JAW dropping Visual Effects
via Audio Spectral Analysis

1. What is it?

Overview

This project is an audio based visual effect generator. By extracting frequencies
and other features from an input audio, effects which alter the input image's color,
shape, and position will be generated and superimposed onto the input image to create
intriguing visuals. The inspiration comes from music videos that create spectrum
analyzers wrapped in a circle through mapping frequencies from an input audio source.
The images below demonstrate examples of the general effects we hope to implement.
In order to break our projects into manageable chunks, we have divided the goals of the
project into three levels (basic, expected, and stretch).

Basic

Our basic goals demonstrate a simple proof of concept. In the basic
implementation, the input audio source will be from a short audio recording or from a
cell phone’s audio data stream. FFT and appropriate filtering will be applied onto the
audio source to generate the appropriate number of frequency bins.

The input image will be a simple, close contour, high contrast, polygon image
from a file. The contours of the image, found through edge detection within MatLab, will
be pushed onto the FPGA. The FPGA will treat the incoming contours as a combination
of sprites, with each sprite representing a section of the contour which maps to the
appropriate frequency bin.

With the sprites and processed audio input, one or two transformations can be
mapped. Several possible transformations include: a color change transformation to a
segment whenever the average intensity of the associated frequency bin surpasses a
threshold, movement of the entire sprite with a variable speed based on the intensity of
the corresponding frequency bin, or manipulating the edge contours of the image in
response to the corresponding frequency bin (as in the frequency above).

Expected

Our expected goals build upon the basic goals. There will be an improved audio
filtering, and the ability to extract or emphasize specific frequencies, such as the bass,
will be added. The input image can be captured through a NTSC camera, and the
inputted images can have a higher complexity than a simple polygon. Additionally, the
image edge detection will be implemented in Verilog, as opposed to MatLab in the basic
implementation. The image modulation will also have higher resolution (we plan to
approximate curves using lines, so the number of lines used to approximate the same
curve would increase)

Stretch
Our stretch goal is to incorporate all or most of the above features in live/real

time. The visual effects will react to live audio sampled via a microphone, and the
inputted image would be a stream of frames from the NTSC camera.

2. How will it work?

There are three major workstreams that can be completed concurrently. The
audio input needs to be retrieved and processed. The image input needs to be retrieved
and processed, and finally, a suitable mapping of transformations must be designed and
implemented to the image before outputting the image on a monitor. Aaron will work on
audio retrieval and processing. Wings will handle preliminary image processing and
edge detection. Julian will use the processed audio and image to implement image
transformations based on the filtered audio input mappings.

High Level Block Diagram

Contour Sprites
Image Audip ——» Image Processing
Frequency
Bins
Jj Frgﬁ:lne ney —_—» Transformation Module Image Output
Addresses of
7 Frequency bin N
Input Audip ————— Audio Processing ¥ Audio Output
= Frequenc_\-' 3 J
Bins

Audio: Aaron

The audio portion will be a three step process: retrieve the audio data, apply the
necessary filters, and apply an FFT. Retrieving the audio data will be accomplished one
of two ways: either recording/loading the audio data onto the FPGA memory or using a
microphone and live sampling an external audio source (music being played, talking,
etc). After the the audio data is accessed by the FPGA, Aaron will be able to use the
FPGA to implement a multitude of low pass, bandpass, and high pass filters to make
the mapping of frequencies to transformations as easy as possible. The coefficients for
implementing an FIR filters will be generated in Matlab/Python and the structure and
complexity will be similar to that of lab 5 except with different cutoff frequencies
designed to give smooth transitions between bins or to generate interesting frequency
effects. Finally, applying an FFT using the IP core will be necessary as the input to the
transformations and mappings module that Julian will design and implement. The
external hardware required for this portion is limited to microphones and an audio
source (cellphone, laptop, voice, etc). Testing this module will involve making sure the
input audio regardless of the source being either sampled live audio or stored audio in
memory can be reproducibly filtered and transformed using the FFT IP core. The output
of the FFT should be able to be graphed and make sense (spikes at the appropriate
frequencies). The internal memory BRAMSs or ZBTs will be used to store the audio and

FFT output indexing the FFT output by the number of frequency bins to allow for easy

access by other modules.

Raw Audio data

FIR/IIR
Coefficients

List of
coeflicients

Audio Source
1) From Memory
2) Live/Recorded/sampled

> Apply Filter

Bandpass 2 High Pass

» FFT IP core <
Cutput
to

i : Julian
Array of amplitude and
values indexed by Wings
frequency bin in a

BRAM

Filter for cutofis and
interesting efiects Low Pass

¥

Edge Detection & Image Processing: Wings

Retrieving the image data can be done in two ways: through a NTSC Camera
feed or through a file flashed onto the FPGA. The raw image will then go through
several different modules in order to extract the edges. The image should first be
converted from RGB to black and white, then processed through a Gaussian smoothing
filter, and lastly the edge can be extracted using the Sobel edge detection algorithm.
The raw image will also be outputted to the Transformation stage of the project.

The next step is to the match the frequency bins to sections of the edge. In this
module, sprites corresponding to one edge section representing a single frequency bin
will be outputted to the Transformation phase of the project.

Retrieving Image

NTSC Camera
Feed

Store frame .| Convert YCrCh

in memory 7 to RGB \

in RGB
Edge Detection

- ~

4 h 4 L

\

Rils — £yl NALAEIO Flash to FPGA
extract RGB

Convert to

\
1
1
I
1
1
1
|
1
! _ Raw image
I
1
1
I
1
1
1
|
1
1
1

black and white

smoothing

k.

Edge detection
using Sobel

7
|
1
1
1
1
1
1
I
1
:
I
! Gaussian
1
I
1
1
1
1
1
1
1
1
1
1
1
1
1

Assign edge sections
to frequency bins

!

Sprites of each bin’s
associated edge

bins —»

Transformation Design and Implementation: Julian

The transformation on the image will consist of two main steps. First is to find
normal vectors to the different sections of the image, which each map to different
frequency bins. Second is to output image pixels according to the direction of the
normal vector, and the amplitude values in the frequency bins.

The different sections of the image are referred to as contour sprites, as they are
considered individual portions of the image to be separately modulated according to the
different frequency bins. The need for the normal vectors to these contour sprites is so

that we can map amplitude values (in the frequency bins) to modulated distance along
the normal to the original sprites.

Each output sprite will have an associated array indicating which pixels are set
so as to reflect the current state of the sprite. The array will be updated by the contour
transformation block, according to the process above. The output sprite will reflect a
transformed version of the original contour sprite at every frame.

On each frame, the pixels of all output sprites, and the original image will be
ORed together, following a scheme similar to Lab 3 for generating the VGA display
output.

Different transformations will be selected by the user, and the output sprites will
be modulated according to this choice. Basic transformations will be implemented first.
Once those are working in an integrated system, we will consider more complex
transformations.

Fraquency Bin /
Addresses
Contour .y Transformed Output

F, H »
Transformation Transformation Sprites

Selection E—

Contour Mormal Vectors

Mormal Vector
Finder

Contour Sprites

3. When will it get done?

Week of October 29th:

e Develop project outline, divide up tasks, research feasibility of different goals

Week of November 5th:

e Aaron - Learn how to interface with FFT and clock wizard IP core, decide on
frequency bins set up, determine memory size and type; implement

e Wings - Finish edge detection with MatLab and flash processed image onto the
FPGA. Segment the contour and assign the appropriate frequency bins to each
section.

e Julian - Consult staff on Normal Vector Finder, write output sprite modules that
are able to be updated.

Week of November 12th:

e Aaron - Figure out how to sample appropriately for live audio source, start
working on filters for frequency effects

e Wings - Work on input image using the NTSC. Start implementing edge detection
using verilog.

e Julian - Work on skeleton module for Contour Transformation, and connect with
output sprite modules to implement simple transformation (color gradient) on
pre-defined contour, outputting on simple background.

Week of November 19th:
e Aaron - Finalize filter modules for frequency effects, and integrate with FFT and
audio data retrieval
Wings - Continue implementing edge detection on verilog.
Julian - Start work on more complicated contour transformations and outputting

on original image; integrate color transformation with baseline version of other
modules.

Week of November 26th:
e Aaron - Debugging and integration of modules
e Wings - Debugging and integration of modules
e Julian - Debugging and integration of modules; continue work on more
complicated contour transformations; continue work on outputting to original
image.

Week of December 3rd:
e Aaron - Debugging and integration of modules. Final report.
e Wings - Debugging and integration of modules. Final report.
e Julian - Debugging and integration of modules. Final report.

4. What could go wrong?

The major source of uncertainty is the unbounded difficulty of the image
modulation in a smooth manner. Color change and coarse image alterations seem
manageable, but creating smooth transitions of a sprite based on the shape of an FFT
may be too computationally intensive of the FPGA(and us). The main concern here are
distortions due to resolution issues on the edge detection on the original image. In
theory these transformations would look nice, but it will be difficult to tell until we reach
that step.

Another source of possible issues will be the memory allocation for the image
and audio simultaneously. Finally, the edge detection may also be too computationally
intensive for our skills.

Timing is also a big concern in terms of sampling audio and outputting to the

VGA display correctly. This includes synchronization issues, as well as issues with time
averaging the FFT in order to have changes that are perceivable on the VGA display.

5. Equipment needed

We plan on implementing the project on the Nexys 4 Board. To handle the audio
portion of the project, we will need to borrow a microphone and a speaker. For the
image portion of the project, we will need to borrow a NTSC camera and a desktop
monitor. All these equipments are already available to us in lab.

