Final Writeup: Spectris

Intro:

For our project, we will be implementing Spectris, our own version of the
quintessential video game Tetris. To move beyond the original version of
Tetris, our game features a new twist: The blocks overlap depending on
their colors. For example, a red block could be placed in the same location
as a blue block, and those overlapped squares would turn magenta. Then,
a green block could make those magenta blocks white, but blue and red
blocks would collide with them. This makes for a new visual aspect and a
new gameplay challenge. Besides the core Tetris gameplay, unique
gameplay twist, and visuals, three other baseline features are sounds/music, high scores,
and a color-blind mode.

The game will be controlled in one of two ways. Using the switches in the Nexys 4 DDR and
having some gesture controls. The project was divided into 3 parts. The game logic, the
controller, and the audio.

Initial Commit Goals:
e Functioning spectris, complete with generic tetris controls (Nexys 4 buttons), and
block collision / line clear based on color.
e All basic controls using Nexys 4 controller.
e 2 background music tracks and 2 sound effects

Initial Goals:
e Glove gesture controller
e Keeping Score, displayed as a number on the side next to the tetromino queue (most
likely to be # of lines cleared.
List future blocks (tetromino queue).
Main Menu with settings for Difficulty and variable fall speed.
Hold function, where the player can hold a piece for later.
Glove Control Scheme
Accelerated music when the player is close to losing at the top

Initial Stretch Goals (try to implement some, but probably not all):

e Colorblind Mode / alternate color schemes

e Options to choose movement speed (default will be reasonable)

e Options to choose number of colors (for example 2 colors could be grey+grey =
white, or red + cyan = white, as opposed to the standard red + green + blue = white)

e Gradually increasing difficulty, along with score manipulation, possibly different
scoring based on more lines cleared at a time as well as difficulty
Fancy intro screen animations.
All block edge logic for whether a piece is still falling or landed with the rest of the
stationary blocks, e.g. grey border for moving blocks, and the entire ground has a
white border around it.

e Highscores List
Project overview:

Our game Spectris can be divided into 3 major sections: The controller inputs, the game
logic, and the audio/video outputs. Each section has core features as well as expanded
features that we wish to implement for extra interest / entertainment value. The project will
be constructed on a Nexys 4 board.

For the inputs to our game, the Nexys 4 switches and buttons will work as debug / simple
controls, which will including moving left, right, down, and turning. But for a more interesting
player experience, we will also create a motion controller that allows the player to control the
game with a hand-worn apparatus. This control glove would be viewed by a camera, which
would connect to a module that converts the viewed image into game inputs.

The glove/camera apparatus is going to be able to detect movements in the player’s hand in
the following way: If the module detects that the player has moved his hand to the left of to
the right it will map it to the direction the block should move. If the module detects that the
rotation gesture has happened then this controller module will send a signal to the game
logic telling it to rotate the block in the specified direction (clockwise vs counterclockwise). If
again the module detects that the send-block-down gesture has been established, then the
module will send a signal to the game logic telling it to accelerate it downwards.

The Camera module will detect if any of the gestures have been detected. The gesture
include: moved left, moved right, moved down, no movement and a rotation gesture.

If the rotation gesture has been detected, the piece will be rotated 90 degrees. If the down
gesture has been detected, then the piece will move all the way down. If either left or right
has been detected the controller module will start a timer and if the timer is greater than a
parameter the block will move in that direction and the signal bit will be reset to 0 and wait
until the player had moved in the same direction for some time (passed the time parameter).
If the controller module detects no valid gesture then the block will continue to move
downward as normal.

The game logic is based on a finite state machine that changes state depending on player
inputs or whether the game has ended (in game). The game outputs to the video and audio
are as stated above and below. The FSM randomly chooses which Tetris block to use, and
takes in how fast the blocks are falling, and whether a rotation or translation is occurring. In
return, the FSM will update the current falling block’s position, performing any translations
and rotations if needed.

The tetris game board will be 10 blocks long by 20 blocks high, as per a normal tetris board.
Each block is fully filled by a single color, so 200 RGB values must be stored. Memory used
will be on the order of 10kB for full RGB values. However, for the pure basic version in which
only three colors are RGB, each block’s color value can can be simplified to three bits,
representing each of Red, Green, and Blue. These are drawn by mapping the playing field
grid to the pixel representation.

Falling tetrominoes will collide based on their color. For example, two red blocks cannot go
through each other, so if a falling red tetromino collides from falling anywhere on a red block,
that tetromino will lock into place; the next tetromino will spawn and begin falling. A red block
and green block will overlap to make yellow, which can then overlap with a blue block to
make white (red + green + blue). Only a full line of white blocks (sum of all available colors)
can clear a line. As per normal tetris, the game is over when any blocks reach the top of the
screen.

All of the game logic and settings can be troubleshooted / debugged / tested using the
Nexys 4 and VGA connected monitor.

The audio will be synthesized using bitcodes saved in memory, rather than played from a
stored waveform. Every certain number of cycles, the audio module loads and executes a
bitcode, which will turn a note on or off at a certain pitch for a particular channel. The game
FSM determines which background music should be playing; it also determines when sound
effects need to be played, at which point the bitcode for the sound effect will take
precedence over the background music. Each sound effect only uses 1 channel, however,
so most of the music will not cut out when a sound effect plays.

The audio module will have 4 channels: 2 square waves, 1 triangle wave, and 1 sawtooth
wave. These channels, which are either off or generating a wave of a certain frequency, are
summed together and outputted to the audio out of the Nexys 4.

The music and sound effects will be composed externally, then converted to bitcodes for the
game. This will allow us to have higher quality audio without spending memory on audio
samples. Each bitcode is 14 bits in size: 2 bits for which channel, 1 bit for on/off, 7-bit pitch
value, 4-bit volume value. If the audio system reads bitcodes at a frequency of 32 Hz, then 1
minute of audio data for all 4 channels takes up 13.44 kB. For reference, 1 minute of 16 bit
PCM data sampled at 44.1 kHz would require about 5.292 MB of space.

There will be at least two different choices for background music, and sound effects for
cleared lines, locking tetrominoes, game over, and menu selections.

Game Logic (Benny):

The Spectris game logic features the standard movement patterns from generic Tetris
combined with the additional factor that all blocks can be three colors: red, green, and blue.
Each color only overlaps with itself, such that a green block falling into a red block will create
a yellow block, and all three colors together creates a white block. Similar to regular tetris,
having a full line, in this case a full line of white blocks, clears that line and moves the rest of
the board downwards. Scoring in the game consists of getting 1 point for every block placed,
and 100 points for each successfully cleared line.

Normal Tetris:

Spectris:

One of the most important aspects of implementing this game was choosing the proper
representation. Our chosen game representation is setup is as follows. The game board
itself consists of two arrays, one for the current moving block, and one for the background
formed from previous blocks. Each array is 10 by 20 by 3 bits, as a standard Tetris board is
10 blocks wide and 20 blocks high, and each of the three bits represents a color (RGB) as a
binary 1 or 0. The first of these two arrays corresponded with the placement of the current
moving block, meaning that only 4 out of the 200 3-bit memories would be nonzero at a time.
The second of these two arrays corresponded with the background, in which each x-y point
could correspond with any of the 8 possible colors represented by the 3 bits. Each block is
32 pixels by 32 pixels, resulting in a total board length of 320 and height of 640 pixels, which
fit quite well into the display size. Because the display height was 768 pixels = 32*24, the
game field border has a width of one block (32 pixels), with a one block gap above and
below. The advantage to using this type of representation is that first off, it doesn’t take a lot
of memory to save, nor to display. If the game representation instead uses something similar
to copies of the blob module from previous labs, in order to display the board, the logic
would have to look through all instances of the object so see which the current pixel would
display, using VGA display logic. With this representation, with a simple check of whether the
pixel is within the game board area, the block that a pixel corresponds to can be checked
simply by taking the relative distance from a corner of the board and taking off the five least
significant digits, since each block is 32 pixels by 32 pixels. In addition, the colors that blocks
represent are very easy to change. When adding two colors, because colors are
represented within that block as either a value of 1, 2, or 4, correlating to 001, 010, 100 in
binary, additions of colors can be easily mapped, as the sum of colors yellow, cyan, violet,
and white would be represented as 110, 101, 011, and 111. This allows for ease in mapping
the game representation to the 24 bit RGB value of the pixel to display. In terms of block
representation, instead of representing a moving tetronimo as four blocks, each tetromino
was represented in these five variables:

Piece Shape (“T” shape, “L” shape, “O” shape, etc.)

Piece Color (In this case, R G B represented as a0, 1, or 2)
Piece rotation (0-3 for the four possible orthogonal rotations)
Piece x-position within the game area (0-9)

Piece y-position within the game area (0-19)

AR A

This way, any possible movement within the game is easily changed. A movement left or
right results in a change of 1 in the x-variable, a downward issued movement results in
y=y+1, and rotating a piece is simply adding 1 to the piece rotation variable.

With regards to timing the visual aspect, although the audio runs on a 100MHz clock, for
VGA to display the game, a 65MHz clock needed to be used, which was synthesized from
the faster clock to run the 768 by 1024 VGA display.

The rest of the visuals, that is, the game border, as well as words and score shown on
screen are created either as sprites, or as instances of the blob module. The four walls of
the border are each their own blob module, and each line of words, such as “Spectris”,
“Score”, or “Hold”, is its own sprite, whose color is determined by the color of the current
falling block (or in the case of “hold”, the color of the held block”). Each digit of the score is
its own instance of a different sprite as well. Each digit sprite takes in the BCD value of the
number it needs to represent, which is transformed from binary to BCD via a separate
module, similar to that of Pset8. (This is where | learned the very important lesson of never
assigning a wire an initial value).

Now onto the meaty part: the actual game logic.

Because the game runs in 65MHz, but the game only needs to play in 60fps, this means the
logic has plenty and plenty of cycles to determine the next state of the game. Which means
that the game logic is very conducive to pipelining. THIS IS THE MOST IMPORTANT
LESSON | LEARNED WHILE CODING THE LOGIC. In the early builds for the game logic, |
tried to fit in all of the logic of selecting the next shape, figuring out where pieces could
move, updating the two arrays and all variables representing the game, etc. all in one cycle
with a gratuitous number of for-loops. This was a huge mistake, as synthesizing this logic
was nearly impossible, as any machine | tried to do so on would freeze and crash more
likely than not, and synthesizing times were over 30 minutes long, making debugging
unfathomable. Later on, | would rewrite all of the game logic, in which the internal 65MHz
clock that the game logic on was split between two variables, X and Y. On each clock cycle,
X would always increment by 1, from 0 to 9, and each time X was reset, Y would increment
by 1, from O to 23, effectively breaking down the clock into groups of 240 cycles. Within each
of the first 200 cycles, that is when Y > 20, | would update everything relating to the two
game boards of the corresponding pixel. For example, at x=5, y=11, | would update all logic
in the “block” and “field” arrays at indices block[5][11] and field[5][11].

User controls were clocked such that movements could not be issued every cycle, or even
every 240 clock cycles, as surely moving a current piece would be impossible if issuing a
movement for a hundredth of a second would move it ten times. Thus, movement
commands (left/right/down/turn) were only taken periodically based on the 65MHz clock, in
addition to the natural fall speed of the game. By mapping the movement command of the
game logic to 0 for most cycles, and only to either the user input, or downward movement
every x cycles, the user could move a block on a reasonable time scale. This also allowed
for the implementation of variable fall speed (and hence difficulty) by changing the delay
between movement commands. In order to determine whether the user should be able to
move a block, | issued a variable ‘movable’. Whenever the game registers that a movement
command, such as moving left, right, down, or turning, movable is set to 1, and a separate
instance of a piece, next_block was used. Next_block is created by updating the five
variables representing a tetromino based on the movement issued. A rotation would indicate
an increment of piece rotation, a movement right would indicate an increment of piece x-

value, and so on. During these aforementioned 200 cycles, the game logic would check
each space on whether next_block was situated on that space, and if it did, whether it would
collide with the background. At the end of these 200 cycles, if there was a collision,
movement was of course not allowed, and if the movement was in the downwards direction,
then it meant that that block should be placed, and a new block would need to spawn at the
top of the screen. If there was no collision, the variables representing the current block
would be updated to the variables for the next block, and the cycle would continue until the
game ended.

Because each tetromino is represented as the 5 variables listed above, the game still
needed to know what each piece “looked like”. To accomplish this, each block other than the
long “I” piece was coded in a 4 by 3 by 3 binary format, representing the four rotations of the
3 by 3 grid that each piece could be represented in. Below is one such representation of the
“T” block. The long “I” block had separate logic for much of the game, as although it didn't fit
in the same 3 by 3 grid that all the other pieces did, its positions could be checked easily, as
it was always either horizontal or vertical.

[000]
[111]=9b000_111_010
[010]

When trying to create these ‘image’ variables for each block, | found that the best way to
create it was actually to make one large binary variable, similar to a sprite, that all the blocks
mapped to. Thus | made a 7*4*3*3 = 252 bit variable that stored all of the images for the 7
possible blocks, and to check a particular tetromino of a particular rotation, | would extract
the 9-bit sequence correlating to its 3x3 shape in in that rotation.

Of course all of this happened in the first 200 cycles of the total 240. Cycles 201-210 were
where all of the actual updating logic occurred, such as setting the values of next_block
based on user input (if user input was taken, which was again rare with regards to how often
the game checked for updates based on the internal clock), determining whether a new
block should be spawned since the previous block was placed, and updating the values of
the current block based on whether movement was allowed or not.

The final clock cycles were used only if a line should be cleared or not. First, the game
would check if a line needed to be cleared at all by running through each horizontal line and
checking whether any of them had full white blocks (basically if all values of field[x][y] = ‘111’
for all values of x for that y). If so, it would save the line number that needed to be cleared. In
the next 20 cycles, the game would then update each line from bottom to top. If the line was
above or equal to the line needed to be cleared, the values of that line were set to the values
of the line above. The exception is that for the topmost line, because there are no lines to fall
down from, will always have a value of ‘000’ for each space within the line.

Add-on features, such as pausing the game, detecting game over, telling the audio to speed
up once the block tower had built higher hough, were pretty trivial to add in. The notable two
that affected normal game: holding a block and showing a next block, seemed daunting at
first, but | found later on were easily implementable due to our game abstraction. Showing
the next falling block simply meant inserting an intermediate between the currently moving

piece and the quasi-random algorithm used to select the next block (since “random” isn’t
easily implemented in hardware). Implementing a hold feature simply required having
another set of tetromino variables that would trade places with the current one whenever the
use inputted a ‘hold’ command. This required setting a lock for the user, so that the user
couldn’t continuously switch between two pieces indefinitely. This lock unlocks after any
piece is placed, similar to modern Tetris, thus with each new block, the player may use the
hold feature once.

By far, the most complicated sections of programming the game logic came from trying to tie
in clearing a line in with the rest of the game, and figuring out a way to effectively turn a
piece. Clearing a line effectively (that is, without nearly un-synthesizable nested for-loops)
required expanding on the pipelining based on clock cycles that | implemented for updating
the playing field, and effectively finding a way to turn a piece involved choosing a smart
representation of the playing field as well as the current moving piece, in which checking
movement could happen one space at a time instead of trying to check everything at once,
by using the 252 bit variable representation for all of the 3x3 block display. Embarrassingly,
when implementing the score feature, | spent several unneeded hours debugging because |
had assigned a wire that carried the BCD score representation to the digit sprite module to
0, meaning no matter how the binary score changed, the sprite would always display 0. Also,
| also spent many hours struggling with displaying any simple graphics before | had switched
to using a 65MHz clock for VGA. All in all, choosing the proper abstraction and
representation, as well as planning out clock cycles was the biggest lesson | learned in
programming the game logic. If | could do it again, | would have liked to perhaps tried to
implement the stretch goal of having different textures for blocks rather than colors, such as
the diagonal texture | used to differentiate the game border with white block spaces. | think
those looked really cool.

Controls (Alfredo):

Our game was to originally going to have two input methods.

-2 switch buttons

camera tracking

The first one was to be used for debugging and testing while the camera gesture control
would be under development.

Because we were using a Nexys 4 DDR our camera of choice would be OV7660. Some of
the benefits of using this camera include cheap cost a customizability. Some of the draw
backs were that because of its cheap prize the camera would not reliable at times and would
sometimes break without notice. Moreover, at camera would not accurately be able to depict
certain colors and because it was so customizable it would at times be nearly impossible to
pinpoint was exactly the problem would be and what registered would need to change during
initial programming to ensure reliability within acceptable parameters.

Camera overview:
Initial Camera Specs:

640 x 480 resolution
RGB color was outputed as a 565 16 bit color

The camera works as follows every clock cycle, the camera gets half of the pixel color, within
two clock cycles the pixel color which should be complete. The pixel color is stored in in a16
bit number. That 16 bit number has to be transformed to a 12 bit number. Because the 16 bit
number is RGB 565 meaning that the red is stored in a 5 bit number, the green in a 6, and
the blue in a 5, we are able to take the Top 4 bits of each color and transform the 16 bit
number to a 12 bit number that the Nexys uses to display to VGA.

Before that happens some processing must be done. Because we are doing tracking, we
must first set a framework so that these pixel calculations and processing can be done.The
first of these processes is selecting for a color we are going to track. With initial testing we
found out that skin color is very hard to track because of how the color changes with
different lighting. We then tried to segment out neon green and bright red and we
encountered similar issues here, the main reason why this was unreliable was because the
camera could not accurately display these pixel colors so segmenting for them was
unreliable and not consistent with the reliability that we need. The best color we found that
would be easily segmentable was white. We exuded to use a LED to produce this color.
After we tested for the best color to process with we then began to do color segmentation.

Within our camera generator block, for every pixel i check if its above a threshold of white. In
12 bit hex, white is showcased as 12h'FFF. In order to have a robust white detection scheme
I lowered the threshold to 12'hFFO. | found that this process work and showered great
promise. A sample output of an LED look like:

Now, that this initial processing was done we ended to know where the middle of this blob
was in order to do some sort of analysis about the light we are tracking.

| decided to tackle this finding the average x and y coordinate. To do this | needed to know
the number of pixels that were white. | had a variable that would do this. The variable was to
be incremented at every clock cycle until we reached an hcount of 638 and account of 478.
After this the variable that holds the the count for number of white pixels was reset to 0 so
that this calculation could occur every frame.Meanwhile, towel other calculations were going
to be done at this time, | had two more variables that would increment the total x and total y

for the pixels that were white. What this means is that if a pixel was white its hcount would
be added to the total x and its vcount would be added to its total y. What this does is that at
the end of a frame we would have 3 variable pieces of information, the total x value (the
sum of every hcount for every white pixel in a frame), the total y value (the sum of every
vcount for every white pixel within a frame), and the total number of white pixels. What this
allows us to do is to now calculate the average x and average y of white pixels for each
frame.

Now that we have variables explained in the last section we had to decide how to calculate
the average x and average y. Two methods explored are:

Divide the total x and y by the total number of pixels. This would effectively need to be a 32
dividend being divided by a 19 bit divisor. | achieved this by using the divisor module in the
IP section.

The second was to just multiple. Let me explain how this works. In the next module we
would need to check if this average x or average y was within a hcount and vcount range if
so the we would finally output the 3-bits needed to control the spectrum game. Was we can
do is the follow with some math manipulation:

Ex. Instead of using this:

if (average_x < 214) begin
BLAH;
We can use:
if(total_x < 214*total_pixel)
Because average_ = total_x/total_pixel we can move the Total_pixel to the other side by
multiplying thus having the same effect as dividing without having to deal with the dividing IP.

The last part we would do is then translate where the center of the blob is to a corresponding
output. To better understanding it would be best to understand what the controls all mean.
We have 5 possible scenarios.

move_left

move_right

move_down

move_rotate

nothing
For each of the scenarios we then have a corresponding output:

move_left = 3'b110

move_right = 3'b011

move_down = 3'b111

move_rotate = 3'b101

nothing= 3'0000
These would then be outputed to the general game control logic and would be used to
control General gameplay.

This is how it is determined if what to output:

If the blob would be in the upper red box the output would be move_rotate
If the blob would be in the lower red box the output would be move_down
If the blob would be in the left green box the output would be move_left
If the blob would be in the right green box the output would be move_right
Else:

Nothing;
| got the general code working and tested individually and every individual module seemed
to be working. When | put everything together there was a timing issue that would not allow
the total_x, total_y and total_pixels to be calculated and because of this we have to revert to
our backup and use switch as controls.

Audio(Jose)

The Spectris game has an audio system capable of playing 2 background music (BGM)
tracks and 2 sound effects (SFX). In the interest of recreating retro game music, and also of
saving memory, the audio is generated using instruction codes rather than played sample by
sample.

The two BGM tracks are the classic Tetris theme and a mellower original theme. The two
sound effects are a high-pitched sweep (used when blocks lock into place) and a shrill
fanfare (used when a line is cleared).

Every 100Mhz clock cycle, the audio system counts up to a certain number to create its own
slower clock. These slower audio cycles are useful because they reduce the number of
cycles in any length of time; no sound effect or music track requires the excessive precision
of 100 million actions per second.

pwm

-

audio gens }

-

bgm sfx

Ceongs | [sounds]

The gens, which are the audio module’s 4 square wave generators, are the only parts
clocked by the fast 100mhz clock. These gens receive the number to count to (like a period)
and a 4-bit volume, and return a 4-bit number representing the value of the wave - volume if
the wave is up at the moment, or 0 otherwise. At all times, the audio module is summing up
these generators into a larger-size number and encoding it into the pwm format used by the
mono audio output of the Nexys 4.

To determine what volumes and frequencies to set the gens to, the audio module uses two
similar modules, one for bgm and one for sfx. Every audio cycle these modules read a
command from the selected song or sound effect. Each song or sound effect has its own
module which simply returns a command depending on the value of the input address. They
also indicate whether the address given is the last one for that sound, so that the parent
module can loop the address (bgm) or stop properly (sfx).

The 45-bit instruction codes stored for these sounds work as follows: If the most significant
bit is 1, the following 44 bits are instructions for the 4 square wave generators (for each, a 7-
bit pitch number and 4-bit volume). If the MSB is 0, the following 44 bits determine how
many audio cycles to wait until reading the next instruction. Because of this, stretches of
time in which nothing changes can be represented with one instruction (or, if there are
extremely long breaks, 1 instruction every 244 audio cycles).

The bgm and sfx modules also contain a helper module that maps the 7-bit pitch value to the
counter number used by the wave generators.

Since bgm and sfx both provide commands for the 4 wave generators, the audio module will
use sfx commands first, if they are present at the current moment, and then otherwise apply
commands from bgm if those are present. The sfx instructions have priority because sfx play
for a short time only; the bgm will just resume afterward.

The disadvantages of this system include that it is relatively difficult to change songs. The
sound effects were written manually, but the bgm songs were converted from MIDI files to

the Verilog modules using an external python script. The script extracts 4 MIDI tracks and
copies the notes in them to produce a list of commands for all 4 tracks at once, which is the
format in the Verilog song memories.

If the songs do not need to be tweaked, however, the system is efficient memory-wise. The
largest possible song supported by the 10-bit addresses would have 1024 instructions, for a
total size of 5.76 kB. By comparison, a comparable WAV file would be in the range of
megabytes, or thousands of times larger.

The duration of the largest-memory song is effectively arbitrary since it depends on the
amount of sleep instructions. Making the audio cycles slower would not reduce the amount
of instructions, but would instead slow down the audio. Or put another way, a slower audio
clock can play the same song using smaller values in its sleep instructions, but cannot
eliminate any sleep instructions.

The game controls the audio module by inputting whether to play, pause, or stop the bgm,
and which bgm to play. These inputs are the state, rather than flags to change state. The
game also selects which sfx to play, but since sfx are short-lived there is no pause or stop
control for them. Instead, the sfx plays as soon as it is selected and continues until it is
finished; the 0 sound effect is reserved to play no sound. This is necessary for the game to
play the same sound effect twice in a row, since it will need to switch the sfx to 0 before
selecting the sound effect again.

In addition to selecting the sounds to play and controlling the bgm, the game can flag
“danger” to the audio system, which makes the audio cycles count on a shorter period—
effectively increasing the tempo of all sounds. This is used when the player has stacked
blocks very high and is in danger of losing.

Some other limitations include that the 4 wave generators are not really independent; if only
one note is supposed to change, the relevant instruction will nevertheless reassert the other
3 notes. Those notes can be reasserted as the exact same note as before, but it is still a
waste of information. If the song memories were divided into one for each wave generator,
the whole thing would take fewer bits overall since each wave generator would find moments
to sleep while other notes were playing. The tradeoff, however, is a potentially more cluttered
set of modules, which is why the song memories instruct all 4 waves at once.

Also, the tempo is handled at the level of the audio module, not the song instructions.
Therefore, creating a song that changes tempo would require a workaround or overhaul in
the python script, or a new subsystem that can dynamically and freely control the tempo.

However, the current 2 songs are suitable at the fixed tempo (144 bpm) that is currently
implemented.

Game play Images:

’//////////////////////

SCORE:

MERT HOLD

AL A
7 % ,/ %
7]

7

4 7 %
‘ ’ %

’
Yrrrrrrrds /////////é

NN

AR ..

HOLD

IIIIIISY IIIIIIY
I

% /
% % 4

P

NN

\\

NSRRI
SANAAAN

N

-
7 Z

&\t‘m\m&m\m\

g
/
/
/
/
/
/
/
/
/
/
/
/
/
/
Z
2

AN, 7

HOLD MEXT HOLD

7 IIIIIII’ ;/IIIIIIII’ 7 oy v IIIIIII’

% %
4 7 4
4 % %
77 2 % 49 %
%% 2 % % 7 7
rrrarrads — Yvrrvrvnds Ybrrrvared

;\\\L\\\\\\\\\\‘\\\\\\\\\\\\\\\\\n\\\\

7 Z

Conclusion

Overall the project was a success. We were able to implement a playable game with all its
core functionalities. The most challenging part of the project was iterating to fix the game
logic, which was too complicated to simulate. Our next steps for the project would be to add

more game features, like menus and game mechanics, and get play testers’ feedback on the
game concept, though initial reception seemed very positive.

Top.v (camera code)

‘timescale 1ns / 1ps
“default_nettype none

module top(
input wire CLK_100M,

input wire [15:0] SW,
output wire [15:0] LED,
output wire RGB1_Blue, RGB1_Green, RGB1_Red,
output wire RGB2_Blue, RGB2_Green, RGB2_Red,
/loutput wire [7:0] SSEG_CA, [7:0] SSEG_AN, //7 segment LED display
input wire CPU_RESETN, BTNC, BTNU, BTNL, BTNR, BTND, //buttons
inout wire [7:0] JA, JB, JC, JD, //PMOD headers
/linput wire [3:0] XA_N, XA_P, //analog inputs
output wire [3:0] VGA_R, VGA_G, VGA_B, //NGA outputs
output wire VGA_HS, VGA_VS

);

wire reset;
assign reset = 0;

wire video_clk;

/lcamera signals

wire camera_pwdn;
wire camera_clk_in;
wire camera_clk_out;

wire [7:0] camera_dout;

wire camera_scl, camera_sda;
wire camera_vsync, camera_hsync;
wire [15:0] camera_pixel;

wire camera_pixel_valid;

wire camera_reset;

wire camera_frame_done;
wire [11:0] hcount;

wire [11:0] vcount;

wire [31:0] tot_x;

wire [31:0] tot_y;

wire [18:0] tot_pixels;

wire [2:0] command ;

wire [55:0] x_average;

wire [55:0] y_average;

assign camera_clk_in = video_clk;
assign camera_pwdn = 0;
assign camera_reset = ~reset;

/lassign camera outputs
assign JA[0] = camera_pwdn;
assign camera_dout[0] = JA[1];
assign camera_dout[2] = JA[2];
assign camera_dout[4] = JA[3];
assign JA[4] = camera_reset;
assign camera_dout[1] = JA[5];
assign camera_dout[3] = JA[6];
assign camera_dout[5] = JA[7];

assign camera_dout[6] = JB[O];
assign JB[1] = camera_clk_in;
assign camera_hsync = JB[2];
/lassign JB[3]= camera_sda;
assign camera_dout[7] = JB[4];
assign camera_clk_out = JB[7];
assign camera_vsync = JB[5];

/lassign JB[7] = camera_scl;

wire [11:0] memory_read_data;
wire [11:0] memory_write_data;
wire [18:0] memory_read_addr;
wire [18:0] memory_write_addr;
wire memory_write_enable;

/lclock generation
video_clk video_clk_1 (
.clk_in1(CLK_100M),
.clk_out1(video_clk)
);

1

/lcamera configuration module
camera_configure camera_configure_1 (
.clk(video_clk),
.start(BTNU),
.sioc(JB[6]),
.siod(JB[3]),
.done(LED[15])
);

/lcamera interface

camera_read camera_read_1 (
.p_clock(camera_clk_out),
.vsync(camera_vsync),
.href(camera_hsync),
.p_data(camera_dout),
.pixel_data(camera_pixel),
.pixel_valid(camera_pixel_valid),

.frame_done(camera_frame_done)

);

/lwrite camera data to frame buffer

camera_address_gen camera_address_gen_1 (
.camera_clk(camera_clk_out),
.camera_pixel_valid(camera_pixel_valid),
.camera_frame_done(camera_frame_done),
.capture_frame(1),

.capture_frame(BTNU),
.camera_pixel(camera_pixel),
.memory_data(memory_write_data),
.memory_addr(memory_write_addr),
.memory_we(memory_write_enable),
.vcount(vcount),

.hcount(hcount)

);

find_center find_center(
.video_clk(camera_clk_out),
.pixel_data(memory_write_data),
.hcount(hcount),
.vcount(vcount),
tot_x(tot_x),
tot_y(tot_y),
tot_pixels(tot_pixels)

);

div_gen_1 x_ave(
.S_axis_divisor_tdata(tot_x),
.s_axis_dividend_tdata(tot_pixels),
.m_axis_dout_tdata(x_average)

1

div_gen_1y_ave(
.S_axis_divisor_tdata(tot_y),
.S_axis_dividend_tdata(tot_pixels),
.m_axis_dout_tdata(y_average)

send_input(
tot_x(tot_x),
tot_y(tot_y),
tot_pixels(tot_pixels),
.video_clk(video_clk),
.command(command)

);

led_test(
.video_clk(video_clk),
.command(command),
.BTNU(BTNU),
.LED(LED)

video_playback video_playback_1 (
.pixel_data(memory_read_data),
.video_clk(video_clk),
.memory_addr(memory_read_addr),
.vsync(VGA_VS),
.hsync(VGA_HS),

.video_out{VGA_R, VGA_G, VGA_B})

);

/fframe buffer memory

frame_buffer frame_buffer_1 (
.clka(camera_clk_out),
.wea(memory_write_enable),
.addra(memory_write_addr),
.dina(memory_write_data),
.clkb(video_clk),
.enb(1'b1),
.addrb(memory_read_addr),

.doutb(memory_read_data)

);

endmodule

module camera_address_gen(
input wire camera_clk,
input wire camera_pixel_valid,
input wire camera_frame_done,
input wire capture_frame,
input wire [15:0] camera_pixel,
output reg [11:0] memory_data,
output wire [18:0] memory_addr,
output reg memory_we,
output reg [11:0] vcount,
output reg [11:0] hcount

);

parameter VCOUNT_MAX = 479;
parameter HCOUNT_MAX = 639;
parameter WHITE_VAL = 16'hFFFO;

/I reg [11:0] vcount = 0;
/I reg [11:0] hcount = O;
reg capture_frame_latched = 0;

assign memory_addr = hcount + vcount * (HCOUNT_MAX+1);
always @ (posedge camera_clk) begin

capture_frame_latched <= capture_frame ? 1 : camera_frame_done ? 0 :
capture_frame_latched;
if(camera_frame_done) begin //set frame done
vecount <= 0;
hcount <= 0;
memory_we <= 0;
end

else begin
hcount <= camera_pixel_valid ? (hcount >= HCOUNT_MAX) ? 0 : hcount + 1 :
hcount;
vcount <= camera_pixel_valid & (hcount >= HCOUNT_MAX) ? vcount + 1 : vcount;
memory_we <= capture_frame_latched ? camera_pixel_valid : O;

if(camera_pixel > WHITE_VAL) begin
memory_data <=12'hFFF;

end

else begin
memory_data <=12'h000;

end
/I memory_data <= {camera_pixel[15:12], camera_pixel[10:7], camera_pixel[4:1]}; //
convert camera RGB:565 to RGB:444
end
end

endmodule

module find_center (
input wire [11:0] pixel_data,
input wire video_clk,
input wire [11:0] hcount,
input wire [11:0] vcount,
output reg [31:0] tot_x,
output reg [31:0] tot_y,
output reg [18:0] tot_pixels

reg [31:0] x_total=0;
reg [31:0] y_total=0;
reg [18:0] total_pixels=0;

always@(posedge video_clk) begin
/ if(hcount<2 && vcount <2) begin

1 total_pixels <=0;
1 x_total<=0;

1 y_total<=0;

1 end

if(pixel_data> 12'hFFO && hcount<638 && vcount <477) begin
total_pixels <= total_pixels +1;
x_total <= x_total + hcount;
y_total <=y_total+ vcount;

end
if(hcount==639 && vcount ==478)begin

tot_x <= x_total;
tot_y <=y_total,
tot_pixels <= total_pixels;

X_total<=0;

y_total<=0;

total_pixels <=0;
end

I if(hcount>650 && vcount >490) begin

/! X_total<=0;

/! y_total<=0;

/! total_pixels <=0;
/! end

end

endmodule

module send_input(
input wire [31:0] tot_x,
input wire [31:0] tot_y,
input wire [18:0] tot_pixels,
input wire video_clk,
output reg[2:0] command

always@ (posedge video_clk) begin

if(tot_y< 162*tot_pixels) begin
command <= 3'b101;

end

if(tot_y > 324*tot_pixels) begin
command <= 3'b111;

end

if(tot_x < 214*tot_pixels) begin
command <= 3'b110;

end

if(tot_x > 428*tot_pixels) begin
command <= 3'b011;

end

else begin

command <= 3'b000;

end

1 if(tot_y[55:24]< 162) begin
/! command <= 3'b101;

/! end

1
1

1

1

1

1

1

1

1

1

1

1

if(tot_y[55:24] > 324) begin
command <= 3'b111;

end

if(tot_x[55:24] < 214) begin
command <= 3'b110;

end

if(tot_x[55:24] > 428) begin
command <= 3'b011;

end

else begin

command <= 3'b000;

end

end

endmodule

module led_test(

1

1
1
1

input wire video_clk,
input wire BTNU,

input wire [2:0] command,
output wire [15:0] LED

assign LED[0] = command[0];
assign LED[1] = command[1];
assign LED[2] = command[2];

always@ (posedge video_clk) begin

assign LEDIO]
if(command[0]) begin
assign LED[0] = command[0];

1

1

1

1

end

else begin

end

end

endmodule

module video_playback(

input wire [11:0] pixel_data,
input wire video_clk,

output wire [18:0] memory_addr,
output reg vsync,

output reg hsync,

output wire [11:0] video_out

);

// horizontal: 800 pixels total

// display 640 pixels per line

reg hblank,vblank;

wire hsyncon,hsyncoff,hreset,hblankon;
reg [11:0] hcount = O;

reg [11:0] vcount = 0;

reg blank;

/[kludges to fix frame alignment due to memory access time
reg blank_delay;

reg blank_delay_2;

reg hsync_pre_delay;

reg hsync_pre_delay_2;

reg vsync_pre_delay;

reg vsync_pre_delay_2;

assign video_out = blank_delay_2 ? 12'b0 : pixel_data;

assign hblankon = (hcount == 639); //blank after display width
assign hsyncon = (hcount == 655); // active video + front porch
assign hsyncoff = (hcount == 751); //active video + front portch + sync
assign hreset = (hcount == 799); //plus back porch

/l vertical: 525 lines total

// display 480 lines

wire vsyncon,vsyncoff,vreset,vblankon;
assign vblankon = hreset & (vcount == 479);
assign vsyncon = hreset & (vcount == 489);

assign vsyncoff = hreset & (vcount == 491);
assign vreset = (hreset & (vcount == 524));

/I sync and blanking

wire next_hblank,next_vblank;

assign next_hblank = hreset ? 0 : hblankon ? 1 : hblank;
assign next_vblank = vreset ? 0 : vblankon ? 1 : vblank;

assign memory_addr = hcount+vcount*640;

always @ (posedge video_clk) begin
blank_delay <= blank;
blank_delay_2 <= blank_delay;
hsync_pre_delay_2 <= hsync_pre_delay;
vsync_pre_delay_2 <= vsync_pre_delay;
vsync <= vsync_pre_delay_2;
hsync <= hsync_pre_delay_2;
//hcount
hcount <= hreset ? 0 : hcount + 1;
hblank <= next_hblank;
hsync_pre_delay <= hsyncon ? 0 : hsyncoff ? 1 : hsync_pre_delay; // active low

vcount <= hreset ? (vreset ? 0 : vcount + 1) : vcount;
vblank <= next_vblank;
vsync_pre_delay <= vsyncon ? 0 : vsyncoff ? 1 : vsync_pre_delay; // active low

blank <= next_vblank | (next_hblank & ~hreset);
end
endmodule

