
	 1	

Visible Light Communication with FPGAs

Massachusetts Institute of Technology

6.111 Final Project Report

Fall 2016

Zachary Zumbo | Mehmet Tugrul Savran

	 2	

Contents

Abstract………………………………………………………….…….3

Design Overview…………………………………………….………...4

High Level Diagram……………………………………….………….5

Hardware………………………………………………………….…..6

Implementation and Modules……………………………….……….7

Modifications from Original Proposal……………………………..13

What Went Wrong…………………………………………………..14

Conclusion……………………………………………………………16

	 3	

Abstract

Nowadays, it is almost impossible to find an electronic device that does not perform any form of

communication. In fact, substantial research and capital is reserved to understand better and

enhance means of communication and related infrastructures. As such, we perceived 6.111 an

unmatched opportunity to learn what communication is, what constitutes a communication

protocol and what challenges communication brings up.

We engineered a communication infrastructure between two FPGAs that allowed real time

trafficking of audio signals. Our motivation was to circumvent the disadvantages of

communications interference by using a buffering system that allowed streaming data to be

interrupted yet still output in real time. In layman’s terms, we strived to build an infrastructure that

transmits audio even when wire between devices is unplugged!

Effectively, the transmitter module took in data via AC97 Line-In (microphone), processed the

data, passed it through our own communication protocols and transmitted them to a receiving

FPGA with a buffer. The receiving FPGA began playback after a certain amount of data has been

received. The end effect was seamless (although with a small bug) inter-FPGA communication

with interruption control.

	 4	

Design Overview

The transmitting FPGA (tFPGA) constantly recorded 12-bit audio at 6kHz. Initially, we started at

48kHz, which required us to transmit over 1mHz frequency: but user I/O pins of Labkits physically

made it infeasible to do so. Thus we down-sampled data to one-eighth. We constructed our own

communication protocol. We defined 36-bit data body as a data packet, which are basically 3

“glued” 12-bit packets coming from the AC97 Recorder. We wrote these 36-bit packets to the ZBT

and constructed a message body of 75 bits:

	
Figure	1	Packetizing	Scheme	

Note that we also included packet address value in the CRC body to make it ready to transition

into our stretch goal implementation –which time did not allow.

This 75 bit message packet was serially sent to the receiving FPGA (rFPGA). We sent one

additional redundant copy of a data packet to create an “open loop” communication. Basically, the

transmitting side waited for 5 seconds and “zigzagged” between earlier packets and current packets

(see Figure 2).

Figure	2	Transmission	Logic

	 5	

The receiving FPGA checked the validity of an incoming packet by the header bits, resolved the

clock-domain differences between the transmitter FPGA (most challenging part of the project

indeed), ran the data through a CRC module and stored the data in a Block RAM memory. It

then played back audio after lag time has passed.

Below is the high level block diagram of our digital logic that contains a subset of our modules.

Description of all modules can be found at the next section.

High-Level Block Diagram

	 6	

Hardware

In addition to two 6.111 Labkits, we initially utilized a pair of AV02 Fiber Optic Transmitter and

Receiver. We integrated them into the protoboard and interfaced them with the labkits as

follows:

Transmitter Circuit Receiver Circuit

It turns out digital abstraction is not really an absolute abstraction!

While fiber optic circuit worked just fine during the unit testing (since we tested it with lower

frequencies), it proved to be infeasible during the end to end project testing close to the end of

the project deadline. The ringing phenomena caused significant (65%) signal integrity casualties.

Thus, due to timing constraints we switched to using a physical wire between two FPGAs instead

of focusing on changing AV02 circuit elements.

	 7	

Implementation and Modules

Synthesizing all the subproblems of the project was done using Verilog modules. Each of our

labkits had its respective copy of modules.

The modules below are topologically sorted in terms of order of function.

TRANSMITTING SIDE

AC97 Recorder and Playback Modules (Zach)

AC97 Recorder: This is the analog-to-digital converter that allowed us to sample the incoming

audio signal from a microphone through line-in. This was implemented in the AC97 module, but

we modified our existing audio lab to sample at 6kHz (formerly 48kHz) and at a bit depth of 12

bits. This allowed values from -2048 to 2047 using a 12-bit signed data bus. The module also

output to the high level FSM of transmitter that guided store the data in ZBT memory.

	 8	

Memory (Zach)

ZBT Memory: This was the storage center for the FPGA that housed our audio data. With two

banks of 512kb x 36 bit memory, we were able to store a maximum of 32 seconds of 6kHz 12-bit

audio per bank, more than enough to satisfy the 5 second lag. A ram clock module was also

implemented (that is not shown) to satisfy timing constraints of the ZBT memory block. Reading

and writing was done on separate cycles. To the receiver FPGA, we sent the data (of course) and

the address the data resided in.

Cyclic Redundancy Check Module (LPset6)

To determine whether or not we have successfully transmitted a packet of data to the rFPGA, we

had a cyclic redundancy check module which that output a data integrity signal to the FSM. If the

packet is intact, we sent a PACKET_OK signal and then the packet itself was loaded into BRAM.

If the CRC failed, we send a PACKET_ERROR signal did not write the packet to the bram.

	 9	

Transmitting FSM (Zach)

Transmitting FSM conducts the behavior of transmitting side. Its crucial feature was to manage

the transmission of lagged, redundant copies. This module will determine if we are currently

sampling information from the AC97 module and writing to memory. It muxed between the

AC_97 address and lagged address (when 5-second lag time passed). Essentially, it helped ensure

we routed data in the right direction. Its transmission logic is visualized below (Figure 2

reproduced)

Parallelizer (Tugrul)

This module took serial data in and deserialed it to a parallel state.

Figure	3	Transmission	Logic

	 10	

Transmission Protocol Module (named TransmitterNew.v) (Zach & Tugrul)

This module acted as a finite state machine. It took in a transmit_enable signal from transmitter

fsm and started the transmission protocol. In this state, it signaled CRC to begin its job of creating

the hash value of 55-bit data (36-bit audio message and 19-bit address field) and appended the 16-

bit CRC value at the end of the message. It also inserted the “1001” header at the beginning of the

packet, creating a 75-bit packet. It then passed this parallel data into a serializer that would send

the entire packet bit by bit.

Serializer (Tugrul)

This module took parallel data in and serialed it.

Clock Divider Modules (Lab 4)

The most important and challenging (or maybe even unfortunate and unideal) aspect of

communication is that devices’ clocks do not line up. Henceforth, the receiver side has to

oversample and “peg” its respective modules so that it lines up with transmission. This process

requires creation of different clock domains. Thus we created different clock domains (specifically

4 times of each other) from the default 27mHz crystal oscillator.

Display_16hex Module (6.111 Website)

We used the built-in display digits to debug issues with data and address field.

	 11	

RECEIVING SIDE

Checkpoint Module (probably the most complex module) (Tugrul & Zach)

Checkpoint module is a finite state machine that transitioned into a triggered stage whenever it

received a high bit (1). It then transitioned into a checker state where it expected a subsequent

“001” to complete a valid header of “1001.” In that case, it triggered the CRC check and started

the receival protocol. This module was then augmented by Zach to do a very crucial job:

oversample the data and meanwhile peg a “receiving clock” that successfully aligns with

transmission and drives the rest of the modules.

Receiver Finite State Machine (named receiverNew) (Tugrul)

This module conducts the safe and sound routing of data throughout the receiving device. It takes

in crc condition signals (crc_done and crc_good) and depacketizes the data accordingly.

Specifically, it splices the data packet into the address field, which then is used as an input to the

BRAM memory, and the audio message itself. It tells the bram memory module to write the packet

into the specified address by a write_enable signal.

	 12	

Block Ram Memory (Tugrul)

We wrote the incoming data into a block ram that had 2^16 logs and 36 bit width, just enough to

handle around ten seconds of data. The data stored in this memory was then passed into the

AC97 playback module that played the data.

AC97 Playback: The digital-to-analog converter that converted our internal digitized and

packetized audio signal from memory to an analog signal to be used by the receiver module. The

input is a 36-bit bus. This bus was depacketized into three 12-bit buses. Its output was a single

wire out, again handled by the ac97 module.

	 13	

Modifications from Original Proposal

Our instructor Dr. Gim Hom suggested that we make the feedback infrastructure a stretch goal

rather than the goal. For the goal, we were recommended that we take on an Open Loop

transmission –that we send redundant copies of a message with a lag. As the entire paper suggests

until this very page, we took on this advice. Apart from this change, we almost sticked identical to

our proposal in terms of timeline and responsibilities.

However, while we’ve come to appreciate the challenges of communication, we discovered many,

many setbacks along the way. Below are two setbacks, their detailed descriptions and the

approaches we took.

Visible Light Communication to Visible Wire Communication

Our initial motivation in starting our project was an ambition to get exposed to how communication

was done between two devices and to utilize visible light technology to make it more interesting

and fun. We succeeded in utilizing the fiber optic receiver/transmitter circuitry shown in the

hardware section. However, the circuitry did not respond well to higher frequencies which we did

not detect in the earlier stages of the project. While doing an end to end testing, we figured serious

signal integrity issues with frequencies higher than 50kHz. Due to the stage we were at, at that

time, we did not delve into debugging the ringing phenomena and switched to a single, physical

wire between the 2 FPGAs. In another view, it is easy to argue that the fiber optic circuitry basically

acts like a “fancy” wire. Actually, our “fancy” wire came really into handy as a debugging tool:

we were able to slow the clock frequencies down to Hz ranges and actually able to see when a bit

	 14	

was being transmitted. It was indeed amazing to see how a packet (such as “DEADBEEF1”) could

successfully be seen on the other FPGA.

Thus, we continued the high frequency transmission with a physical wire and sometimes did the

debugging with the fiber optic circuitry driven by small clock frequencies. In the end, we were

content about the decision since the main point of the project was exposure to communication

methods, handling interruption and not mainly the visible light aspect.

High-Frequency Limitation of Labkit User IO pins: 48kHz to 6kHz Sampling

We discovered that Labkit IO pins could not drive faster than 1 mHz. Thus, we down-sampled

our data to 1/8 to provide a leeway for slower transmission. This way we slowed transmission

rate down to 480kbps. Down-sampling also caused a reduction in audio quality received.

	 15	

What Went Wrong

After the abovementioned approaches were taken, we still ended up with a bug remaining in the

entire integration.

The expectation: System correctly transmits and receives message. When communication

between two labkits was interrupted, we desired to hear the message without interruption. We

should hear nothing once the lag-time tolerance was achieved.

The final outcome with the bug: System correctly transmitted and received data. When wire was

unplugged, we heard the message without interruption. However, we heard repetitions of the

last 5 seconds. In other words, instead of audio halting, it looped the last 5 seconds until we

replugged the wire. Communication resumed normally when wire was plugged back in (as

expected!)

	 16	

Discussion and Conclusion

6.111 Visible Light Communication was indeed a substantial exposure to what we wanted:

communication. We had to reinvent the wheel every single time we wanted to implement a module.

We wrote our communication protocols, we learnt how to write to and read from memory

efficiently, we learnt how to interface new elements with our labkits and took a great risk of

working with something that we never did before.

We believe each of us has indeed lived through the legendary “Digital Death” experience.

Lamenting on even half a second signal delay (e.g. phone, internet etc) in our daily lives, we both

now highly respect and appreciate what communication infrastructure harbors within and how

complex it can be.

In addition, we learnt significant aspects that deserve to be shown on bold below:

Digital abstraction is not really an absolute abstraction!

The ringing effects caused by the fiber optic circuit and the user IO pins’ frequency are the best

examples. In other words, we learnt that whenever there is an analog system connected to a

digital system, analog system becomes the bottleneck. It was rather time consuming yet

rewarding to experience that analog and digital systems do not work mutually exclusively.

Things need not work in real world as they do in utopic testbenches!

I am a CS-oriented 6-2 student, and this has been a life-changing lesson for me. In software, code

is not generally interfaced with the real world. If code works in tests, it’ll work anywhere.

However, by definition, Verilog describes hardware that works with the physical world.

	 17	

Thus many times we were faced with situations where code worked perfectly in testbenches but

not in the labkit (e.g. 1mHz limitation).

You never know the complexity until you work with it.

When we were suggested to use the open loop infrastructure for the main goal and not the

feedback infrastructure, we both thought it would be almost trivial to implement. However we

ended up encountering problems one over the other and spent many, many hours at the lab from

day 1. We even ended up with a bug in our final project state!

In conclusion, we strived to engineer a communication infrastructure that is robust to an

interference up to a certain limit. Through this demanding experience, we learnt how to think

better about communication, were required to reinvent some wheels (and debug/polish these

wheels!), had a great exposure to protocols, and achieved a great vision of trade-offs in real

systems: speed and memory. In big picture, our project taught us how to approach digital

systems, augmented with a firm teamwork.

	

