
Spectris: Project Proposal

Responsibilities:
Controller: Alfredo
Game logic: Benny / (Jose/Alfredo
secondary)
Video: Benny / (Jose secondary)
Audio: Jose

Overview

Our game Spectris can be divided into
3 major sections: The controller inputs,
the game logic, and the audio/video
outputs. Each section has core
features as well as expanded features that we wish to
implement for extra interest / entertainment value. The project
will be constructed on a Nexys 4 board.

For the inputs to our game, the Nexys 4 buttons will work as
debug / simple controls, which will including moving left, right,
down, and turning. But for a more interesting player experience,
we will also create a motion controller that allows the player to
control the game with a hand-worn apparatus. This control
glove would be viewed by a camera, which would connect to a
module that converts the viewed image into game inputs.

The glove/camera apparatus is going to be able to detect
movements in the player’s hand in the following way: If the
module detects that the player has moved his hand to the left of
to the right it will map it to the direction the block should move.
If the module detects that the rotation gesture has happened

then this controller module will send a signal to the game logic
telling it to rotate the block in the specified direction (clockwise
vs counterclockwise). If again the module detects that the
send-block-down gesture has been established, then the
module will send a signal to the game logic telling it to
accelerate it downwards.

There will be two regs. One 3 bit reg (called gesture) and a 1 bit
reg called sig.

The glove module will detect if any of the gestures have been
detected. The gesture include: moved left, moved right, moved
down, no movement and a rotation gesture.
If the rotation gesture has been detected, the piece will be
rotated 90 degrees. If the down gesture has been detected,
then the piece will move all the way down. If either left or right
has been detected the controller module will start a timer and if
the timer is greater than a parameter the block will move in that
direction and the signal bit will be reset to 0 and wait until the
player had moved in the same direction for some time (passed
the time parameter). If the controller module detects no valid
gesture then the block will continue to move downward as
normal.

The game logic is based on a finite state machine that changes
state depending on player inputs (in menus) or whether the
game has ended (in game). The game outputs to the video and
audio are as stated above and below. There is also a settings
module that can be changed using the controller when the
player is viewing the settings; when playing the game, some
parameters are loaded from the settings module. These
parameters include the difficulty setting (a few bits), which

changes things such as falling speed and the color-blind setting
(one bit), which will cause stripes to be drawn on blocks
depending on their colors. Upper bounds: 10 settings, each 3
bits wide at most.

The FSM randomly chooses which Tetris block to use, and
takes in how fast the blocks are falling, and whether a rotation
or translation is occurring. In return, the FSM will update the
current falling block’s position, performing any translations and
rotations if needed.

The tetris game board will be 10 blocks long by 20 blocks high,
as per a normal tetris board. Each block is fully filled by a single
color, so 200 RGB values must be stored. Memory used will be
on the order of 10kB for full RGB values. However, for the pure
basic version in which only three colors are RGB, each block’s
color value can can be simplified to three bits, representing
each of Red, Green, and Blue. One possible way to draw the
blocks onto the screen is to use a modified version of the blob
module from lab 3.

Falling tetrominoes will collide based on their color. For
example, two red blocks cannot go through each other, so if a
falling red tetromino collides from falling anywhere on a red
block, that tetromino will lock into place; the next tetromino will
spawn and begin falling. A red block and green block will
overlap to make yellow, which can then overlap with a blue
block to make white (red + green + blue). Only a full line of
white blocks (sum of all available colors) can clear a line. As per
normal tetris, the game is over when any blocks reach the top
of the screen.

All of the game logic and settings can be troubleshooted /
debugged / tested using the Nexys 4 and VGA connected
monitor.

The audio will be synthesized using bitcodes saved in memory,
rather than played from a stored waveform. Every certain
number of cycles, the audio module loads and executes a
bitcode, which will turn a note on or off at a certain pitch for a
particular channel. The game FSM determines which
background music should be playing; it also determines when
sound effects need to be played, at which point the bitcode for
the sound effect will take precedence over the background
music. Each sound effect only uses 1 channel, however, so
most of the music will not cut out when a sound effect plays.

The audio module will have 4 channels: 2 square waves, 1
triangle wave, and 1 sawtooth wave. These channels, which are
either off or generating a wave of a certain frequency, are
summed together and outputted to the audio out of the Nexys 4.

The music and sound effects will be composed externally, then
converted to bitcodes for the game. This will allow us to have
higher quality audio without spending memory on audio
samples. Each bitcode is 14 bits in size: 2 bits for which
channel, 1 bit for on/off, 7-bit pitch value, 4-bit volume value. If
the audio system reads bitcodes at a frequency of 32 Hz, then 1
minute of audio data for all 4 channels takes up 13.44 kB. For
reference, 1 minute of 16 bit PCM data sampled at 44.1 kHz
would require about 5.292 MB of space.

There will be at least two different choices for background
music, and sound effects for cleared lines, locking tetrominoes,
game over, and menu selections.

Above: The basic block diagram for our project.

Above: An example of how the colored blocks overlap. Here the
blue block moved up 1 and the green block moved left 1.

Commit Goals:

● Functioning spectris, complete with generic tetris
controls (Nexys 4 buttons), and block collision / line
clear based on color.

● All basic controls using Nexys 4 controller.
● 2 background music tracks and 3 sound effects

Goals:

● Glove gesture controller
● Keeping Score, displayed as a number on the side next

to the tetromino queue (most likely to be # of lines
cleared.

● List future blocks (tetromino queue).
● Main Menu with settings for Difficulty and variable fall

speed.
● Hold function, where the player can hold a piece for

later.
● Glove Control Scheme
● Accelerated music when the player is close to losing at

the top

Stretch Goals (try to implement some, but probably not all):

● Colorblind Mode / alternate color schemes
● Options to choose movement speed (default will be

reasonable)
● Options to choose number of colors (for example 2

colors could be grey+grey = white, or red + cyan =
white, as opposed to the standard red + green + blue =
white)

● Gradually increasing difficulty, along with score
manipulation, possibly different scoring based on more
lines cleared at a time as well as difficulty

● Fancy intro screen animations.

● All block edge logic for whether a piece is still falling or
landed with the rest of the stationary blocks, e.g. grey
border for moving blocks, and the entire ground has a
white border around it.

● Highscores List

