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Introduction 
The FPGA telephone exchange projects implement an automated, dial phone system using 
commodity landline telephones. Users can pick up the phones, hear real dial and busy tones, dial 
other extensions, and receive calls, just like the the real phone network. 
 
In my project, two landline telephones, combined with custom interfacing hardware, will be 
connected to the labkit to act as two extensions. The FPGA operates a state machine capable of 
decoding dialed numbers, playing dial and busy tones, and connecting calls between the attached 
lines. Each line has one input and one output channel on the labkit’s AC‘97 audio codec acting 
as a ‘virtual switchboard’ so that two phones in a call can be digitally connected by passing 
audio samples accordingly. Finally, a VGA display shows status information about the system, 
such as which phones are in use. 
 

 
Landline telephone technology has seen little change in the past one hundred years. This makes a 
typical phone difficult to incorporate into modern digital systems. Therefore, each extension has 
a custom interface circuit that adapts the high-voltage, analog phone circuitry into FPGA- and 
labkit-friendly signals. Specifically, this external circuitry powers the phone, detects when users 
pick up and pulse-dial the phone, and provides a four-wire audio input/output signal pair for 
sending and receiving audio signals. Additionally, external piezo buzzers act as ringers, one for 
each extension.  
 



 

Inside the FPGA, numerous modules handle audio processing, VGA output, and various state 
machines for tracking phones and calls.  
 

 
Each extension/line has a ​line_interface​  module that performs the low-level phone interfacing. 
By monitoring the hookswitch input from the interface circuitry (see next section), this module’s 
state machine outputs decoded dialed digits and a “phone active” signal when picked up. It also 
includes a siren tone generator for driving a piezo ringer at the standard North American ring 
cadence of 2 seconds on, 4 seconds off.  
 
The audio router is the FPGA’s virtual switchboard. It brings in four audio streams from the 
AC’97 codec (Extension 1 in, Extension 1 out, Extension 2 in, Extension 2 out) and maps them 
according to source select inputs. It also contains tone generators that play call progress tones, 
like dial tone, from BRAM memory. The audio router can accomplish tasks like “send dial tone 
to Extension 1, and silence to Extension 2” or “connect Extension 1 to Extension 2 and 2 to 1 in 
order to connect a call.” Whatever comes out is what the user hears in his or her phone.  
 
The ​pbx​  module is the heart of the phone exchange. It tracks each phone’s status and dialed 
numbers using a state machine per line. It commands the audio router to connect two extensions 
when a call goes through and play then appropriate tones to each phone.  



 

 
The VGA module shows status information about each phone. It accesses a character ROM in 
BRAM to create a text display based on information received from the line interfaces and PBX 
module.  
 
Finally, a series of utility modules like clock dividers and debouncers are used throughout. 
 
Why? 
I chose this project because it fulfills a long-lasting fascination with phones and communications 
systems. I built many intercom systems as a child, and at one point convinced my neighbor, who 
worked for AT&T, to collect some retired equipment and help me install an old business phone 
system in my house. (I could call my sister’s room when dinner was ready, or, better yet, make 
an announcement over loudspeakers I stashed in my home’s air vents) Later, in high school, I 
wanted to build my own system from scratch. I got pretty far but never finished it. Although this 
system has virtually no aspects of its implementation in common (the original used 
microcontrollers), the knowledge gained was valuable.  
 

Hardware 

As previously alluded, landline telephones are not easily interfaced and require special circuitry. 
This section goes into depth on the development of this hardware. 
 
Brief Background on Telephone Electronics 

 
Telephones support many features, including two-way audio transmission, dialing, ringing, and 
receiving power. All of this is accomplished through an ingenious, albeit old-fashioned, two wire 
interface.  



 

 
In order to first begin using a phone, it must be powered. Real telephone lines use -48VDC, 
however, much lower voltages are sufficient. I use 24VDC. A series resistor sets a modest 
current, about 25mA. This circuit will power a phone and allow a user to operate it. 

 
Any phone system must detect when the phone is picked up. Picking up creates a DC current 
path through the phone by closing the ​hookswitch,​  the switch that the phone’s receiver depresses 
when hung up. By placing an opto-isolator in series, we can get an indication that current is 
flowing. This is called the “off-hook” state.  
 
This also give us support for pulse-dialing. Pulse dialing is an older dialing mechanism where the 
hookswitch is pulsed to signal digits. Dialing a “1” briefly pulses the hookswitch once. “2” 
twice. “3” three times, and so on. By monitoring and timing the pulses coming out of the 
opto-isolator, a phone system can count the pulses and determined what got dialed.  
 
Aside​ : modern phone networks now use DTMF (dual-tone multi-frequency) dialing, where the 
phone generates and sends an audio waveform corresponding to a digit. For example, a “5” is 
dialed by sending a 770Hz+1336Hz tone. Many phones and networks still permit pulse-dialing 
for backwards compatibility, but this is fading. 
 
The Interface Circuitry 

The project’s telephone circuitry builds off of this to also send and receive audio. In the above 
circuit, audio is riding on top of the 24VDC power supply voltage (the phone modulates the 
sound onto the line with a transformer or some other solid-state circuit). This large DC offset 
must be eliminated using a capacitor. The audio is then passed through an isolation transformer 
to keep the high-voltage phone circuitry separate from the low-voltage digital electronics. 
 
Finally, the audio needs to be split from a two-wire circuit to a four-wire circuit. Right now, all 
audio is mixed on one bi-directional signal, making it difficult to send and receive 
simultaneously. A circuit called a telephone hybrid is used to remedy this. The basic theory of 
operation is to use one op-amp to drive the transmitted signal into the line, and use a second 
op-amp as a differential amplifier to amplify the line minus the transmitted signal to extract pure 
received audio. From here, the audio connections go straight into the labkit’s external audio 
ports. 



 

 

 
 
The circuit is built on an external breadboard and is powered by the labkit’s +/- 12VDC supply. 
 
Implementation 

The op-amp circuit requires careful tuning of the resistors, particularly R7 and R3 to effectively 
remove all transmit audio from the receive output. A loading resistor of 680 ohm might also be 
necessary parallel to the phone-side of the transformer. Careful tuning is critical. Even small 
traces of the transmit audio being allowed into the receive signal path can cause terrible noise 
and feedback when two sets of this circuit are connected back-to-back, as they would be during a 
call. Fortunately, I was able to mitigate this with a trim potentiometer for careful adjustment. 
Many hours of debugging, possibly more than any single Verilog module, were needed here.  
 
Overall, this circuit provides a digital 3.3V hookswitch signal to the FPGA and two line-level 
audio connections terminated by RCA jacks. 
 
A true telephone system would also support ringing the bells within the phones as opposed to 
using external piezo buzzers. However, ringing is complex and requires a 50-90Vrms 20Hz 
power source applied to the phone line in series with the DC source. (The odd frequency is due 



 

to the resonance of the LC circuit formed by the mechanical bell ringer and a certain 
AC-coupling capacitor in the phone; ordinary 60Hz will not make a sound). Not only is this 
clumbersome to generate, it also requires additional circuitry called a ​ring trip​ . This circuit stops 
the AC ringing current once the user picks up the phone. This is critical, because 90VAC applied 
to an off-hook phone will blow out the earpiece (empirically verified). I successfully built such a 
circuit in high school, but it was not easy. For the sake of simplicity (and safety), ringing was left 
out of this project. 
 

FPGA Logic 
Line Interface 

 

Port Type Name Description 

input clock 27 Mhz system clock 

input reset Reset signal 

input hookswitch Raw hookswitch signal from interface circuit. Passed 
through ​user3​ header. 

input ring_enable Signal from rest of system that this phone should ring. 
Held high for duration of ringing. 

input enable_1sec High for one clock cycle once a second. 

output phone_active Goes high when the phone is picked up and low when 
put down. It filters out pulse-dial digits. 

output dial_digit [3:0] A 4-bit BCD output indicating the most recently-dialed 
digit. 10 is sent for “0”. 

output dial_digit_ready Goes high for one clock cycle to indicate that the user 
has completed dialing the digit. It is safe to latch 
dial_digit​. 

output ringer_driver Output to the piezo buzzer. It contains a sweeping tone 
with the proper 2-sec on, 4-sec off cadence when 
ring_enable​ is high. 

output State_out [3:0] State machine debugging output 

 
The line interface provides a layer of abstraction for each extension/line to simplify further 
processing and logic. In addition to clock and reset, the chief input is hookswitch, which comes 



 

from the opto-isolator in the interface circuit via the user3 I/O header. It is inverted in the 
top-level module so that a logic high indicates off-hook. A logic low indicates hang-up or a 
pulse-dial digit.  
 
Within the module is a state machine for monitoring the phone. Below is a description of each 
state. 
 

1. STATE_IDLE:​ In this state, the phone is not in use. ​phone_active​ is set low to 
indicate to the rest of the system that this phone is available to receive calls but should 
otherwise be ignored.  
 
However, once hookswitch goes high (because the user lifted the phone), we transition to 
a different state. If we are not being called (​ring_enable​ is low), we assume the user 
wants to initiate a call, so we transition to ​STATE_DIALING​. Otherwise, we jump straight 
to ​STATE_IN_CALL​. 
 

2. STATE_DIALING:​ When the user wishes to place a call, they must dial an extension 
number. In this state, we wait for ​hookswitch​ to go low again and start a timer. If the 
hookswitch​ signal goes high again within a set timeout (approximately 500ms), it is 
assumed a pulse-dial digit was received and ​dial_digit​ is incremented. However, if 
hookswitch​ stays low for an extended period of time (1 second), it is assumed the user 
just hung up and we go back to ​STATE_IDLE​. Once the first dialing pulse is detected, 
another timer starts to enforce a dialing timeout. After 2 seconds, dialing is deemed 
complete and ​dial_digit_ready​ is asserted for one cycle. We then go to 
STATE_IN_CALL​. 
 

3. STATE_IN_CALL:​ In this state, the user is connected to the phone network, either 
speaking with somebody or waiting to connect. Hanging up (​hookswitch​ goes low) 
simply returns to ​STATE_IDLE​. 

 
This state machine captures dialed digits and also provides the useful ​phone_active​ signal. 
This is distinct from the raw ​hookswitch​ signal because it is held high throughout dialing. This 
is important, because ​phone_active​ is used by the remaining logic to determine if this 
extension is busy (i.e. unable to receive a call). Without it, if somebody else were to call this 
phone while this user was dialing, it is possible that the phone could be deemed not busy when 
the user was actually in the middle of pulse dialing. Thanks to this module, no pulse timing is 
needed anywhere else. 
 



 

The line interface module also handles the simulated ringing, which is independent of the state 
machine. A submodule called siren (my car alarm from Lab 4) generates a sweeping tone 
suitable for driving a piezo element, outputted on ​ringer_driver​. It is enabled by the logical 
AND of two signals: ​ring_enable​ (an input used to trigger ringing), and ​ring_cadence​, an 
internally generated signal that is on for two seconds and off for four. This cadence matches the 
North American standard ring pattern and is derived from the ​enable_1sec​ input. 
 
Audio Router 

 

Port Type Name Description 

input clock_27mhz Main system clock 

input reset System reset signal 

input ext1_source [3:0] Source select for extension 1 

input Ext2_source [3:0] Source select for extension 2 

output audio_reset_b AC’97 reset 

output ac97_sdata_out Audio data to AC’97 

input ac97_sdata_in Audio data from AC’97 

output ac97_synch AC’97 synchronization signal 

input ac97_bit_clock Clock for the sdata serial lines. 

 
The audio router provides the virtual switching fabric for the phone exchange and a hardware 
interface to the AC’97 audio codec. It is responsibly for all audio processing and routing. When a 
phone call takes place, samples are record from one phone and played into the other, and 
vice-versa. Tones are also generated within this module. 
 
This module contains many submodules will later come together to complete the router. 
 
AC’97 interface 
Through the use of two submodules, ​ac97​ and ​ac97_commands​, adapted from Lab 5, audio 
frames are clocked in from the AC’97 and split into four 20-bit signals:​ left_in_data, 
right_in_data, left_out_data, right_out_data​. These signals carry 20-bit signed 
audio samples to and from the AC’97 ADCs and DACs. 48Khz sampling is used, which is the 



 

default but overkill for voice telephony. (The real phone network is 8-bit audio at 8KHz sample 
rate, although this may have improved in recent years) 
 
The AC’97, through the ​ac97_commands​ is configured to record from the Line In input and 
output to the Line Out output. These ports are attached to RCA jacks on the labkit, making it 
easy to attach cables to. This is achieved by setting the master volume register (0x02) to 
approximately 10dB attenuation, the PCM volume (0x18) to half-full, the record selector register 
(0x1A) to input 4 (Line In), the recording gain (0x1C) to half its range, and finally cutting out 
mix1 (register 0x20).  
 
The ​ac97​ module packs and unpacks the commands and samples into and out of serial frames. A 
ready​ signal is asserted whenever a new frame is about to be sent or received. This signal is 
used to coordinate much of the remaining audio router logic. 
 
Tone Generator 
In a real phone network, users hear several call progress tones throughout the call. These include 
dial tone when first lifting the phone, a busy tone if the called party is busy, and a ringing tone if 
the distant phone is ringing. My system replicates these tones. 
 

 
 

 

Tone Frequency Cadence 

Dial Tone 350Hz + 440Hz Constant 

Busy Tone 480Hz + 620Hz 500ms on, 500ms off 

Ringing Tone 440Hz + 480Hz 2 sec on, 4 sec off 

 



 

To generate these tones, a Python script was written to create the samples and save them to a 
COE file. This file was then used to initialize a block memory module in ISE. 
 
 import math 
  
 SAMPLE_RATE = 8000.0 
 FREQS = ((480.0, 620.0), (350.0, 440.0), (440.0, 480.0)) 
 NUM_SAMPLES = 800 
  
 def twocomp(x): 
         return (int(x) + 256) % 256 
  
 with open("tones.coe","w") as f: 
     f.write("; 800 samples of busy tone, dial tone, and lastly, ringing tone\n") 
     f.write("memory_initialization_radix=10;\n") 
     f.write("memory_initialization_vector=\n") 
     for waveform in FREQS: 
         for x in range(NUM_SAMPLES): 
             f.write("{0},\n".format( 
                     twocomp( 
                         64*math.cos(2.0*math.pi*waveform[0]*x/SAMPLE_RATE) + \ 
                         64*math.cos(2.0*math.pi*waveform[1]*x/SAMPLE_RATE) 
                     ) 
                 ) 
             ) 
     f.seek(-2, 1) 
     f.write(";") 

 
The resulting block memory module contains 2,400 8-bit samples (800 for each type of tone). 
The tone generator module only operates at 8KHz (which is more than adequate), but this allows 
the module to neatly pipeline its memory access. Accessing the memory requires two steps that 
must occur on different clock cycles: (1) set the requested address, and then (2) read the data. 
Whenever the ready signal is asserted 48,000 times per second, one step is executed at a time, in 
a loop 

1. Request next busy tone sample, go to (2) 
2. Output busy tone sample, go to (3) 
3. Request next dial tone sample, go to (4) 
4. Output dial tone sample, go to (5) 
5. Request next ringing tone sample, go to (6) 
6. Output ringing tone sample, and restart at (1). 

This works nicely because three tones multiplied by two steps each is 6 clock cycles, which 
means 8000 samples are delivered per sample per waveform when clocked with the 48KHz 
ready​ signal from the ​ac97​ module. 
 
The waveforms are sent back to the main audio router module. However, before that happens, a 
timer is used to apply the correct cadences to the streams. This timer runs by prescaling the 
48KHz ​ready​ clock. 



 

 
Some difficulties encountered while developing the tone generator include using an incorrect 
sample format. Originally, the Python script generated unsigned 8-bit samples that were 
concatenated with 12 zeros to produce 20-bit samples for the AC’97. However, this produced 
oddly inverted waveforms on the output. The samples needed to be converted into two’s 
complement signed integers. The script was reworked to add 255 to each sample and taking the 
modulus 256.  
 
 
Routing 
Back in the top of the audio_router module, the AC’97 input and output audio streams and the 
tone streams are brought together for switching. A series of case statements selects the 
appropriate sources for each output (where each output is a user’s phone’s speaker) based on 
source select inputs ​ext1_source​ and ​ext2_source​. This codes runs once every time ​ready 
is asserted. 
             case(ext1_source) 
                 default:  left_out_data <= 0; 
                 1:  left_out_data <= right_in_data; 
                 2:  left_out_data <= left_in_data; 
                 11: left_out_data <= {dial_tone_stream, 12'b000000000000}; 
                 12: left_out_data <= {busy_tone_stream, 12'b000000000000}; 
                 13: left_out_data <= {ringing_tone_stream, 12'b000000000000}; 
             endcase 
             case(ext2_source) 
                 default:  right_out_data <= 0; 
                 1:  right_out_data <= right_in_data; 
                 2:  right_out_data <= left_in_data; 
                 11: right_out_data <= {dial_tone_stream, 12'b000000000000}; 
                 12: right_out_data <= {busy_tone_stream, 12'b000000000000}; 
                 13: right_out_data <= {ringing_tone_stream, 12'b000000000000}; 
             endcase 

 
Adding More Phones 
Originally, this project called for having three phones. The AC’97 contains only two ADCs and 
two DACs (one for left and another for right). A possible workaround for this involved 
attempting to multiplex more than two input/output streams by rapidly switching the recording 
mux and active output between different samples (and thereby sacrificing overall sample rate). 
 
Assuming the record select mux can keep up, this method should work fine for sampling three 
streams at 24KHz each (we can do the first two at once because of the stereo ADC). Outputting 
three concurrent streams would follow a similar theory. The samples would be lined-up 
round-robin and a different output’s mute function would be undone when that output’s sample 
arrived at the DACs (like a chip-select signal but analog). However, this does not yield three 
concurrent half-rate streams. Instead, it gives three half rate concurrent streams with zeroes every 



 

other sample. It could be possible to low-pass filter the output or implement a sample-and-hold 
circuit to try and fill in the zero samples, but this was all deemed too complex to be worthwhile. 
Should the system be expanded, a true multi-channel audio solution should be used.  
 
PBX Core 
 

Port Type Name Description 

input clock_27mhz Main system clock 

input reset System reset signal 

input Ext_dial [7:0] Concatenated dial_digit from each line interface 

input Ext_dial_done [1:0] Concatenated dial_digit_ready from each LI 

input  Ext_active [1:0] Concatenated phone_active signal from each LI 

output Ext_ring [1:0] Concatenated ring_enable signal from each LI 

output State_out [7:0] Concatenated state output from each line’s internal FSM 

 
The PBX core (Private Branch Exchange, a technical name for a small private phone system like 
this) handles interactions between phones.  
 
The module was originally designed to be high parameterizable but this was cut due to time 
constraints. However, some aspects of this design remained. One example is the aggregated 
signal ports to accommodate multiple connected line interfaces. For example, ext_dial[7:4] 
contains Extension 2’s last dialed digit (from its line interface). This permits parameterized 
access to any given phone. For example, Extension ​n​  can be rung with ​ext_ring[n-1] <= 1; 
Ideally, the module itself would be parameterized by the number of lines and scale automatically. 
For example, inputs would be defined as ​output reg [N:0] ext_ring​ to accomodate N 
ringers. Right now, the bulk of the module is implemented with two repetitive and 
complementary state machines. Below is a description of one such state machine for phone ​n​ . 
 

1. STATE_IDLE​: In this state, the phone is doing nothing. This is the only state in which 
the phone can receive calls from others. Otherwise, it waits here until the phone becomes 
active (​ext_active[n] ​goes high) and transitions to STATE_WAIT_DIGIT. 

2. STATE_WAIT_DIGIT:​ At this point the phone has been picked up and the user is 
preparing to dial. The FSM commands the audio router to begin playing a dial tone into 
this phone though the appropriate source selector outputs 



 

(e​xt_audio_control[4*n+3: 4*n] <= AUDIO_ROUTER_DIALTONE;​) Once the 
dialed digit is registered (dial_digit_ready), the number is evaluated. If the number is a 
valid extension and that extension is in ​STATE_IDLE​, the call can proceed and gets set 
up. This phone is placed in ​STATE_DISTANT_RING​, and the called phone is placed in 
STATE_DISTANT_CALL​. If the number is bad or busy, the phone is sent to 
STATE_BAD_NUMBER​. 

3. STATE_BAD_NUMBER​: In this state, a busy tone is played until the user hangs up 
(which sends the phone back to ​STATE_IDLE​). 

4. STATE_DISTANT_RING​: This state plays a ringing tone to the calling phone to 
indicate that the distant, called party is ringing. This state continues until the called phone 
answers. At that point, the phone transitions to ​STATE_IN_CALL​. 

5. STATE_DISTANT_CALL​: This state is for phones receiving a call from afar. The PBX 
activates the ringer for that phone to signal the user to pick up. Once the user does, this 
phone also transitions to ​STATE_IN_CALL​. 

6. STATE_IN_CALL:​ Once both phones in the call are in this state, the actual call 
connection can begin. The ringing is stopped and the other phone’s audio is played into 
the current phone. (Since each FSM does this, the call gets connected both ways, so there 
is a bidirectional link). At this point, either phone getting hung up will terminate the 
entire call by sending both phones into the STATE_TEARDOWN state. 

7. STATE_TEARDOWN:​ Teardown refers to the steps taken to dismantle a phone 
connection. In the real phone network, this is quite a process in its own right if one 
imagines the large number of relays that once needed to be reset across the country for a 
long-distance call. However, in this system, it is as simple as instructing the audio router 
to send silence to both phones. There is also a requirement that both phones be hung up 
before transitioning back to STATE_IDLE. This ensures dial tone isn’t sent immediately 
after the call ends.  

 
Finally, there is a state output for debugging and connection to the LED displays and VGA 
screen. This is a concatenation of all FSMs’ states. In this case, when ​state_out​ equals ​0x55​, 
both phones are in ​STATE_IN_CALL​ and are shown connected on the VGA screen. 
 
Overall, the PBX module is good at achieving its goal for a two-phone system, but very 
cumbersome should it need to be expanded. It was my initial goal to have a loop and array of 
states for each phone as opposed to a new hard-coded state machine for each one. However, I ran 
into issues getting the ​for​ loop to operate properly. This would certainly be the first area to 
improve given more time. 
 
VGA Screen 



 

 

Port Type Name Description 

input vclock 65Mhz clock for VGA 

output Vsync, hsync, blank VGA timing signal 

output pixel A one-bit monochromatic pixel output 

input Ext1_active, 
ext2_active 

Phone active signals from each Line Interface 

input Ext1_dial_digit [3:0], 
ext2_dial_digit [3:0] 

Dialed digit from each LI 

input connection High when both phones are in a call. 

The VGA module generates an XVGA video signal displaying a character text. The screen 
displays status information for each phone and the presence of a connection. The module was 
created by combining and customizing the Lab 3 pong video code and a sample VGA character 
generator handout. The sample code had to be modified to accommodate the larger screen and 
different clock frequency. It was also modified to not use a character text buffer, and instead 
generate the text dynamically given a row and column. A series of case statements determines 
what character should appear given a screen coordinate. This is suitable since the text displayed 
is very limited and static (only a few symbols and numbers change).  
 

Phone Exchange 
 
EXT 1  ̘  2  >2 
EXT 2  ̘  0  >1 

 
The above graphic shows a typical screen image. The phone icon indicates the phone is active, 
the next number indicates what was last dialed (Ext 1 called 2, Ext 2 hasn’t dialed). The arrow 
indicates what other phone this extension is connected to.  
 
Character ROM 
Generating characters requires a raster font stored in memory that can be referenced when 
drawing the VGA output. 6.111 provides such a font as a COE file. I modified it to include two 
telephone icons, depicting a phone on-hook or off-hook. This was then loaded into a new block 
memory device and incorporated into the ​vga​ module. 
 



 

Some problems were had along the way where no characters were outputting on to the screen. It 
turned out that I had made a typo and set a non-existent wire as the character ROM’s clock. 
Thus, no look-ups were performed. Changing it to ​vclock​ fixed the issue. The memory access 
may not be properly pipelines, however, it looks fine visually.  
 
Miscellaneous 
A couple of other modules are used throughout for utility purposes. One such module is 
debouncer. The hookswitch signals are aggressively debounced to prevent noise and glitches in 
the phone line from accidentally taking a phone off-hook or registering a falsely dialed digit.  
 
A clock divider is also present to provide longer-period signals. The line interfaces use this 
divider to generate a pulse every second to generate the 2s on, 4s off ring cadence.  
 

Conclusions 
Future Features 
One feature that would have been excellent to include, had time permitted, is a voicemail system. 
Such a system would allow users to leave recorded messages in case the called party does not 
answer. Users can later check their voicemail inboxes by calling an unused extension number 
like “0”. Messages could be saved in ZBT memory due to its large size. Had I had an extra day, I 
could have implemented this.  
 
Another improvement discussed was including DTMF (touch-tone) dialing capabilities. This 
would involve some more advanced audio processing to decode digits from their corresponding 
waveforms. Alternatively, hardware DTMF decoders are available, like the Mittel MT8870 IC. 
This device outputs a 4-bit value corresponding to the dialed digit.  
 
Overall Thoughts 
Overall, I am pleased with the outcome of the project. It functions as a nice phone exchange and 
satisfied a long-standing desire to build such a system. I was able to overcome all the technical 
challenges along the way, but fell short on time to implement the entire set of feature I had 
wanted to see.  
 
If it wasn’t dependent on the labkit, I’d like to set it up between my dorm room and a friend's. It 
is rewarding to see a project come to life and see people amused by it. However, the large 
amount of analog design inherent to this project makes me see why VoIP solutions have become 
so popular.  


