FPGA iPad

6.111 Final Project
Alex Leffell and Sienna Ramos

Overview

Goals
Baseline
Expected
Stretch

Design
Block Diagrams
Modules
Support
VGA controller:
Image Processing (Alex)
Coefficient Generator
Buffers
Controller
Scaler
Rotator
Gesture Recognition (Sienna)
NTSC to DDR2
Command generator

Timeline, Responsibilities and Resources
Date finished
Task
Person
Item
Quantity
Cost

© 0 00 N N NN N o OO0 oo o oo oag oM W NDNDN DN

Overview

We will recreate the iPad experience of manipulating images using finger gestures using
an FPGA, NTSC camera and VGA display. The NTSC camera will capture the user’s gestural
input. This will include using a black glove with white fingertips to make it easier for the camera
to see motion. The FPGA will convert the camera data into image processing commands as well
as process the images accordingly. At a minimum, our design will allow a user to zoom in on an
image by increasing the distance between their fingers and translate the image on the screen by
moving their fingers together. The system will only manipulate a single image stored in flash
memory. Once achieving the baseline goal, the system will be modified to be able to shrink,
rotate and change the image being displayed.

The system contains two high level modules, gesture recognition and image processing.
The gesture recognition module takes in images from the camera, detects gestures from the
camera data and outputs commands to the image processor based on those gestures. The
image processing module scales and rotates an image stored in flash based on the given
commands. This module saves the modified image in an output buffer, from which the VGA
driver pulls pixel data to display. Every module will operate independently on the same clock
domain. The gesture recognition module will continuously output commands and the image
processor will read those commands whenever it is done processing an image.

Goals

Baseline

Detect features from NTSC camera

Generate translation commands from features

- Read image from SD card and display in monochrome on VGA screen
Translate image on screen based on command

Expected

- Detect zoom and rotate gestures from camera
- Generate commands for zoom and rotate
- Zoom image from 100% to 200%

Stretch

Shrink image from 100% - 50%

Rotate image

Add gesture for changing image

Be able to change image being manipulated

Design

Block Diagrams

Top Level Block Diagram

Position
Camera Commands
Gesture Recognition
Rotation and Scale
Commands
Flash
Memory Image Data
Image Processing VGA Driver
A Scale Value
Image Processor
Y
Rotation Value
Coefficient
> Generator
P
Interpolation
Coefficients
Y
Image Pixels
Input Intermediate Output
Buffer >| Sealer > Buffer Rotator Buffer
4
3 3
Row and Ready A Read
Column Valued eady
re \ \ J

Controller

Gesture Recognition

Feature
extraction

NTSC stream DDR2

Calculation

Scale Value Rotation Value X coordinate of center Y coordinate of Ready
center

Modules

Support

VGA controller:

Inputs: image data, image center x and y values

Outputs: VGA signals to screen

This module generates syncing signals for VGA and outputs the image. It will mostly be
developed from the existing code from the labs. The main difference is that our module will also
take in x and y values and display the image around that coordinate. This module will be tested
by instantiating a simple blob and moving it around on the screen using the Nexsys 4 buttons.

Image Processing

Coefficient Generator (Alex)

Input: 8 bit signed scale value, row and column values
Outputs: interpolation coefficients

This module will be a lookup table that takes in a value for the desired scaling of the
outputted image, row and column values of the pixel being interpolated and outputs the
interpolation coefficients required by the Scaler for the interpolation window around that pixel.
Several instances of this module can be generated to calculate coefficients in parallel,
increasing throughput.

This module will be tested in a testbench that provides it with different scale, row and
column values and the outputted coefficients can be confirmed on the logic analyser.

Buffers (Alex)

Inputs: image data, control signals
Outputs: image data

The input, intermediate and output buffers are memories that provide easy access to the
image data for use by succeeding modules. Depending on the number of Scaler and Rotator
instances, the input and intermediate memories will be organized in order to efficiently provide
those modules with the pixels they need. Note that that for the expected goals, the Scaler
outputs data directly to the output buffer, bypassing the Rotator and intermediate buffer.

This module will be tested by instantiating it with known pixel values and certain
locations then addressing it with those locations and confirming the outputted pixel values on
the logic analyzer

Controller (Alex)

Inputs: ready signals
Outputs: row and column values, memory addresses

The module keeps track of the locations of the current pixels being processed. It tells the
buffers what data to output and the Coefficient Generator, Scaler, and Rotator the row and
column of the pixel to process. It takes in ready signals from the Scaler and Rotator.

Scaler (Alex)

Inputs: interpolation coefficients,
Outputs: scaled image data

This module scales an image by interpolating pixels between known pixels. From the
input buffer, it takes in pixels for a 4x4 window around the point to be interpolated and
calculates the value for the interpolated pixel based on coefficients provided by the coefficient
generator. Several instances of this module can be generated to calculate coefficients in
parallel, increasing throughput.

The Scaler will first be tested by supplying it with a 4x4 window of pixels and a scale
value and ensuring the interpolated point has the correct value.

Rotator (Stretch)

Inputs: rotation value, row and column values
Outputs: rotated image data

This module performs three shear operations, to perform rotation without requiring an
anti-aliasing filter.

Gesture Recognition (Sienna)

NTSC to DDR2

Inputs: Stream from NTSC

Outputs: Data to be sent to DDR2

This module saves video image data onto the memory. We can test this by displaying the
camera image onto the VGA screen.

Filter data
Inputs: NTSC stream
Outputs: Coordinates of the very bright pixels.

This module extracts feature data from the NTSC screen. We can graduate from saving
all the camera data to only saving the location and luminosity of the pixels which have a
brightness beyond a certain threshold. These bright pixels are the fingertips of the LED glove,
and are the only information we care about for the rest of the calculations. We can test this by
displaying only the LED fingertips on the VGA screen.

Command Generator

Inputs: feature data
Outputs: 8 bit signed scale value (50%-200% scaling), x and y coordinates of picture center, 8
bit rotate value (0-360 degrees), 1 bit command ready signal

This module uses the saved feature data to make calculations determining the output to
be sent to the image processing module. For the scaling value, we need to track if the lights are
further or closer together than previously. The rotation value is the angle between a vector
parallel to the x-axis and the vector created by the two fingers. The x and y coordinates of the
output are the x and y coordinates of the point exactly between the two fingers. When all the
calculations have been performed, the module asserts “ready” as 1. We can test each of these
calculations by displaying the values on the 7-segment LED displays on the Nexys 4.

Timeline, Responsibilities and Resources

Our projected timeline is given in the following table:

Date finished Task Person

November 10 Material Collection (camera, glove, and any accessories) Sienna
Experiment with memory architectures, Design Scaler and Alex
Coefficient Generator architectures

November 13 NTSC to DDR2 module created Sienna
Coefficient Generator and Buffers complete, Alex
Begin implementation of Controller and Scaler
November 17 Filter data module created Sienna
Controller and Scaler complete Alex
November 22 Command generator module created Sienna
Integration and testing of image processing module complete Alex
December 1 Integration Alex and
Sienna
December 8 Polishing Alex and
Sienna
December 13 Submit Project Alex and
Sienna
The resources we will need to complete this project are detailed below:
Item Quantity Cost
NTSC Camera 1 Free (borrowing from lab)
LEDs 2 $0.30
Gloves 1 $3.50
MicroSD Card 1 $8

