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Abstract 

 

 

 

Nowadays, it is almost impossible to find an electronic device that does not perform any form of 

communication. In fact, substantial research and capital is reserved to understand better and 

enhance means of communication and related infrastructures. As such, we perceived 6.111 an 

unmatched opportunity to learn what communication is, what constitutes a communication 

protocol and what challenges communication brings up.   

 

We engineered a communication infrastructure between two FPGAs that allowed real time 

trafficking of audio signals. Our motivation was to circumvent the disadvantages of 

communications interference by using a buffering system that allowed streaming data to be 

interrupted yet still output in real time. In layman’s terms, we strived to build an infrastructure that 

transmits audio even when wire between devices is unplugged! 

 

Effectively, the transmitter module took in data via AC97 Line-In (microphone), processed the 

data, passed it through our own communication protocols and transmitted them to a receiving 

FPGA with a buffer. The receiving FPGA began playback after a certain amount of data has been 

received. The end effect was seamless (although with a small bug) inter-FPGA communication 

with interruption control.   
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Design Overview 

 

 

The transmitting FPGA (tFPGA) constantly recorded 12-bit audio at 6kHz. Initially, we started at 

48kHz, which required us to transmit over 1mHz frequency: but user I/O pins of Labkits physically 

made it infeasible to do so. Thus we down-sampled data to one-eighth. We constructed our own 

communication protocol. We defined 36-bit data body as a data packet, which are basically 3 

“glued” 12-bit packets coming from the AC97 Recorder. We wrote these 36-bit packets to the ZBT 

and constructed a message body of 75 bits:  

 

 

	
Figure	1	Packetizing	Scheme	

  

Note that we also included packet address value in the CRC body to make it ready to transition 

into our stretch goal implementation –which time did not allow.  

 

This 75 bit message packet was serially sent to the receiving FPGA (rFPGA). We sent one 

additional redundant copy of a data packet to create an “open loop” communication. Basically, the 

transmitting side waited for 5 seconds and “zigzagged” between earlier packets and current packets 

(see Figure 2).  

 

 

 

 

 

    
Figure	2	Transmission	Logic 
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The receiving FPGA checked the validity of an incoming packet by the header bits, resolved the 

clock-domain differences between the transmitter FPGA (most challenging part of the project 

indeed), ran the data through a CRC module and stored the data in a Block RAM memory. It 

then played back audio after lag time has passed.  

 

Below is the high level block diagram of our digital logic that contains a subset of our modules.  

Description of all modules can be found at the next section.  

 

 

 

 

High-Level Block Diagram 
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Hardware  

 

 

 
In addition to two 6.111 Labkits, we initially utilized a pair of AV02 Fiber Optic Transmitter and 

Receiver. We integrated them into the protoboard and interfaced them with the labkits as 

follows:  

 

Transmitter Circuit                   Receiver Circuit 

 

 

 

 

 

 

 

 

 
 

It turns out digital abstraction is not really an absolute abstraction! 

 

While fiber optic circuit worked just fine during the unit testing (since we tested it with lower 

frequencies), it proved to be infeasible during the end to end project testing close to the end of 

the project deadline. The ringing phenomena caused significant (65%) signal integrity casualties. 

Thus, due to timing constraints we switched to using a physical wire between two FPGAs instead 

of focusing on changing AV02 circuit elements.  
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Implementation and Modules  

 

 

 
 

 

 

Synthesizing all the subproblems of the project was done using Verilog modules. Each of our 

labkits had its respective copy of modules.  

 

The modules below are topologically sorted in terms of order of function.  

 

 

TRANSMITTING SIDE 

 

AC97 Recorder and Playback Modules (Zach) 

  

AC97 Recorder: This is the analog-to-digital converter that allowed us to sample the incoming 

audio signal from a microphone through line-in. This was implemented in the AC97 module, but 

we modified our existing audio lab to sample at 6kHz (formerly 48kHz) and at a bit depth of 12 

bits. This allowed values from -2048 to 2047 using a 12-bit signed data bus. The module also 

output to the high level FSM of transmitter that guided store the data in ZBT memory. 
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Memory (Zach) 

 

ZBT Memory: This was the storage center for the FPGA that housed our audio data. With two 

banks of 512kb x 36 bit memory, we were able to store a maximum of 32 seconds of 6kHz 12-bit 

audio per bank, more than enough to satisfy the 5 second lag. A ram clock module was also 

implemented (that is not shown) to satisfy timing constraints of the ZBT memory block. Reading 

and writing was done on separate cycles. To the receiver FPGA, we sent the data (of course) and 

the address the data resided in.  

 

 

 

 

Cyclic Redundancy Check Module (LPset6)  

 

To determine whether or not we have successfully transmitted a packet of data to the rFPGA, we 

had a cyclic redundancy check module which that output a data integrity signal to the FSM. If the 

packet is intact, we sent a PACKET_OK signal and then the packet itself was loaded into BRAM. 

If the CRC failed, we send a PACKET_ERROR signal did not write the packet to the bram.  
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Transmitting FSM (Zach) 

 

Transmitting FSM conducts the behavior of transmitting side. Its crucial feature was to manage 

the transmission of lagged, redundant copies. This module will determine if we are currently 

sampling information from the AC97 module and writing to memory. It muxed between the 

AC_97 address and lagged address (when 5-second lag time passed).  Essentially, it helped ensure 

we routed data in the right direction. Its transmission logic is visualized below (Figure 2 

reproduced) 

 

 

 

 

 

 

 

 

 

 

 

 

Parallelizer (Tugrul) 

 

This module took serial data in and deserialed it to a parallel state.  

 

 

 

 

 

 

 

 

Figure	3	Transmission	Logic 
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Transmission Protocol Module (named TransmitterNew.v) (Zach & Tugrul) 

 

 

This module acted as a finite state machine. It took in a transmit_enable signal from transmitter 

fsm and started the transmission protocol. In this state, it signaled CRC to begin its job of creating 

the hash value of 55-bit data (36-bit audio message and 19-bit address field) and appended the 16-

bit CRC value at the end of the message. It also inserted the “1001” header at the beginning of the 

packet, creating a 75-bit packet. It then passed this parallel data into a serializer that would send 

the entire packet bit by bit.  

 

 

Serializer (Tugrul) 

 

This module took parallel data in and serialed it.  

 

 

 

Clock Divider Modules (Lab 4) 

 

The most important and challenging (or maybe even unfortunate and unideal) aspect of 

communication is that devices’ clocks do not line up. Henceforth, the receiver side has to 

oversample and “peg” its respective modules so that it lines up with transmission. This process 

requires creation of different clock domains. Thus we created different clock domains (specifically 

4 times of each other) from the default 27mHz crystal oscillator.  

 

 

Display_16hex Module (6.111 Website) 

 

We used the built-in display digits to debug issues with data and address field. 
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RECEIVING SIDE  

 

Checkpoint Module (probably the most complex module) (Tugrul & Zach) 

 

Checkpoint module is a finite state machine that transitioned into a triggered stage whenever it 

received a high bit (1). It then transitioned into a checker state where it expected a subsequent 

“001” to complete a valid header of “1001.” In that case, it triggered the CRC check and started 

the receival protocol. This module was then augmented by Zach to do a very crucial job: 

oversample the data and meanwhile peg a “receiving clock” that successfully aligns with 

transmission and drives the rest of the modules.   

 

 

 

Receiver Finite State Machine (named receiverNew) (Tugrul) 

This module conducts the safe and sound routing of data throughout the receiving device. It takes 

in crc condition signals (crc_done and crc_good) and depacketizes the data accordingly. 

Specifically, it splices the data packet into the address field, which then is used as an input to the 

BRAM memory, and the audio message itself. It tells the bram memory module to write the packet 

into the specified address by a write_enable signal.  
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Block Ram Memory (Tugrul) 

 

We wrote the incoming data into a block ram that had 2^16 logs and 36 bit width, just enough to 

handle around ten seconds of data. The data stored in this memory was then passed into the 

AC97 playback module that played the data.   

 

AC97 Playback: The digital-to-analog converter that converted our internal digitized and 

packetized audio signal from memory to an analog signal to be used by the receiver module. The 

input is a 36-bit bus. This bus was depacketized into three 12-bit buses. Its output was a single 

wire out, again handled by the ac97 module. 
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Modifications from Original Proposal 
 

Our instructor Dr. Gim Hom suggested that we make the feedback infrastructure a stretch goal 

rather than the goal. For the goal, we were recommended that we take on an Open Loop 

transmission –that we send redundant copies of a message with a lag. As the entire paper suggests 

until this very page, we took on this advice. Apart from this change, we almost sticked identical to 

our proposal in terms of timeline and responsibilities.  

However, while we’ve come to appreciate the challenges of communication, we discovered many, 

many setbacks along the way. Below are two setbacks, their detailed descriptions and the 

approaches we took.  

 

 

Visible Light Communication to Visible Wire Communication 

 

Our initial motivation in starting our project was an ambition to get exposed to how communication 

was done between two devices and to utilize visible light technology to make it more interesting 

and fun. We succeeded in utilizing the fiber optic receiver/transmitter circuitry shown in the 

hardware section. However, the circuitry did not respond well to higher frequencies which we did 

not detect in the earlier stages of the project. While doing an end to end testing, we figured serious 

signal integrity issues with frequencies higher than 50kHz. Due to the stage we were at, at that 

time, we did not delve into debugging the ringing phenomena and switched to a single, physical 

wire between the 2 FPGAs. In another view, it is easy to argue that the fiber optic circuitry basically 

acts like a “fancy” wire. Actually, our “fancy” wire came really into handy as a debugging tool: 

we were able to slow the clock frequencies down to Hz ranges and actually able to see when a bit 
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was being transmitted. It was indeed amazing to see how a packet (such as “DEADBEEF1”) could 

successfully be seen on the other FPGA.   

 

Thus, we continued the high frequency transmission with a physical wire and sometimes did the 

debugging with the fiber optic circuitry driven by small clock frequencies. In the end, we were 

content about the decision since the main point of the project was exposure to communication 

methods, handling interruption and not mainly the visible light aspect.   

 

High-Frequency Limitation of Labkit User IO pins: 48kHz to 6kHz Sampling 

 

We discovered that Labkit IO pins could not drive faster than 1 mHz. Thus, we down-sampled 

our data to 1/8 to provide a leeway for slower transmission.  This way we slowed transmission 

rate down to 480kbps. Down-sampling also caused a reduction in audio quality received.  
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What Went Wrong 

 

After the abovementioned approaches were taken, we still ended up with a bug remaining in the 

entire integration.  

The expectation: System correctly transmits and receives message. When communication 

between two labkits was interrupted, we desired to hear the message without interruption. We 

should hear nothing once the lag-time tolerance was achieved. 

The final outcome with the bug: System correctly transmitted and received data. When wire was 

unplugged, we heard the message without interruption. However, we heard repetitions of the 

last 5 seconds. In other words, instead of audio halting, it looped the last 5 seconds until we 

replugged the wire. Communication resumed normally when wire was plugged back in (as 

expected!)  
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Discussion and Conclusion 

 

 
6.111 Visible Light Communication was indeed a substantial exposure to what we wanted: 

communication. We had to reinvent the wheel every single time we wanted to implement a module. 

We wrote our communication protocols, we learnt how to write to and read from memory 

efficiently, we learnt how to interface new elements with our labkits and took a great risk of 

working with something that we never did before.  

 

We believe each of us has indeed lived through the legendary “Digital Death” experience.  

 

Lamenting on even half a second signal delay (e.g. phone, internet etc) in our daily lives, we both 

now highly respect and appreciate what communication infrastructure harbors within and how 

complex it can be.  

 

In addition, we learnt significant aspects that deserve to be shown on bold below:  

 

Digital abstraction is not really an absolute abstraction! 

 

The ringing effects caused by the fiber optic circuit and the user IO pins’ frequency are the best 

examples. In other words, we learnt that whenever there is an analog system connected to a 

digital system, analog system becomes the bottleneck. It was rather time consuming yet 

rewarding to experience that analog and digital systems do not work mutually exclusively.  

 

Things need not work in real world as they do in utopic testbenches!  

 

I am a CS-oriented 6-2 student, and this has been a life-changing lesson for me. In software, code 

is not generally interfaced with the real world. If code works in tests, it’ll work anywhere. 

However, by definition, Verilog describes hardware that works with the physical world. 
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Thus many times we were faced with situations where code worked perfectly in testbenches but 

not in the labkit (e.g. 1mHz limitation).  

 

You never know the complexity until you work with it.  

 

When we were suggested to use the open loop infrastructure for the main goal and not the 

feedback infrastructure, we both thought it would be almost trivial to implement. However we 

ended up encountering problems one over the other and spent many, many hours at the lab from 

day 1. We even ended up with a bug in our final project state!   

 
 
 

In conclusion, we strived to engineer a communication infrastructure that is robust to an 

interference up to a certain limit. Through this demanding experience, we learnt how to think 

better about communication, were required to reinvent some wheels (and debug/polish these 

wheels!), had a great exposure to protocols, and achieved a great vision of trade-offs in real 

systems: speed and memory. In big picture, our project taught us how to approach digital 

systems, augmented with a firm teamwork.  

	


