

Computer​ ​Vision​ ​Pipeline​ ​For​ ​Object​ ​Recognition

Kevin​ ​Zhang​ ​and​ ​Felipe​ ​Hofmann
October​ ​14th,​ ​2017

Abstract
We propose to implement a computer vision pipeline for motion tracking. This pipeline will read input
from a camera, extract features for object recognition, and identify objects on a VGA monitor. The basic
user experience is as follows: the user presses a button and a box appears on the screen - the user holds an
arbitrary object in front of the camera so that it shows up in the box. When the button is released, the
FPGA learns to recognize the object and draws a box around it whenever it is recognized in the field of
view. The target object can range from a simple baseline of a purple ball on a white background to human
faces.

Design
The first half of the high-level block diagram for our implementation is shown below. We plan to attach a
CCX-Z11 camera to the labkit through the s-video port, decode the video signal with the onboard ADV7185
decoder​ ​chip,​ ​process​ ​the​ ​frames,​ ​and​ ​write​ ​to​ ​a​ ​VGA​ ​monitor​ ​with​ ​the​ ​onboard​ ​ADV7125​ ​video​ ​encoder.

Due to the limited memory size of the BRAMs, we will be using one of the two 512kx36 ZBT SRAMs soldered
onto the labkit to store the frame for processing. Because of the 2 clock cycle delay from the read/write
signal​ ​to​ ​retrieval/execution,​ ​special​ ​care​ ​needs​ ​to​ ​be​ ​taken​ ​when​ ​retrieving​ ​pixel​ ​values.

Note that the detector module in the above block diagram - see dashed lines - is an abstract interface which
ingests pixel data and button presses and returns scores for each location in the frame. The key
responsibility of this component is to recognize and track objects, and we propose 2 different concrete
implementations​ ​based​ ​on​ ​traditional​ ​and​ ​modern​ ​computer​ ​vision​ ​techniques,​ ​respectively.

Furthermore, note that bus widths are omitted from the above diagram and will be discussed along with
implementation​ ​details​ ​in​ ​a​ ​later​ ​section.

1

Our​ ​first​ ​concrete​ ​implementation​ ​of​ ​the​ ​detector​ ​module​ ​will​ ​rely​ ​on​ ​hue​ ​and​ ​edge​ ​features.​ ​The​ ​pixel​ ​data
is​ ​accumulated​ ​in​ ​a​ ​line​ ​buffer​ ​which​ ​transmits​ ​subimages​ ​of​ ​size​ ​16x16​ ​to​ ​the​ ​linear​ ​scorer.​ ​The​ ​linear
scorer​ ​returns​ ​a​ ​linear​ ​combination​ ​of​ ​the​ ​scores​ ​produced​ ​by​ ​the​ ​hue,​ ​edge,​ ​and​ ​ordinal​ ​feature​ ​detectors.

Our second optional concrete implementation which will only be implemented if time allows will use a
shallow convolutional neural network with a ReLU nonlinearity to score the subimages. Some of the
challenges​ ​of​ ​this​ ​implementation​ ​are​ ​speed​ ​and​ ​the​ ​lack​ ​of​ ​floating​ ​point​ ​support.

Both detectors respond identically to the user input. When the enter button is pressed, the detector learns
to​ ​recognize​ ​the​ ​active​ ​object​ ​as​ ​object​ ​X,​ ​where​ ​X​ ​is​ ​the​ ​value​ ​indicated​ ​by​ ​the​ ​switches.

2

Video/VGA​ ​Modules 1
NTSC​ ​Decoder

Inputs:​ ​​tv_in_ycrcb​ ​[9:0]
Outputs:​​ ​ycrcb​ ​[29:0],​ ​field,​ ​vertical,​ ​horizontal,​ ​ready

This module reads the NTSC stream produced by the ADV7185 decoder and produces YCrCb values
as well as the appropriate field/vertical/horizontal signals. These outputs are passed to the ​NTSC to
ZBT​​ ​module.

NTSC​ ​to​ ​ZBT

Inputs:​​ ​field,​ ​vertical​ ​,horizontal,​ ​ready,​ ​ycrcb​ ​[29:0]
Outputs:​​ ​ntsc_addr​ ​[18:0],​ ​ntsc_data​ ​[35:0],​ ​write_enable

This module uses the field/vertical/horizontal signals and counters to compute the current pixel
position and outputs the memory address associated with that pixel. It also extracts the
luminescence component of the ycrcb signal. These outputs are used by the primary controller to
fill​ ​the​ ​ZBT​ ​memory.

XVGA

Outputs:​​ ​hsync,​ ​vsync,​ ​hcount​ ​[10:0],​ ​vcount​ ​[9:0]

Generates XVGA display signals (1024 x 768 @ 60Hz). This is the standard module provided by the
staff and is used without modifications. Due to timing concerns, we may downgrade this to
800x600​ ​or​ ​even​ ​640x480​ ​resolution.

Display

Inputs:​​ ​hsync,​ ​vsync,​ ​hcount​ ​[10:0],​ ​vcount​ ​[9:0],​​ ​​data​ ​[35:0]
Outputs:​​ ​hsync,​ ​vsync,​ ​address​ ​[18:0],​ ​rgb​ ​[7:0]

This module accepts hcount/vcount and computes the appropriate memory address, taking into
account the 2 cycle clock delay in reading from SRAM. Furthermore, since the memory is 36 bits
wide with 4 pixels packed into each memory location and the extra 4 bits used to store the chroma
values,​ ​this​ ​only​ ​needs​ ​to​ ​read​ ​1​ ​value​ ​every​ ​4​ ​clock​ ​cycles.

ZBT​ ​Memory

Inputs:​​ ​write_enable,​ ​address​ ​[18:0],​ ​write_data​ ​[35:0]
Outputs:​​ ​read_data​ ​[35:0]

This module interfaces with the onboard SRAM. There is a two cycle delay on read/write and
accepts/return​ ​36-bit​ ​values.

Primary​ ​Controller

Inputs: hcount [10:0], vcount [9:0], ntsc_addr [18:0], ntsc_data [35:0], write_enable, read_data
[35:0],​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​​ ​address​ ​[18:0],​ ​score​ ​[3:0]

1 Many of the modules used for video encoding/decoding are derived from the sample Verilog provided by
the​ ​6.111​ ​staff​ ​on​ ​the​ ​course​ ​website​ ​at​ ​http://web.mit.edu/6.111/www/f2017/index.html.

3

Outputs:​​ ​hcount​ ​[10:0],​ ​vcount​ ​[9:0],​ ​data​ ​[35:0],​ ​address​ ​[18:0],​ ​write_data​ ​[35:0],​ ​write_enable

The primary controller connects all of our submodules and handles switching between read and
write for our SRAM frame buffer. The decoder runs at 27 MHz while the XVGA runs at 65 MHz, but
XVGA reads only happen once every 4 cycles due to the pixel packing described above, allowing us
to​ ​store​ ​NTSC​ ​data​ ​on​ ​the​ ​free​ ​cycles.

Detector​ ​Modules
Line​ ​Buffer

This module is responsible for caching 16-line subimages and feeding each 16x16 patch to the linear
scorer​ ​by​ ​pulling​ ​ready​ ​high​ ​when​ ​the​ ​data​ ​is​ ​available.

Detector​ ​Controller

This module is responsible for storing scores produced by the linear scorer and retrieving them
from​ ​BRAM​ ​upon​ ​request.

Linear​ ​Scorer

This passes the subimages to the individual detector modules and returns a linear combination of
the scores returned by the detectors. The linear combination will initially be hardcoded but
eventually can be automatically optimized. In addition, this module is responsible for interpreting
the user input - i.e. button down means that the user is training the module to recognize object X,
where​ ​X​ ​is​ ​determined​ ​by​ ​the​ ​switches​ ​-​ ​and​ ​pulling​ ​​train​​ ​high.

Hue​ ​Histogram

This module accepts ​subimage[64*8-1:0] and ​train as inputs and returns a ​score[3:0]​. The subimage
contains the cr/cb values scaled down to 4 bits each for the central 8x8 patch of the subimage.
When ​train is pulled high, the ​score is set to 16 and the hue histogram module stores the current
histogram; when train is pulled low, this module returns a score indicating how similar the current
histogram​ ​is​ ​to​ ​the​ ​stored​ ​histogram.

An example of a histogram is shown below; as you may expect, a tennis ball will have high yellow
and​ ​green​ ​values​ ​but​ ​low​ ​counts​ ​for​ ​the​ ​other​ ​colors.

We propose storing the target histogram for an object - i.e. the histogram computed from the
center of the screen when the enter button is held down - in 48 registers where each of the 6 colors
takes​ ​up​ ​8​ ​bits;​ ​the​ ​scoring​ ​function​ ​for​ ​comparing​ ​the​ ​histograms​ ​is​ ​shown​ ​here:

core target |s = ∑

color
| count − currentcount

4

Although ​train needs to be high for at least 1 clock cycle, once the histogram is stored in registers,
the ​score computation can be purely combinatorial. The only arithmetic operations used by this
module​ ​are​ ​comparisons,​ ​additions,​ ​and​ ​subtractions.

If we run into synthesis issues due to the large number of arithmetic operations, we can implement
an​ ​alternative​ ​which​ ​uses​ ​dynamic​ ​programming​ ​to​ ​reduce​ ​it​ ​to​ ​3​ ​operations​ ​per​ ​subimage. 2

Edge​ ​Histogram 3

This module accepts ​subimage[64*8-1:0] and train as inputs and returns a ​score[3:0]​. It computes a
simplified “histogram of oriented gradients” in the subimage. For example, the below diagram
shows​ ​the​ ​4​ ​primary​ ​types​ ​of​ ​edges​ ​found​ ​in​ ​the​ ​letter​ ​A.

The​ ​edge​ ​detection​ ​will​ ​be​ ​performed​ ​via​ ​straightforward​ ​comparison​ ​operations​ ​(similar​ ​to​ ​the
FAST​ ​corner​ ​detection​ ​method)​ ​allowing​ ​us​ ​to​ ​​train​​ ​in​ ​1​ ​clock​ ​and​ ​then​ ​compute​ ​scores​ ​with​ ​purely
combinatorial​ ​logic.

Once​ ​again,​ ​any​ ​synthesis​ ​issues​ ​due​ ​to​ ​the​ ​large​ ​number​ ​of​ ​comparators​ ​can​ ​be​ ​resolved​ ​with​ ​a
dynamic​ ​programming​ ​solution​ ​as​ ​indicated​ ​above.

Brightness​ ​Ordinal

This module accepts ​subimage[64*8-1:0] and train as inputs and returns a ​score[3:0]​. It computes a
brightness ordinal which splits the subimage up into an even grid and returns a sorted list of cells
from​ ​brightest​ ​to​ ​darkest.​ ​This​ ​gives​ ​us​ ​a​ ​coarse​ ​measure​ ​of​ ​the​ ​morphology​ ​of​ ​the​ ​object.

As described above, this detector module also trains in 1 clock cycle and produces scores with
purely​ ​combinatorial​ ​logic.

2 We can store π[i,j] to indicate the sum of colors up to column i and j such that π[i,j] - π[i-16,j] - π[i,j-16] +
π[i-16,j-16]​ ​returns​ ​an​ ​equivalent​ ​value​ ​with​ ​only​ ​3​ ​arithmetic​ ​operations.
3 ​ ​A​ ​variant​ ​of​ ​this​ ​is​ ​the​ ​histogram​ ​of​ ​oriented​ ​gradients​ ​(HoG)​ ​found​ ​in​ ​computer​ ​vision​ ​literature.

5

