to to poll 200 individual sensors in a tenth of a second,



which is fast enough for smooth operation as long as there are less than around 16 different

touchpad blocks.

5.5 User 10 (Daniel)

The user 10 module will be an interfacing example constructed for our touch sensor
platform to allow it to perform various control functions. Basically, we will assign sensors at
positions (X,y) to control different IO functions of the FPGA. The module will poll each
allocated sensor looking for a change between the current and previous reading greater than
some threshold, and if detected, change the appropriate FPGA output.

To do the polling, the module needs to first read the address stored at (x,y) in the “X,Y
location to internal address” BRAM. It then uses that address to retrieve the appropriate
information from the sensor reading BRAMs. It will then do whatever logic we see fit to make it

perform a comparison and change the FPGA outputs.

5.6 Display (Daniel)

The display module will create a visualization of the sensor layout and readings. Based
on the max X and Y boundaries output by the mapping module, the display module will divide
the display into a grid with one square for each sensor. When a sensor is touched, it will light the
corresponding position on screen.

The actual logic behind this will be identical to that in the user 1O block. The display
module looks up the appropriate address, retrieves the reading, and determines what color the

pixels in that patch of screen will be appropriately. It then sends that as a VGA signal.



