BUFFERED FIBER OPTIC COMMUNICATION

Overview

- Engineer a communication infrastructure between two lab kits that:
 - Exploits visible light
 - Is prone to a certain span of interruption!
- Interesting: Because you "see" the data transmission

Solution

- Use AVO2 Fiber Optic Receiver and Transmitter Pairs
- Implement a buffering system on the receiving end
- Create packetizing model for labkit communication

High Level Specs

- Transmitting Lab Kit (FPGA):
 - Takes in data from AC97 Line in
 - Packetizes the data
 - Writes these packets to the ZBT (not a frat) Memory
 - Transmits it to the Receiving FPGA
 - In case of interruption or transmission error:
 - Resends the data starting from the last packet of failure

Receiving FPGA:

- Receives the data serially from the TFPGA
- CRCs every packet and rerequests an erronous packet from TFPGA
- Meanwhile it also halts its "receiving" process
- Writes packets to ZBT (buffer) and plays the audio with lag (which is why
 it is robust to a certain extent!)

Did you notice most of the components behave as FSMs?:)))))))

HIGH LEVEL BLOCK DIAGRAM

MODULES OVERVIEW

- ZBT
- AC97
- CRC
- Transmitter
- Receiver
- High-level-FSM (transmitting and receiving FPGA)

■ **ZBT memory**: 512k x 36-bit wide bus (2^19 memory addresses)

- AC97 module: sampling audio signal at 48kHz with 12-bit depth
 - Packets: 3 X 12-bit samples fit into 36-bit memory bus, index by 12
 - 3 samples/address * 512k addresses / 48kHz samples per second = ~32 seconds of audio

- Cyclic Redundancy Check: Verifies packet integrity, serial input, parallel output
 - Can write packet data to memory even if it's incorrect, we can just overwrite it later
 - This saves clock cycles

Transmitter Module (Not the entire labkit!)

■ Receiver Module (Not the entire labkit!)

FSM?

Transmitter FPGA FSM

IDLE AC 97 WRITE TRANSMISSION COMPLETE OR TRANSMISSION TIMEOUT TO ZBT TRANSMISSION WAIT UNTIL TRANSMISSION **ENDS**

Receiver FPGA FSM

Timeline

Development\Week of	11/7	11/14	11/21	11/28
Integration of AV02 Fiber		, – :	,	, = -
Optic Transmitter and				
Receiver				
Modification/Testing ADC				
Integration of built-in DAC				
and simple communication				
testing				
ZBT Memory Module				
Building/Testing Packetizer				
3 , 22, 3				
Incolore antique CDC				
Implementing CRC				
Development of FSM				
Testing FSM and				
Communication				
Debugging and More Testing				
Stretch Goals				
Stretch Goals				

