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1 Introduction 
The luxury of purchasing separate pool tables, foosball tables, and air hockey tables is beyond               
the budget of most individuals, particularly college students. We propose a more cost effective              
solution that synthesizes a multitude of tabletop entertainment options into a single system. Our              
project idea is based on the concept of combining virtual and physical interactions for a new                
entertainment experience.  
 
In our project, La PC-na, we implement one of these classic tabletop games -- pool -- by using                  
physical cues in conjunction with virtual balls and pockets. The pool table is virtually displayed               
on a screen. Players use a physical cue to “hit” the virtual balls, and the projected game                 
updates in real-time to mimic the physics of pool table collisions. With our project, we seek to                 
combine the appeal of classic games with the hands-on, real-time interaction that today’s users              
have come to expect.  

2 Technical Overview 
The virtual pool table, balls, and pockets were displayed on a TV screen that was oriented                
horizontally on a tabletop. An NTSC camera with an infrared (IR) filter was mounted above the                
TV screen to capture real-world motion, as shown in Figure 2.1. IR LED’s were mounted on the                 
physical cue so that the camera could track the position of the cue. All processing was                
performed on the 6.111 Labkit.  
 

  
Figure 2.1: Hardware setup with NTSC camera mounted above TV screen. 
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We divided our implementation into external components and internal components. External           
components included cue position tracking (Section 3.1), cue speed calculation (Section 3.2),            
and calibration (Section 3.3). Internal components included ball collision checkers (Section           
4.1.1-4.1.4), ball position handler (Section 4.1.5), friction (Section 4.1.6), and the game FSM             
(Section 4.2). Zareen Choudhury primarily worked on external components, and Matt Basile            
primarily worked on internal components. A high-level block diagram of the system is depicted in               
Figure 2.2.  

Figure 2.2: Block diagram of the system. 
 
In the first step of the block diagram, the NTSC camera data was consumed by the Cue Tracker                  
module to determine the x- and y-position of the cue. These positions were given to the Cue                 
Speed Calculator, which calculated the speed of the cue’s movement. The positions and speeds              
were inputs to the Pool Game module. Within the Pool Game module were all the collision                
checker submodules (Cue Collision Checker, Ball Collision Checker, Wall Collision Checker,           
Pocket Checker), the Position Handler, and the Friction module. All updates on ball position and               
velocity were done internally within Pool Game. Finally, the game FSM received signals from              
Pool Game indicating when to transition states. The outputs of the Game FSM were used to                
update scores on the Labkit’s LED hex display, and the pixel output of Pool Game was used to                  
update the image on the TV screen over VGA.  
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3 External Components 
The external components consisted of a TV for displaying the virtual pool table, physical cue               
stick to interact with the virtual pool table, and NTSC camera for tracking the cue stick. To track                  
the cue, infrared (IR) LED’s were mounted on the stick, and the NTSC camera was covered with                 
an IR filter (floppy disk film) to detect the LED’s.  

3.1 Cue Position Tracking (Zareen Choudhury) 

3.1.1 Tracking Algorithm 
I iterated through two high level algorithms for tracking the IR LED’s on the cue stick. The first                  
algorithm could track only a single LED, while the second could track multiple LED’s. My first                
pass algorithm followed a center of mass approach and was written on top of the sample NTSC                 
camera code provided on the 6.111 course website (NTSC Camera Sample Verilog under             
“Tools”). The provided sample code decodes the video stream output of the NTSC camera,              
saves it in ZBT memory, and reads the pixel values from ZBT to display the camera image over                  
VGA. My first cue tracking algorithm looked for pixel intensities higher than a specified threshold               
(128). Once a pixel satisfying this condition was found, its hcount and vcount were stored as the                 
pixel’s corresponding x- and y-position. The average x- and y-values of all the pixels satisfying               
this condition represented the center of mass of the LED. This algorithm was tested with a                
single diode in a TV remote, and produced fairly accurate real-time tracking. 
 
For our application, we would have to track multiple LED’s since the cue would be mounted with                 
LED’s at both the front and back of the stick. Averaging across all bright pixels would not work,                  
as there were multiple regions of interest. Instead, I followed a different approach that formed               
populated various regions of interest. This algorithm is illustrated in Figure 3.1. The building              
block of this algorithm is a “zone.” The first zone is initialized around the first bright pixel found,                  
using the pixel as its center coordinates. When another bright pixel is found, the algorithm               
checks if it lies within specified margins around the first zone. If it does, the first zone adjusts                  
accordingly to accommodate the new pixel. Otherwise, if it lies outside the first zone’s bounds, a                
second zone is initialized around the new pixel. Each zone cascades a signal to the subsequent                
zones indicating whether the pixel has been placed in a zone, or whether the algorithm should                
continue searching.  
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Figure 3.1: Block diagram of multiple zone tracking algorithm. 

 
This algorithm was tested by mounting LED’s on multiple locations on the cue and visualizing               
the tracked zones with sprites (Figure 3.2). Through visual inspection of the sprites’ movements,              
we found that the algorithm successfully and accurately tracked multiple LED’s in real time. 
 

 
Figure 3.2: Multiple IR LED’s tracked with NTSC camera. 

3.1.2 Cue Hardware 
The configuration of the LED’s mounted on the cue had to be revised a few times to optimize                  
tracking. In the first version of the configuration, there were two rings of LED’s: one at the front                  
of the stick and one at the back (Figure 3.3a). Two rings were used in order to find the vector of                     
the cue’s position. Four LED’s were used for each ring, spaced out evenly over the               
circumference of the stick. The LED’s were spaced out so that the cue could be detected                
regardless of its angle of rotation. 
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However, when this setup was tested through visual inspection, I found that the LED’s appeared               
very faint. I tested increasing the voltage across each LED by arranging them in parallel,               
decreasing the resistance, and increasing the supply voltage. Even with these changes, the             
LED’s continued to appear dim.  
 

   
Figure 3.3: (a) First cue LED configuration with evenly spaced diodes. 

(b) Second cue LED configuration with diodes angled upwards. 
 
Upon further testing, I discovered that what mattered more than the voltage drop was the angle                
of the diodes. If the diodes faced directly upwards at the camera, they appeared very bright, but                 
at even a slight angle away from the camera, they appeared substantially dimmer. Therefore, I               
revised the configuration so that the LED’s faced directly upwards towards the camera, and              
lined them up right next to each other without any spacing, in order to increase the perceived                 
brightness (Figure 3.3b). This configuration provided much better and more consistent tracking.  

3.2 Cue Speed Calculation (Zareen Choudhury) 
In our initial design, we planned to determine the speed of the cue from the MPU-9250’s 3-axis                 
accelerometer. I first attempted to calculate speed from accelerometer data, which is described             
in Section 3.2.1. However, due to noisy data, I decided to switch to calculating speed from                
tracked cue positions instead. This is described in Section 3.2.2 and is what we used in the final                  
configuration. 

3.2.1 Speed Calculation with Accelerometer 
I used an MPU-9250 provided by Joe Steinmeyer, and used the SPI serial protocol to transmit 
data to and from its 3-axis accelerometer. The master in this configuration was the FPGA, and 
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the slave was the MPU-9250. The accelerometer data was read using an FSM that consisted of 
an address state, a data transfer state, and an idle state (Figure 3.4).  

 
 

Figure 3.4: FSM of accelerometer reader module. 
 
In the address state, the master serially sent the slave the register addresses from which               
accelerometer data would be read in the data transfer state. Although there were six registers               
containing all the data (two registers for each of the three axes), only the first address needed to                  
be provided (Register 59). After this 8-bit register address was sent over MOSI, the FSM               
transitioned to the data transfer state. In data transfer, the data was sent serially from the slave                 
to the master over MISO, from most significant to least significant bit, in order of x, y, and z.                   
Each axis consisted of 16 bits of data for a total of 48 bits. Once all the data was transferred, the                     
FSM transitioned to the idle state until prompted to read data again. The chip select pin was                 
active low during addressing and data transfer, but high during the idle state. The clock provided                
by the master (SCK) was a 1 MHz clock.  
 
The accelerometer readings were tested by rotating and moving the chip and observing             
corresponding oscilloscope outputs. Sample oscilloscope outputs are shown in Figure 3.5.           
While the output values were overall consistent with expectations, the data was still noisy. To               
reduce noise, I implemented a low-pass filter that returned a rolling average of accelerometer              
values over the past 8 clock cycles. The average data was converted into a cue speed by                 
finding the magnitude of the vector formed by the 3 axes and assigning a pixel speed based on                  
experimentally determined thresholds. 
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Figure 3.5: Oscilloscope output of accelerometer data.  

Blue is MOSI, purple is MISO, and yellow is NCS (chip select). 
 
Unfortunately, even with the low-pass filter, the data was still fairly noisy for our purposes. When                
tested with simply keeping the chip at rest, the cue speed switched threshold ranges              
approximately 2 out of 10 trials. Given that the noise of the accelerometer would compound with                
imprecisions in the tracked cue position and negatively impact the game experience, I decided              
to try to calculate cue speed from the tracked position instead. My reasoning was that a single                 
external source of noise would reduce overall impact of imprecisions. 

3.2.2 Speed Calculation with Cue Tracking 
The cue speed was calculated from the tracked cue position by maintaining a circular buffer               
containing the cue front’s last eight x- and y-positions. The difference in cue position divided by                
the number of clock cycles gave an approximation of the cue speed. This value was converted                
into an appropriate pixel speed based on experimentally determined thresholds. This           
tracking-based cue speed module was tested by outputting the calculated position differences            
on the LED hex displays. The cue was moved from set starting positions to set ending positions,                 
and I checked whether the displayed numbers matched expectations. The results indicated that             
the calculated cue speeds were quite accurate and close to expectations. Given that this was a                
fairly simple algorithm that produced accurate, real-time speeds while reducing the number            
external components, I decided this was a better approach compared to the accelerometer, and              
ended up using it for final integration.  
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3.3 Calibration (Zareen Choudhury) 
The purpose of calibration was to align the physical cue with the virtual setup as closely as                 
possible, in order to provide a more realistic game experience. One of the complications with               
this was that the resolution of the NTSC camera was 525x480, but the game screen had a                 
resolution of 1024x768. As a result, the camera could only track the cue in a small portion of the                   
game screen, as illustrated in Figure 3.6. In the figure, the black rectangle is the camera’s field                 
of vision, while the gray represents the full extent of the game screen.  
 

 
Figure 3.6: Camera bounds (black) versus TV screen bounds (gray). 

 
My first approach to solve this problem was to stretch the camera’s coordinates to match the                
resolution of the game screen. To do this, I fixed LED’s to the four corners of the TV screen                   
(Figure 3.7). I implemented a calibration module that stored the coordinates of the TV screen’s               
corners by tracking the four LED’s. These coordinates were then used to find the scaling factor                
between the camera and the game screen.  
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Figure 3.7: LED’s mounted on TV corners for calibration. 

 
This approach allowed the cue to be tracked over the full bounds of the game screen, as                 
opposed to a fraction of it. However, the virtual and physical cue were not aligned because the                 
physical cue’s coordinates were stretched onto a larger coordinate system. My next approach to              
this problem was to instead decrease the resolution of the game screen. This way, the camera’s                
field of vision would appear to occupy a larger fraction of the game screen. 
 
I tested decreasing the resolution from 1024x768 to both 800x600 and 640x480. The XVGA              
module was adjusted accordingly for each resolution, using the VGA Timings table on the 6.111               
course website (“VGA Video Output” under “Labkit”). For the 800x600 resolution, a 40 MHz              
pixel clock was used, and for the 640x480 resolution, a 25 MHz pixel clock was used. While the                  
camera’s apparent field of vision successfully increased and the physical cue aligned better with              
the virtual cue, I discovered that the slower pixel clock decreased the speed of tracking. The lag                 
in cue tracking visibly increased, causing the virtual cue to jump around sporadically. There was               
a direct tradeoff between increasing the size of of the camera’s tracking bounds and maintaining               
real-time tracking. Ultimately, we chose to use the middle resolution, 800x600. The 40 MHz              
clock still enabled reasonably fast and smooth cue tracking, and the camera was able to track                
about 50% of the game screen. While the tracking area was not optimal, having real-time cue                
response was more important for our game experience.  
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4 Internal Components 

4.1 Ball Position Updates 

4.1.1 Wall Collision Checker (Matt Basile) 
The wall collision checker is the simplest collision detection module. By nature of the shape of                
the balls and table, the pool balls could only collide with the walls at either 0, 90, 180, or 270                    
degree angles. Therefore, when checking for wall collisions, we only needed to check those              
four points on the circle’s radius, with a simple series of less than and greater than conditionals.                 
A single wall collision checker module detected collisions between a single ball and all four               
walls, and output a signal depending on whether the vertical or horizontal walls were hit. To                
update the speeds, the sign of the appropriate vector was simply reversed. 
 
Occasionally, balls would jump past the walls and continue off the screen, especially if they               
were in a series of rapid collisions with other balls. This occurred because the speed of the ball                  
became so great that it jumped past the wall and thus escaped detection. Implementing a               
maximum speed of less than the radius of the ball prevented this by keeping the ball from                 
jumping greater than its radius in length in one move. Another solution was to ensure the ball                 
only collides with the wall when moving in the appropriate direction (i.e. the ball must bounce left                 
after hitting the right wall). This helped remove a fair amount of our glitchy wall collisions by                 
keeping balls from bouncing off the ‘other side’ of the wall and wrapping around the screen.  

4.1.2 Ball Collision Checker (Matt Basile) 
The ball collision checker was an individual module which took in two balls’ positions and               
speeds as input and constantly checked for a possible collision. If a collision was detected, the                
Ball Collision Checker calculated the new speeds of both balls according to their impact speeds               
and positions, and then passed them along to the position handler.  
 
To create realistic collisions, we modeled ball hits as 2-D elastic collisions, meaning there is no                
energy transferred between collisions. In such a collision, calculating the resulting movement            
vectors is fairly simple. Simply calculate the normal and tangential vectors for each ball at the                
point of collision, swap the normal vectors between the two balls, and recalculate the ball’s               
speed with its new normal and old tangential vectors.  
 
One priority we had when creating the Ball Collision Checker was to keep its calculations as                
lean as possible. The number of Ball Collision Checker’s scaled at O(n​2​) with the number of                
balls ​n;​ thus we wanted to ensure that as little processing power was needed for each single                 
Ball Collision Checker. The primary way we achieved this was by avoiding both square root and                
division operations (except division by powers of 2). However, this made our physics             
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calculations rather difficult, as they relied on calculating the normal and tangential vectors given              
each ball's position and current speeds, and trigonometry relies on square root and division. A               
few key realizations helped us simplify the collision calculations into a few steps.  
  

1. We could calculate the unit normal vector for each ball by drawing the normal vector 
between the two ball’s centers and then dividing by the magnitude which was fixed at 
two times the radius of the balls (16*2=32), which was a power of 2. 

2. The tangential and normal vectors of both balls were related by sign swaps for each x 
and y coordinate.  This meant we could calculate both the normal and tangential vectors 
of each ball with minimal computation.  

3. Once we calculated the tangential vectors, we swapped the normal vectors of each ball. 
4. Since the normal and tangential vectors were also calculated by their x and y 

components, we could recalculate  the new direction and speed for each ball by simply 
adding the x components of its new normal and tangential vectors, and then adding the y 
components.  

5. These calculations could be done in a single vsync cycle, allowing us to maintain timing 
with the rest of the system.  

 
Figure 4.1​ : ​Diagram of the necessary vectors in elastic collision calculation. 

 
One way we attempted to make ball collisions feel more realistic was by looking ahead when                
detecting collisions. We added the current speed to the current ball position when looking for               
collisions, since the nature of blocking assignments ensured that we had to wait 1 clock cycle                
before the ball position actually updated. A problem we ran into was in our substitution of right                 
shifts for division. Right shifts do not store a remainder, and they round down. Thus, collisions                
that happened at too shallow of an angle were not calculated properly, and the resulting ball                
would move at a 0 or 90 degree angle. One possible fix would be to either implement a                  
rudimentary decimal and remainder system, or to simply scale up the speeds when doing              
calculations (5 -> 500) so Verilog would always be operating in whole numbers but we would                
have more significant digits when doing calculations.  
 
Much like the wall collisions, we also ran into the problem of balls moving too quickly and thus                  
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skipping over some or all of the other balls, causing collisions to appear messy or unrealistic.                
Unfortunately, the same fix of applying a maximum speed equal to the radius of the ball did not                  
work as effectively because even a ball partially skipping onto another ball caused the colliding               
balls to form an overlapping position, which looked unrealistic. Given more time, I would have               
liked to implement a system that detected potential nearby collisions, and decreased the speed              
at the final timestep if necessary to ensure that the balls collided exactly on the edges. Since the                  
speed would only drop in the final timestep before collision, this change would be unnoticeable               
to the naked eye.  
 
In general, the vector calculations were accurate, assuming balls collided only on edges and              
could handle minimal rounding down. However, the potential high speed of balls meant they did               
not collide on just edges, and it was during these overlaps that unrealistic collisions occurred.  

4.1.3 Cue Collision Checker (Zareen Choudhury) 
The cue collision checker was implemented very similarly to the ball collision checkers. The              
primary difference was that the cue collision checker was triggered only by the cue. Its inputs                
were the cue front’s x- and y-coordinates, provided by the cue position tracking module, and the                
cue’s x- and y-speeds, provided by the cue speed calculator. The squared distance between the               
colliding sprites was smaller as well, since the collision was occurring between a ball and the                
cue instead of two balls.  

4.1.4 Pocket Checker (Matt Basile) 
The pocket checker was a refactor of the ball-collision checker. Each pocket had a series of                
collision modules with each ball which continually checked for possible collisions. If a collision              
was detected, a flag signal was sent to the position handler, which then moved the pocketed                
ball off screen and halted its movement. This was a simple workaround we developed to keep                
other balls from interacting with a pocketed ball.  

4.1.5 Position Handler (Matt Basile) 
The position handler was the “brain” behind all of the game physics. It stored the ball positions,                 
took in the new speeds and triggered inputs from all of the collision checkers (wall, ball, cue),                 
and output the new ball speeds and positions for any given time step. Every ball was stored as                  
an x and y coordinate for its center, and an x and y vector representing its direction and speed.                   
By listening for every possible collision, the position handler selected which input to choose from               
when updating each ball’s speed. If the position handler received a wall collision input for ball 1,                 
it selects the updated speed from that wall collision checker and used that speed to update the                 
position of ball 1 in the following timesteps. This was achieved through a series of conditional                
statements, one of every collision. Each conditional statement was also gated by additional             
conditional statements, which helped impose a hierarchy on collisions and other operations. At             
the highest level was the pocketed flag: if a ball had rolled into a pocket, it was removed from all                    
future physics calculations to ensure it accidentally did not roll back on screen. Furthermore,              
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wall collisions were given priority over ball collisions, since an undetected wall collision would              
send a ball of screen, while an undetected ball collision simply sent a ball somewhere randomly                
on the court. We achieved this by including a lack of wall collisions as part of the conditional for                   
checking for new speeds.  
 
Our reasoning for storing the balls the way we did was mostly based around simplicity and ease                 
of calculations. As mentioned Section 4.1.2, we wished to avoid the use of square roots and                
divisions (except division by powers of 2) operations throughout our code. Storing ball speed as               
a separate x and y vector kept us from having to use trigonometry to separate vectors, and                 
instead use simple operations such as dot products and multiplications in our calculations.  
 
The position handler evolved heavily throughout the course of the project. In the initial proposal,               
the position handler only updated the positions and speed of the balls. The actual positions of                
the balls were stored in the game FSM and sent to the position handler, which updated the ball                  
positions according to the speed and then decreased the speeds (due to friction). However, we               
discovered that it was simpler and cleaner to simply store the ball positions in the same place                 
they were being updated. Furthermore, when we split from single, unified collision checkers to              
individual modules, we needed a way of consolidating all the different possible inputs, since a               
single ball needed to listen to possible collisions with many different objects. Centralizing all              
these inputs in the position handler allowed us to organize our code and consolidate all position                
and speed related inputs to a single location. While the position handler did grow very large,                
much of the code was very similar, and thus easier to implement than some other modules. The                 
greatest error we ran into was bug fixing due to the length of the code. In general, we                  
minimized this by keeping the code as organized as possible and isolating which balls were               
performing incorrectly, and isolating not only where that ball’s inputs could be missing, but also               
where they could have been added accidentally.  

4.1.6 Friction (Zareen Choudhury) 
The intent of the friction module was to reduce the speed of the balls and bring them to rest                   
after they had been set into motion. Each ball was associated with a unique instance of the                 
friction module. Speed reduction was implemented by decrementing a ball’s velocity           
geometrically. When a ball started moving, its initial x- and y-velocities were stored. Those              
velocities were decremented by 1 pixel/frame every ​N clock cycles. The number of clock cycles,               
N​ , was inversely proportional to the velocity; a larger velocity would be decremented faster, and               
vice versa. The x- and y-components were decremented independently. If the ball collided with              
another ball or wall, the new post-collision velocities replaced the initial velocities and used to               
recalculate ​N​ . When both components were reduced to a magnitude of 0, the ball was put to                 
rest and set as inactive.  
 
Based on testing through visual inspection, I found that this implementation of friction did not               
result in very realistic or smooth speed reduction. Since the x- and y-components were reduced               
separately, oftentimes one component would be reduced to zero before the other. This resulted              
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in the last several clock cycles of the ball’s movement being in only the horizontal or vertical                 
direction, which did not appear very realistic.  
 
A more physically accurate model for friction is to reduce both x- and y-components by the                
same multiplicative constant, as opposed to an additive constant. Unfortunately, we began            
implementing this model with too little time to spare and were unable to successfully integrate it                
with the rest of our code. If we had more time, we would want to integrate this implementation to                   
have a smoother and more accurate friction model.  

4.2 Game FSM (Zareen Choudhury) 
Figure 4.2 illustrates the configuration of the pool table. There were two players in the game -                 
stripes and solid. The pool pieces consisted of one white cue ball, two striped balls (light blue                 
and dark blue), and two solid balls (red and orange). Only the cue ball could be hit by the cue                    
stick. There were six pockets, corresponding to the four corners, the center top, and the center                
bottom. The pool table also contained a small circular sprite (black in Figure 4.2) indicating the                
virtual position of the front of the cue stick. The LED hex display on the labkit was used to                   
indicate the stripes and solid teams’ current scores.  
 

 
Figure 4.2: Initial pool table  

 
The pool game FSM is depicted in Figure 4.3. In the Start Game state, all the balls were                  
initialized to their starting positions with starting velocities of 0 (as shown in Figure 4.2). After                
one clock cycle, the FSM moved from Start Game to Track Cue Stripes. The player turn was                 
initialized to the stripes team. The color of the cue sprite was blue in this state to indicate the                   
stripes team’s turn, since both striped balls were blue.  
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Figure 4.3: Pool game FSM. 
 
When a player hit the cue ball with the cue stick, as detected by the cue collision checker, the                   
FSM transitioned to the Move Balls Stripes state. In this state, the cue was no longer tracked for                  
cue collisions, as the balls moved and collided among themselves until they all reached a rest                
state. Accordingly, the cue sprite’s color was changed to black to indicate that it was not active                 
in this state. Once all the balls stopped moving, as determined by the friction modules, a signal                 
was sent to the FSM. 
 
At this point, the FSM compared the current number of points with the number of points before                 
the round. If the stripes team scored a point by pocketing a striped ball, the FSM would loop                  
back to the Track Cue Stripes. Otherwise, if the stripes team did not score any points, pocketed                 
a solid ball, or scratched (pocketed the white cue ball), it would be the solid team’s turn, and the                   
FSM would instead transition to Track Cue Solid.  
 
If it was the solid team’s turn, the cue sprite turned red to indicate their turn. An analogous set of                    
transitions occurred in the Track Cue Solid and Move Balls Solid states as in Track Cue Stripes                 
and Move Balls Stripes. At the end of both the Move Balls Stripes and Move Balls Solid, the                  
FSM also checked whether the given team had pocketed all their balls. If they had, it would                 
transition to the Win state, which displayed which player won (Figure 4.4). The game could be                
reset to Start Game by pressing the enter button.  
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Figure 4.4: Pool game win screen. 

4.3 Game Visuals (Matt Basile) 
All visual components of the game used the same “sprite” code, similar to what was used in Lab                  
3. Depending on the current value of hcount and vcount, the sprite module either outputted that                
sprite’s color, or black. These pixel outputs were then summed, and if their sum equaled 0, that                 
pixel was set to be the background color of green. This ensured that we would have an even                  
background color that would not interfere with any of the ball or pocket colors.  
 
All round components were stored by their center x and y positions and their radii. A pixel was                  
said to be in the circle if its distance from the center x and y was less than the radius. Since the                      
radius of each ball was fixed, we could avoid having to use a square root by calculating (​x-x​ b​ )​ 2 +                   
(y-y​ b​ )​ 2 = radius​ 2​ . Input variables let us designate a ball’s color, pattern, and player. The cue                
stick marker used a slightly modified version of this ball sprite code with a different radius                
parameter and a changing color input, to match each player’s turn.  
 
The final win screen simply used a series of rectangular sprites to simulate letters. If given more                 
time, I would implement a more complicated text display system. This would allow us to display                
messages such as “Press Enter to Play Again”, or each player’s turn and score on the pool                 
table during the game.  

5 Lessons Learned 

5.1 Matt Basile 
I believe one of the biggest lessons I learned was the importance of structuring and organizing                
code, especially in Verilog. A fair portion of this project’s difficulty came from keeping track of all                 
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of the different inputs, outputs, and modules. Because almost every module we wrote in some               
way interacted with every other module, keeping track of everything was certainly a challenge.              
Thus, even small things such as comments, indenting, and module layout were very important              
to ensuring we could debug in a timely manner.  
 
Furthermore, I recognized that working with Verilog, and hardware in general, presents a unique              
set of problems that I am unaccustomed to working with in computer science. Specifically,              
timing is extremely important in Verilog, and having to work with discrete cycles and blocking               
assignments while coordinating inputs from other modules is always a challenge. I learned to              
keep things simple whenever possible, and use state machines for everything else. This is also               
why moved the actual calculations of the collisions to individual models - this allowed us to                
parallelize the process even further and let the position handler run in a single clock cycle, as                 
opposed to multiple clock cycles for each calculation.  
 
The importance of having a detailed, yet flexible, starting plan was also very apparent              
throughout this lab. Our final block diagram looks quite different than our initial one, but just the                 
presence of that first diagram played a key role in keeping us organized in the early days, and                  
also when we moved around variables and processes between modules. Seeing where            
everything connected helped us know how to reconnect inputs and outputs, and ensure that              
information flowed through our new chart.  
 
Observing the sheer variety of projects the other students completed, alongside the complexity             
of our own, has also reaffirmed my appreciation for the FPGA has an incredibly versatile tool.  

5.2 Zareen Choudhury 
One piece of advice I have is to start integrating code earlier. While this may not necessarily                 
apply to every project, in our case we would have benefitted from integrating the external and                
internal components before we did. I would also encourage future students to set up and use                
version control (e.g. Git) from the beginning. We did not have Git set up properly, so we ended                  
up saving and sending each other various versions of our code. Many other groups used a                
similar homegrown Git approach, but it would have been significantly easier to use some form of                
version control instead.  
 
I wish I had made my code more ready for change from the beginning, as well. This includes                  
using parameters for hard-coded numbers so that they can be adjusted easily and structuring              
code to be modular so that additional instances can be added easily. In order to add more balls,                  
we had to refactor our code to make it more modular. This process made us lose several days                  
of work, since there were many bugs to fix in the refactored code. If we had made the code                   
modular to begin with, we could have saved this time.  
 
Finally, I advise students to talk with other students and seek out feedback from the staff. It                 
ends up that many projects have similar elements. In my case, another group was working with                
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an accelerometer, and another one was using IR tracking. It was very beneficial for me to talk                 
with them through the design process and to help each other debug. I learned a lot from working                  
in this collaborative manner.  

6 Future Work & Conclusion 
Overall, we were successful in creating a pool game that integrated real-world interaction using              
a cue stick with a virtual pool table. We implemented accurate and real-time cue tracking and                
speed calculation, as well as real-time ball position updates. We originally predicted that             
achieving a fast response time would be our biggest challenge, but were able to overcome this                
by eliminating the need for heavy math calculations and adjusting the clock. The ball position               
updates were mostly accurate at low- to mid-level velocities. The game included most elements              
of a typical pool game, including alternating team turns, pockets, scratches, and scores.  
 
If we had more time, we would want to clean up the ball position updates and implement some                  
stretch goals we had. As mentioned earlier, the friction model could be made more realistic by                
reducing speed with a multiplicative instead of an additive constant. Many of the ball and wall                
collisions appeared did not occur as expected at higher velocities, which we would want to clean                
up. We could expand the game to include the full number of pool balls, which would be easy to                   
scale with our modular organization. Additional features could include displaying score with            
sprites on the pool table, instead of the hex LED display, and adding collision sounds. These                
additions would make the game experience even more seamless and advance the goal of              
blending the line between physical and virtual entertainment.  
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