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Abstract 
 
 



 

There were several 6.111 shooting game projects over the years including the Rifle Arcade game 
from 2014 and the Beat Gunner from 2009. Rifle Arcade and Beat Gunner are quite interesting 
and immersive games but they both have significant limitations in terms of range. Beat Gunner 
uses a photodiode as the tip of the gun to determine whether the bullet missed or hit the target 
based on the brightness of the incident point, the screen goes dark during the clock cycle 
following a shot except the target stays bright. For Rifle Arcade, they used a camera to detect the 
tip of the gun which is a small, blue ball then they used a gyroscope to determine the angular 
rotations of the gun to estimate the point of incident. 
 
In Beat Gunner, there is a hit and there is a miss but nothing in between and the photodiode 
limits their range to about a meter. For Riffle Arcade, determining the tip of the gun using the 
camera can be problematic. The camera looks up a blob of a certain color in space, which works 
well only if the background was picked to avoid false positives. Otherwise, it would require 
more complex, resource intensive, multistep algorithms like  background removal to distinguish 
the tip from other static objects that may look the same. Additionally the tip of the gun needs to 
be big for longer distance tracking.  
 
Digital Shooting Range is similar to those projects in many ways but determines the point of 
incident of a shot in a simple and intuitive way, that allows long range tracking. Like Rifle 
Arcade, we are using a camera to determine where the player is aiming, but in this case the 
camera is the tip of the gun and we use it to find the target. In our case, the target is a VGA 
monitor displaying distinct patterns of colors, concentric circles.  
 
This is intuitive because it is the shooter that’s determining where the target is instead of the 
target determining where the shooter is. And it is simple because all we have to find is the center 
of the target with respect to the view of the camera, and then we simply determine our score 
based on the distance between the center of the camera view and the center of the target.  
 
 
 
High level Overview 
 



 

 
The above figure shows what the hardware and the software of our system looks like in 
high-level. We used two Labkit FPGAs to implement the project.  
 
The first FPGA(station1) receives NTSC video from the camera on the tip of the gun. We use the 
video data to find the target, which is a vga monitor displaying concentric circles as shown to the 
top right of the figure. The gun also has two push button switches, which are wired to the to the 
FPGA, to indicate whether the shooter is taking a shot(trigger) or is done with his/her 
round(clear). Using image processing, we find the 2D position of the center of the target in the 
camera’s view. If the center shows up, we transmit the position over IR when either trigger or 
clear is pushed.  
 
The second FPGA(station2)  receives the transmitted data via IR receiver and performs the game 
logic to display the target pattern, score, and the bullet marks. It also accepts keyboard input to 
allow the shooter customize the screen with her/his name. 
 
 
 
Design 
 
In deciding our final project, we wanted to work on a mixture of skills we have acquired from 
labs and new topics. Our skills from lab5B and lab3 would help us with the transmitting and 
receiving IR as well display modules. We would also explore new ideas like image processing 
along the way.  
 



 

 

When we came up with Digital Shooting Range, we knew we wanted to optimize for mobility 
and accuracy in order to mimic an actual shooting range as closely as possible. Putting the 
camera on the gun was “killing two birds with one stone”. With the camera as the tip of the gun, 
not only can we move around and shoot from wide range of angles and distances, but also we 
can also determine where we hit with pixel accuracy.  
 
 
Implementation Diagram 
                                                                                                                                  Figure 1 

 
 
Figure 1 shows the high level block diagram of our implementation with all the major modules 
and their connections shown. For more explanation of each module, keep reading. 
 
Gun​(Mubarik)  
 
 
To construct something that resembles the look and the feel of a gun, we removed the body of a 
Guitar Hero instrument, poked a couple of holes to fit the push-button switches for trigger, and 
clear switches, and finally attached a plate with screw holes at the tip to hold the camera. We 
placed the trigger switch in the middle and pointing forward. This orientation allows for one to 



 

 

 

push back with one’s index finger the same way the trigger of an actual gun would work. The 
clear switch points up just behind the trigger switch so you can easily push it with your thumb 
without moving your hand.  
 

 
 
NTSC Camera(Mubarik)  
 
The NTSC camera, which was available in the lab, provides us with analog video data in the 
YUV (ycrcb) domain as well as synchronization signals. We transformed this information into 
domains we were more familiar with (thus making the image easier to manipulate) like RGB and 
HSV. We then used the images in those domains to detect the target. ​More about the NTSC 
camera. 
 
NTSC Decoder(Mubarik)  
 
The NTSC Decoder module is the interface with the NSTC camera that extracts the video data 
and the sync signals from the video jack input of the labkit. This module had already been 
implemented by Javier Castro as part of the ​NTSC sample verilog ​ available on the 6.111 
website.  
 
  
NTSC To ZBT(Mubarik) 
 
This module provides an interface for writing to the  Labkit ZBT RAM. It takes video data from 
the NTSC decoder and stores it on the Labkit’s ZBT RAM, from which we can read the stored 
data for our object detection modules. Most of this module was also available ​here​ but we 
modified it to store RGB image instead of the grayscale image.  
 

http://web.mit.edu/6.111/www/f2016/tools/ntsc_draft.pdf
http://web.mit.edu/6.111/www/f2016/tools/ntsc_draft.pdf
http://web.mit.edu/6.111/www/f2016/index.html
http://web.mit.edu/6.111/www/f2016/tools/ntsc_zbtfix.zip


 

 

 
  
ZBT RAM Reader(Mubarik)  
 
This module which is also available as part of the NTSC sample verilog was used to read the 
video data and signals from the ZBT memory.  
 
Target Centroid Detection(Mubarik)  
 

 
 
We performed multiple parallel thresholding operations to select the pattern of our target. The 
resulting image was an 8-bit grayscale image, which we then performed centroid detection on. 
Centroid detection operation involves averaging the 2d coordinate locations of the white colors 
as the following formula shows.  

( )/(n), n > he number of white pixelsxcenter = ∑
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Our threshold was sensitive to noise especially when our target shows up somewhere close to the 
top left of the frame and there’s noise showing up some where close to the bottom right corner. If 
the changes in x and y introduced by the noise were significant, they dragged the center from the 
ideal location by a significant amount. Sometimes, the noise were significantly large blobs 
(including people working around).  
 
To solve this problem, we made two assumptions. The first was that the target is significantly 
larger than the noise blobs, and the noise blobs were scattered around in space. Secondly, we 
assumed that noise further away from the target influenced the centroid a lot more than the closer 
ones. We then re-calculated the centroid using a rectangular region around the centroid from the 
previous frame. The formulae for re-calculating the centroid are as shown below: 
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One needs to understand that calculating the centroid is not as easy as it seems from the above 
equations because one has check whether the pixels in the frame are white or black. There are 
two possible ways of calculating the columns and the rows.The first one is using the sync signals 
directly from the NTSC, and the second one is using hcount and vcount from the xvga module 
after reading from the ZBT memory. The NTSC decoder module provides ​data_valid​  signal 
which indicates when you have a full pixel(Note: The decoder has to wait for two pixels to get 
both the Cr and the Cb components of the YCrCb pixel ready). 
 
The downside is that pipelining in this space can be tricky and complicated because you have to 
know how many clock cycles it takes to get a pixel ready. The decoder has 16-state FSM that 
transitions based on signals from the camera, and it is hard to see when those transitions happen. 
However, you may get away without pipelining as long as you keep your delays reasonably low. 
With delay of around 18 clock cycles, we got a small artifacts on the left side of the frame.  

  
 
Coordinate Transform(Mubarik)  
 
Calculating the center of the target wasn’t going to be enough for us because the game would be 
too easy. With the centroid only, all you have to do is have the target show up on the camera 
frame and you have a hit. To make things more realistic, we wanted to have the center of the 
camera frame hitting the target in order to get points. The following equations transform the 
centroid we have calculated above from camera perspective to target prospective.  
 
           y = ht
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: Height of the camera frame.hcv  



 

: Height of the target with respect to the camera view.ht  
: Width of the camera frame.wcv  

: width of the target with respect to the camera view.wt  
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Figure 2 

 
Calculating the Height and Width of the Target(Mubarik) 
 
To do the coordinate transform, we have to find the height and width of the target in the camera 
frame and by far was the most challenging part of the image processing. We tried couple of 
algorithms to find the height and the width most of them didn’t work to our liking.  
 
The first algorithm involves keeping track of the roll of the gun using three-axis accelerometer. If 
the accelerometer gives us how much the camera is tilted, then we could slide two straight lines 
across the frame, one to fine the bottom and the top of the target, and the other to find the two 
sides. For each line, we take the first such a line that exceeds  some number of white pixels and 
the last such a line to also exceed the same number of pixels. For example, when the camera has 
zero tilt, we slide a horizontal line and a vertical line across. The slopes of such lines are 
determined from the tilt. The problem with this algorithm is that the accelerometer drifts very 



 

 

quickly, and recalibration wasn’t something we wanted to do because it restricts the mobility of 
the system. 
 
The next algorithm we tried involves sliding small square across the frame and taking four of 
such squares that exceeds some number of white pixels inside them, and most likely to be the 
four corners. We were basically looking for combinations of x and y. For example, the square 
with the smallest x value would either be the top left corner or the bottom left corner and we 
would separate them based on their y-values. The problem with this algorithm was that we 
needed to assume that there will not be other random dense blobs showing up  in the frame.  
 
We tried to make this assumption true by trying dilation followed by erosion (opening), and 
erosion followed by dilation(closing). However, this didn’t work to our liking; we were 
sometimes amplifying the noise and other times erasing most of the target blob. After all we 
think we gave up on this idea too early, but it was problematic still.  
 
The algorithm that worked well enough was centroid detection. We basically split the frame at 
the centroid we calculated above, thresholded blue which was concentrated on the corners, and 
calculated the centroid for each region of the four quadrants. We again bounded each region 
based on the manhattan distance between the region centroid and the blob centroid and 
recalculated the centroids. 
 
Image Processing Visuals(Mubarik) 
 
For someone who has gotten used to high-level and script languages, hardware description 
language can be painful to debug and visualize - no easy to use compilable print statements, and 
ModelSim can sometimes take long time to work and introduce a lot of problems that are 
difficult to detect (e.g. initializing arguments only works in simulation).  
 
To make this less of a problem, We were displaying every version of the image on a VGA 
monitor as well as blobs on the points of interest(e.g. We were displaying small squares on the 
centroids) using the Labkit switches to select what to show. We also wrote a line drawing 
module to see how well our corner detection was holding.  
 
The disp_hex module available on the course website was also super useful when you want to 
look at numbers or registers values. This was especially helpful when we were debugging the 
coordinate transform. But also the 8 leds were really helpful when it comes to enable signals.  
 
  
Incident Blob Display(Emmanuel) 
 
The incident blob module used arrays of variable depth (SHOT_LIMIT) to store the x positions, 
y positions and a parity bit to show that an array position has a bullet (to distinguish no bullet 
from bullet position 0,0). A ‘generate’ loop was then used to instantiate SHOT_LIMIT number 
of bullet blobs and the array was filled on trigger.  



 

 

 
 
The state of the module is updated at most once every half second (or any set delay time). The 
result is that when the user hits trigger and transmits the coordinates they aimed at, we display 
the new blob and every blob before it up till SHOT_LIMIT blobs. On ‘clear’, all the blobs are 
erased. 
 
Text Display(Emmanuel) 
 
The text display module was made by typing all alphanumerics [A-Za-z0-9] in Gimp and using matlab 
cropping tools to obtain the rectangle top-left coordinates, width and height of all the characters and 
stored them in a ‘.dat’ file. We then wrote a matlab script to crop the letters using the provided 
coordinates with width and height of 31 pixels (enough to accommodate the widest and tallest characters). 
The retrieved pixels were then stacked into an array of (31*62 characters) by 31 matrix and then 
converted to a ‘.coe’ file to be loaded into the BRAM.  
 
To read a letter on vclock, we check if hcount and vcount were within the intended area and obtain the 
address in memory based on the alphabet number [0-61] corresponding to [A-Za-z0-9]. This part was 
mostly tedious because we manually got all the crop rectangles which probably could have been easier by 
looking up an already made bit representation of alphabets online. We also made two iterations of this 
module. First, we used bigger texts and stacked the images as 64 by (64*62). However, this orientation 
couldn’t fit into the BRAM because the BRAM was much deeper than it was wide so we divided the 
matrix into four ranges of alphanumerics and used that for the display. After realizing the proper 
dimensions of the BRAM, we switched to (31*62 characters) by 31. 
 
 
 
Score Display(Emmanuel) 
 
The score display module took in the x,y coordinate of newly sent hit positions and determined the scores 
based on the relative distance from the center of the target. The score was then converted from binary to 
decimal with a maximum possible display of 999. The binary to decimal converter was as presented in 
Lpset 8. The ones, tens and hundreds digits were then sent to the text display module to display the score 
on the screen. The score was alpha blended to overlay the bottom of the target.  
 
 



 

 

Keyboard Input Display(Emmanuel)  
 
The keyboard module was as provided on the ​course website​ for Fall 2005. We supported 
alphanumerics, backspace, and enter (for resetting the typed characters). At the rising edge of 
keyboard ready signal, we stored allowed ascii values and sent the combination of texts to the 
text display module to display the letters. A pointer was used to determine where to insert a new 
character and on a backspace hit, we removed the most recent character. Since the register for the 
deleted character would have a zero value, we shifted all the character values up by 1 so that a 
zero value was an empty space (and an ‘A’ was represented by 1, etc). Of course, we accounted 
for this shift in the text display module. The keyboard input limited character display to 10 
characters which was sufficient to display most user first names or nicknames. 
 
 
Immersive Background(Emmanuel) 

 
 

To get the immersive background, we decided to use falling leaves to simulate an outdoor 
experience (or possibly a christmassy feel since we were close to that time of the year). We got 
an ​image​ of leaves with a black background to make thresholding easy for alpha-blending. Using 
the GIMP software, we cropped out part of the image to display. We then stored the result as a 
bitmap, addressed by 8 bits at each pixel location, making a total of 256 possible colors in the 
color map. We then loaded the image into the ​matlab script​ provided on the course website. The 
script loads the bitmap and stores the 256 RGB values in a ‘.coe’ file. We initially tried storing 
all the bits of the image as a 1D array in the BRAM. We expected the array of size about 1.5 MB 
to fit into the ~3MB memory. It however took very long for the array to load into the BRAM. 
We therefore use ‘imresize’ from matlab to resize the image to about 60% of the original image 
which was about 83 KB. We stored the image in a ROM in the BRAM and then for each pixel 
location, used the 8 bit address to get the color from the colormap ROM. To display multiple 
copies of the same image, we checked whether hcount and vcount were in the appropriate ranges 
and shifted the pixel address appropriately to start from zero at the beginning of each of the 
ranges. This strategy reduced multiple instantiations of modules accessing the same memory 

http://web.mit.edu/6.111/www/f2005/code/ps2_kbd.v
https://i.ytimg.com/vi/OGjeX63d6KA/maxresdefault.jpg
http://web.mit.edu/6.111/www/f2016/tools/image_to_RGB_2010.zip


 

addresses, but the multiplications used to find the correct addresses for each range needed to be 
pipelined. A user of our game commented that the falling leaves lent our game a merry feel! 
 
 
IR Transmitter(Emmanuel) 
 
The transmitted data stream had a preamble followed by the x,y position on the screen, a trigger 
bit, and the last bit to tell whether clear had been pressed. The implementation was a 23 bit serial 
pulse width modulation (x,y,trigger,clear which made 11+10+1+1=23 bits). Most of the 
implementation was similar to that provided in Lab 5b. The major change required was to 
increase the wait time between successive transmissions and update the signals being sent over. 
The major challenge this module posed was that after using the transmitter for a while, it would 
get stuck in state “START” or “WAIT” and stop transmitting. We spent a lot of time with 
simulations and actual fpga runs trying to figure out the root cause. Ultimately, we couldn’t 
figure out the bug and resorted to a counter that reset the state to IDLE after it got stuck. 
 

 
For the circuits, our Vishay TSKS5400S (Infrared Emitting Diode, 950 nm, GaAs) from Lab 5 
worked only for ranges of up to about half a meter. To increase the intensity of the IR waves, we 
tried to increase the collector current to the NPN BJT so that the forward current through the IR 
transmitter would also increase. We erroneously tried for a while to reduce the 47 ohm resistor 
while keeping in mind that the maximum forward current for the diode was 100mA. There was a 
marginal increase in the range to about ¾ of a meter. The measurements from the oscilloscope 
showed an almost negligible changes in the voltage drop across the resistor connected to the 
collector of the BJT. After a number of variations in resistor values, we ended up changing the 
base current instead. We used the relation below: 
 
Ic0 = βIb0  

IIc1 = β b1  



 

 

 

This gave the relation: 
Ic1 = Ib0

I ×Ib1 c0  

 
The new base resistance was used to regulate the new base current such that the new collector 
current was still under 100mA. With a collector current of about 90mA, we could reliably 
transmit up to about a meter and half. Eventually, my project partner brought in a stronger IR 
emitting diode which worked well within four meters range so we switched to that.  
 
IR receiver(Emmanuel)  
 
Infrared receiver (RPM7140-R) was used to detect and read the output of the IR transmitter. The 
signal received by the receiver was parsed according to the established protocol from the 
transmitter and the data was sent over to rest of the game.  
 
The trigger signal was an interesting one. Each time we transmitted a signal with trigger, we 
added a trigger high to the packet. If we transmitted a clear, clear was high and trigger was low. 
One would therefore expect trigger to rise once during a continuous press of the gun’s trigger. It 
however, rose multiple times. In fact holding on to trigger would continuously fill the array of 
bullet hit positions, which was designed to take a new hit information on the rising edge of 
trigger. We tried several attempts to get trigger to work properly. Some strategies included 
setting trigger to zero after trigger was released (after serial data stayed low for some time 
interval). We also tried using a buffer of about ten transmissions wide so that we stored all 
trigger values that passed since we started reading IR data within that window. We then used ‘or’ 
on all the bits to see if trigger had been high within the window to assume trigger had remained 
on. That also didn’t work for a single long hold. We eventually used an FSM with a timer to 
undersample the transmission to say once every half second. 
 
Sound(Mubarik)  
 
The sound module was essentially a modified version of Lab5. We added a third and default 
mode where we play music from a phone by taking the data from the AC97 input and routing it 
directly back to the AC97 output. The two other modes were for record and playback from block 
ram, but the playback was signalled by trigger instead of playing back by default. When we pull 
the trigger the module read samples from block ram which was the sound of a gun fire.  
 
Target Display Logic(Mubarik) 
 



 

 

 
 
The target was a VGA monitor displaying a pattern of concentric circles. It was this pattern that 
we built our image detection on and used to determine score for a shot. Each circle had it’s own 
score, and awarded higher scores as a shot got the closer to the center. We also displayed the 
bullet marks, score, the keyboard input, and blended image of falling leaves.  
 
To make the game more challenging, we also added a mode which the circles move move back 
and forth horizontally. And  everything to appear nicely with the pattern, we used alpha blending 
to mix the colors.  
 
Game Logic(Mubarik) 
 
We didn’t end up making centralized game logic, instead each module had its own FSM to 
perform the required functions in sync with the rest of the logic. This was possible because the 
trigger and clear signals from the IR communication were signaling all the transitions.  
 
Testing 
 

 



  

Most of our testing happened on the FPGA, mostly displaying the signals of interest on the 
7-segment leds, the eight other leds on the Labkit, and displaying images and video data on the 
VGA monitor especially earlier times when the code was taking about a minute to compile. 
However, we both used ModelSim for sanity check, and to see the delays of  the modules we 
have borrowed from the course website before we upload the code on to the FPGA. The above 
waveforms of YCrCb to RGB is an example of such simulation.  
 
When the code size grew, simulation became an increasingly useful and quick way for us to 
ensure we spent less time on fixing bugs later. The test below was for the score module. In the 
first image below, we found that the cumulative score stayed at zero even though the score was 
at 20. The score texts were also not updated. Through simulation, we realized that the score went 
to the bit to decimal converter at the rising edge of trigger, when it actually was ready during the 
next clock cycle. This was because, finding the score involved a multiplication that was ready for 
use a cycle later. This would have taken much longer to realize by displaying hex on the FPGA. 
 

 

 
 
 
Challenges and Lessons Learned 
 
We both ran into plenty of problems along the way. Even though we forgot most of them after 
we found solutions, we remember quite number of them. Many times, modules that were 
working as expected before just started failing. We came to learn that turning off the FPGA and 



 

reloading the files before you try anything else helped ensure our issues weren’t hardware 
related. In the beginning problems like that would takes us long time to resolve but many of them 
became a second nature as the hours rolled on. 
 
Mubarik: 
 
Image processing was challenging and sometime frustrating but I learned a lot in this project. I 
continuously remained that the real world is not always consistent, and things don’t work as 
expected. One clock cycle mismatch can make everything seem nonsensical.  I would misspell 
one of the arguments to a module, my code would synthesize but the screen will turn black or 
would show some other weird patterns that made no sense. I often found myself asking, “what? 
What did I just do?”. 
 
Emmanuel: 
While using BRAM for the first time, I would finish the setup and then get several errors about 
verilog not finding the modules for my ROM. I spent a couple of hours trying to find which of 
the generated files to include into the project to get it to work. After turning off ISE and coming 
back the next day, the code just compiled. This was an unexpected challenge that sunk some 
time. Of course afterwards, I did well to close ISE and reopened each time I added a new ROM. 
Again, as described in the IR transmission and receiver modules, the trigger would work fine for 
a while and unexpectedly stop working. Initially we thought it was an issue with the circuits 
(maybe failing components). After debugging for a while, we ended up finding some work 
arounds without really finding the cause of the erratic behavior. The text display module also 
showed some unexpected drift in the offset and displayed halves of two letters at the same time. 
Turning the FPGA off and back on fixed this issue. 
 
Overall, I understood better the process of pipelining in verilog in addition to having a general 
idea of the concept of pipelining. Getting a chance to learn how to interface with devices 
including the keyboard, and re-learning some circuitry was fulfilling. My goals for taking this 
class included understanding tricky signals(glitching), synchronous and asynchronous designs 
and understanding how data was stored in and read back from memory, etc. This project helped 
me reach a solid understanding of these various concepts.  
 
 
 
End Product and what we missed 
 
Overall, we reached most of the goals,both baseline and stretch, we set forward and 
stayed interesting to us. At the End, our target detection was working with great accuracy 
and reliability, our wireless (IR) communication was almost flawless, we had beautiful 
display with blended background images, scoring was done and displayed properly, the 
boom of gunfire was playing in the background as we shot, and we allowed shooters to 
display their names using a keyboard. However, there are couple of things we wish we 
had time for before checkoff. The first of those is to create more immersive background 



 

 

 

then we had at end, but we also wanted to create more centralized game logic with more 
features than we had, including allowing multiple players to compete against each other.  
 
To say the least, we are proud of what we have done and learned as a team. Our game is 
quite expandible and has the potential to be a more fascinating game to play and we 
would have loved to have gotten it to a much better state. 
 
 
Possible extensions 
 
According to our stretch goals, it would be interesting to make our game logic more complex by 
introducing moving targets. That would certainly introducing some interesting timing insights. 
Successfully integrating an IMU to work in conjunction with the image processing to give 
precise coordinates of the gun’s heading relative to the target would improve the accuracy of hit 
positions. Especially so for the transformed coordinate frame in which the center of the camera 
determined the position of the hit blob. Since the said frame required more accurate aiming, 
having an IMU to work alongside the image processing to affirm our computations would 
improve our confidence in the system. For our immersive background, it would be interesting to 
have two or three sprites for about four leaves and cycled through them to simulate falling leaves 
that turned around during their fall. That would offer a more natural feel to our digital outdoor 
shooting range. We could also add a couple of added challenges to the game including randomly 
shifting the center of the target to make it harder for the user to hit the bull’s eye. For aesthetic 
purposes, we could make the target 3d. 
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Conclusion 



 
Digital shooting range is a good pastime to help rifle and pistol lovers do what they love in the 
comfort of their rooms. We learnt a lot from this project because of the be exposure to image 
processing in hardware as well as very interesting scenarios of signal timing. The project also 
had room for stretch goals which allowed us to also learn more about signal processing, image 
display,  keyboard integration, to mention but a few. Our hope is that our users give us sufficient 
critical feedback on how we can improve the product and that they will have as much fun as 
possible in a safe digital shooting range.  
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