
FPGA Object Tracking

Kevin Zhang and Felipe Hofmann



Overview



Goal

Fast and energy-efficient object recognition and 
tracking.

1. Hold an object in front of the camera.
2. Set the switches and hold the train button.
3. Repeat.

Each object (specified by switches 0-2) will 
automatically be recognized and tracked as it 
moves around the frame.

1

2

3
4



field

NTSC Decodertv_in_ycrcb(10)
vertical

horizontal
ready
ycrcb

ntsc_addr
ntsc_data

w
rite_enable

NTSC to ZBT
CCX-Z11
ADV7185

ZBT Memory (SRAM 0) Primary 
Controller

XVGA

Display

hcount
vcount

hsync
vsync

ADV7125

rgb
hsync
vsync
blank

hcount
vcount
address

data

address
write_data

write_enable
read_data

Detector (Abstract Interface)

hcount
vcount

data
score

Debounce
enter
sw[0]
sw[1]
sw[2]



detector v1

hcount
vcount

data

score

enter
sw[0]
sw[1]
sw[2]

Line Buffer Detector 
Controller

hcount
vcount

address
read_data

BRAMwrite_data
write_enable

ready
subim

age
hcount
vcount

Linear Scorer

hc
ou

nt
vc

ou
nt

sc
or

e

Hue 
Histogram

train
subim

age

score

Edge 
Histogram

train
subim

age

score

Brightness
Ordinal

train
subim

age

score



Design



Video Modules

NTSC to ZBT

Inputs: field, vertical ,horizontal, ready, ycrcb [29:0]
Outputs: ntsc_addr [18:0], ntsc_data [35:0], write_enable

This module uses the field/vertical/horizontal signals and 
counters to compute the current pixel position and outputs 
the memory address associated with that pixel. It also 
extracts the luminescence component of the ycrcb signal. 
These outputs are used by the primary controller to fill the 
ZBT memory.

ZBT Memory

Inputs: write_enable, address [18:0], write_data [35:0]
Outputs: read_data [35:0]

This module interfaces with the onboard SRAM. There is a 
two cycle delay on read/write and accepts/return 36-bit 
values.



Detector Modules

Line Buffer
Inputs: hcount[10:0], vcount[9:0], data [35:0]
Outputs: ready, hcount[10:0], vcount[9:0], subimage[511:0]

This module is responsible for caching 8-line subimages and 
feeding each 8x8 patch to the linear scorer by pulling ready 
high when the data is available.

Linear Scorer

Inputs: hue_score[3:0], edge_score[3:0], ordinal_score[3:0]
Outputs: patch[511:0], train, score, hcount[10:0], vcount[9:0]

This passes the subimages to the individual detector 
modules and returns a linear combination of the scores 
returned by the detectors. The linear combination will 
initially be manually set but can be automatically optimized.

In addition, this module is responsible for interpreting the 
user input - i.e. button down means that the user is training 
the module to recognize object X, where X is determined by 
the switches - and pulling train high.



Hue Histogram

Inputs: subimage[511:0], train
Outputs: score

This module accepts subimage[64*8-1:0] and 
train as inputs and returns a score[3:0]. The 
subimage contains the cr/cb values scaled 
down to 4 bits each for the central 8x8 patch of 
the subimage.

When train is pulled high, the score is set to 16 
and the hue histogram module stores the 
current histogram; when train is pulled low, 
this module returns a score indicating how 
similar the current histogram is to the stored 
histogram.



Edge Histogram

Inputs: subimage[511:0], train
Outputs: score

This module accepts subimage[64*8-1:0] and 
train as inputs and returns a score[3:0]. It 
computes a simplified “histogram of oriented 
gradients” in the subimage. For example, the 
below diagram shows the 4 primary types of 
edges found in the letter A.

The edge detection will be performed via 
straightforward comparison operations (similar 
to the FAST corner detection method) allowing 
us to train in 1 clock and then compute scores 
with purely combinatorial logic.



Brightness Ordinal

Inputs: subimage[511:0], train
Outputs: score

This module accepts subimage[64*8-1:0] and 
train as inputs and returns a score[3:0]. It 
computes a brightness ordinal which splits the 
subimage up into an even grid and returns a 
sorted list of cells from brightest to darkest. 
This gives us a coarse measure of the 
morphology of the object.

5 3 1

6 4 2

9 8 7



demo: https://kevz.me/app/6.111/



● All of the examples given so far 
have been computed on the 
“full” image.

● This isn’t how it is actually 
computed… we have to convolve 
each feature extractor over 8x8 
patches.

● Think convolutional neural 
networks… except with 
untrainable layers.

Aside: Convolutions



Timeline


