JAW Dropping Visual Effects via Audio Spectral Analysis

Julian, Aaron, Wings

Project Overview

- Audio based visual effect generator
- Basic
 - Proof of concept with simple audio and image inputs and with simple color transformation
- Expected
 - Desired visual effects to more complex inputs and more types of transformations
- Stretch
 - Visual effects to live inputs

Basic Goal Implementation

- Input audio from short recording or direct stream from cell phone/laptop
- FFT and filters applied to create appropriate number of bins based on number of contours detected on input image
- Input image characteristics
 - Simple
 - Closed contour
 - High contrast
 - Polygon
 - Stored in memory
- Edge detection completed in MatLab with each edge being outputted as a "sprite"
 - o Each contour/sprite will map to a frequency bin
- One of the following transformed will be applied to the contours as a function of the frequency
 - Color change
 - Entire image movement across the screen
 - Individual edge pulsation in response to different frequencies

Expected Goal Upgrades

- Image input from camera
- Edge detection implemented in Verilog
- More complex contours than simple polygons
 - Requires normal vector estimation
- Better filtering
- Higher resolution
 - Approximate curves as lines, thus the smaller the portion of the curve approximated by each line, the higher the resolution
- Multiple, selectable transformations

Stretch Goal

- More transformations
 - Efficient computations
- Live audio sampled via a microphone
 - Appropriate sample rates, hardware quality, and filtering
- Live video from a stream of frames taken by the camera
 - Latency issues

High Level Block Diagram

Audio Processing Module

- Read in audio data
 - Live or recorded samples
 - Stored songs in SD card
- Generate FIR filter coefficients in MatLab
- Create multiple filters to establish bins as well as create interesting effects
- Apply FFT to filter outputs with bins defined either by number of possible contours or defining the number of possible contours via the bin selection

Image Processing Module

- Input image either from file or VGA camera
- Edge detection
 - RGB → Black and White
 - Gaussian Smoothing
 - Sobel Algorithm
- Separation of edges to individual sprites
 - Normal vector for each sprite

Transformation Module: Inputs

- Input Contour Sprites and Normal Vector
- Transformation selected by user
 - Transformation 1 Color Gradient
 - Transformation 2 Amplitude Mapping
 - Transformation 3 Amplitude Mapping with effects

Transformation Module: Outputs

- Image Sprites, with (x,y) array
- Module modifies x,y array according to transformation
- Modified image sprites output to VGA module (hcount, vcount)

Interfaces

- FFT Output: data addresses and bin count
 - Transformation mappings
 - Contour Definition
- Edge detection/contour definition: sprites per contour, normal vectors, original image
 - Transformation mappings
 - o Contour count determines frequency bin division in basic implementation
- Transformation mappings: modulated image
 - XVGA module

	Nov 5	Nov 12	Nov 19	Nov 26	Dec 3
Interface with SD Card					
Pictures from camera + SD Card					
Create Sprite Contours					
Write updatable sprite modules					
IP Cores: Clock Wizard and FFT					
Skeleton Contour Module; Implement Color Transformation					
Edge Detection					
Audio filters					
Normal Vectors					
Integrate Color Transformation					
Work on complex transformations					
Debugging + Stretch Goals					