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1 Introduction

An Electro-Oculogram (EOG) is a device which measures the position of the
retina along with whether the eye is open or closed using electrodes. These
electrodes can be placed in pairs above and below or to the sides of the eye.
Since the eye acts as a dipole, as one looks around, the potential difference
between the pair of electrodes changes accordingly. Thus, from an EOG the
wearer’s eye movement can be recorded.

For our 6.111 project we created a functioning EOG and output display.
This display has several modes, selectable through an overlaid menu which is
scrollable through eye movement. The first mode is “data visualization” which
shows the state of the user’s eyes as determined from the EOG data. The next
is the “real world” in which you can switch between multiple cameras, mounted
on motors, each of which can be panned based on your eye movement, through
selecting a specific portion of the camera feed and through servo movement.
Finally, there is a “virtual world” which one can look around in as well, though
this was not fully successfully implemented.

One concern was how to ensure that the user could see the screen while con-
trolling the camera’s view. To do this we implemented an incremental movement
system. If the user wants to pan the camera to the right they can simply look
right and then look back at the screen - the degree of turning depends on the
length of time they’re looking right.

2 Overview

The design of our EOG relies on electrodes measuring the differential voltage up-
down and left-right across the eyes. Both of these differences are then amplified
so that they are readable once put into the Nexys4.

The next group of modules is EOG Processing which consists of reading the
analog signals into a digital format in the ADC and then filters these signals
so that feature detection can be run on them. EOG processing will output
variables indicating the direction the user is looking in or if they are blinking
for an extended period of time.

From here the next group of modules is Graphics Generation where a menu
(opened by a double click) switches between data visualization, the “real world”,
and the “virtual world”. This large block is also connected to the cameras
(through a camera processing modules), and the servos the cameras are mounted
on.

• Data Visualization: In this environment cartoon eyes are displayed on the
screen, which mimic the actions of the user.

• Real World Environment: In this environment the user can choose between
viewing two external cameras on the monitor. As the user moves their
eyes the image displayed on the monitor will move to show what is in that
direction (i.e. if the user looks up the monitor image will pan up slightly).
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We also mounted both cameras on servos to rotate as the user looks left
or right.

• Virtual World Environment: In this environment a pre-generated image
will be used instead of a live camera feed. This pre generated image will
allow the user a 360 degree ability to view the virtual world, as the image
will wrap back on itself in a sphere-like format.

• Menu: To switch between these monitor display options of eyes, real world,
and virtual world, we implemented a menu which the user can enter with a
double click. In the menu the user can scroll (again with eye movements)
through the display options, and select one to view.
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3 EOG Analog Circuitry (Elizabeth)

Much of the analog circuitry was modeled of 6.169’s fall EKG lab. This was
then adjusted for an EOG using other sample EOG projects found online such
as:

• http://onloop.net/hairyplotter/

• http://eeghacker.blogspot.com/2013/11/measuring-eog-with-my-eeg-setup.
html?m=1

• https://www.ecnmag.com/article/2010/04/analog-front-end-design-ecg-systems-
using-delta-sigma-adcs

The final circuit was:

IC: LT1920 Instrumentation Amp
Potentiometer: R 103 122 C (10k ohm)

Input: green (right), yellow (left), orange (top), purple (bottom), white
(forehead)

Output: left wires (left/right differential), right wires (up/down differential)

Which in real life looked like:
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3.1 Electrodes

I used Foam ECG Electrodes Ag/AgCl, Stress, solid gel (ref: MDS611930A) for
sensing voltage differences up/down and left/right across the eye. I used a new
set of 5 electrodes each time and connected the electrodes with alligator wires
to the circuit. Any point on the circuit which connected to an alligator clip
and electrode first was connected through a 110k ohm resistor for the wearer’s
safety. In addition, I powered the EOG analog circuitry from two 9V batteries
to limit the supply of current to the system - again for user safety.

The motivation behind this choice of electrodes and my knowledge of bat-
teries and resistors for safety comes from the 6.169 EKG project, whose leftover
electrodes I used. The electrodes were placed on the face as shown below, with
corners ripped off so they fit on my face. I placed electrodes on my face 10+
times throughout the project and Crystal put them on her face a couple times.
We did not run into any electrode placements where up/down and left/right
could not be detected, however we did find that if the electrodes were unstuck
and restuck they were likely to become loose and not work.

Example electrode placement

3.2 Instrumentation Amplifier

I used two AD620 Amplifiers to amplify the up/down differential with respect to
forehead ground and the left/ right differential with respect to forehead ground.
These amplifiers were powered by two 9V batteries in series so they had +9V for
their positive input and -9V for their negative input (again used in that manner
as it had functioned well for the 6.169 EKG). I initially started with a gain of
500 as it was recommended by EOG projects I found online, which made the
differential easy to see, however the absolute max was then higher than 1V and
was not a possible input to the nexys4. I ended up using a gain of 50 as this
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created a signal that stayed within a reasonable range. (See the next section for
a further discussion of attempts to use circuitry instead to eliminate DC offset.)

Unfiltered up-down signal with a gain of 500

3.3 DC Offset

I ended up simply using a resistor and potentiometer controlled DC offset for
when the amplified signals were not between 0V and 1V as was required by the
Nexys4 for input. Each time before connecting the inputs to the Nexys4 I would
probe each amp’s output and adjust the DC offset. As much as possible I left
these probes on during testing as an added check that I was not exceeding the
Nexys4’s input abilities.

3.3.1 Other Attempts

I attempted to use a capacitor as a high pass filter to eliminate this DC offset,
however I found that I would need a large capacitor to create a DC offset which
was average over a long enough period of time to not just eliminate the DC
offset that was my signal. However, the capacitors that were this size were
polar, meaning sometimes I would be violating their labeled polarity.

I next tried using a simple resistor divider as an offset, however I found
that with each day and each new person the DC offset varied - for example,
most days my left-right differential was centered on 0V, however the day of my
checkoff it was centered at .5V. I tried to figure out if I could use an opamp as
a subtractor, to normalize the signal with the time averaged signal through the
capacitor and then apply a DC offset, however I didn’t get this to work either
and ended up deciding to simply lower the amplification until the signal could
easily fit between 0 and 1 volt, and then use a DC offset which I fine tuned each
time with a potentiometer.

3.4 Low Pass Filter

Given limited BRAM space, and the fact that eye signals occurred in the range
of 1 - 30 Hz, I decided to only sample data from the XADC at a rate of 500Hz.
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However this meant that the higher frequency noise could not be filtered out
digitally, so on the output of each amplifier I added a simple low pass filter with
a 26.5k ohm resistor and a 150nF capacitor for a cutoff frequency of 40 Hz.

4 EOG Processing (Elizabeth)

4.1 ADC

The ADC took in the differential amplified analog signals from electrodes com-
ing out of the low pass filter, along with the system clock and alternated between
reading each of the signals. This was slightly harder to implement than antici-
pated as the example I was able to download online was from an older version
of Vivado than the one I was running, and thus I was unable to open or view
the XADC IP. To read each differential I used the Nexys4’s ability to read two
probes at once, and read one probe that was ground, or a DC voltage offset,
and the other probe that was my signal. The module checked every clock cycle
to see if the input had been fully read, and on the done signal, swapped over to
reading the other pair of probes.

I later used a counter to measure the conversion rate of the ADC, and
found that every ∼103 cycles of the 100MHz clock a new value was read in.
Thus the full data set of values (left/right and up/down) was refreshed at
100MHz/(103*2) ∼0.5MHz = 500kHz. This was faster than the 62.5kHz we
had initially planned for, however the filter module still dealt with how much
of the data to store, so that was not a problem.

4.2 Filter

The filter took in the signals from the electrodes at a frequency of 500kHz, and
ran them through a bandpass filter designed in MATLAB with fir1. This set
of modules was very similar to lab 5a with the filter coefficients modified to
change it to a bandpass filter between 35 Hz and 1 Hz. To give the filter time
for calculation, and because the analog circuitry already had a low pass filter
for frequencies greater than 40 Hz at this stage the inputs to the filter were
taken once every 2 ∗ 105 clock cycles, so the filter received inputs and produced
outputs at a rate of 500Hz. By slowing the input frequency to the filter down
I was able to continue using the 31 tap filter concept from lab5, as inputting
500 Hz and filtering 1 - 35Hz seemed more reasonable than a filter on 500kHz
input filtering 1-35 Hz. If needed we could have used a filter with more than
31 coefficients, however when looking at the filtered data that did not appear
to be needed. If I were to revisit this I might try keeping the input frequency
at 500Hz and increasing the number of coefficients to see if that would be more
effective at filtering out some of the overall drift we saw in the feature detection
module.
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4.3 Feature Detection

The feature detection took the two outputs of the filter - the filtered left/ right
and up/down signals at 500 Hz, and stored them into two brams, each containing
roughly the past 20 seconds of data. After each new pair of data points was
received it then had time (running on the 100MHz clock) to average the each
of the two data points over the entirety of the data stored in the bram, which
it would use as the average value for the next set of calculations.

To determine the current state of the eyes thresholds were preset for looking
up, down, left, right, and “tapping” the probe (which we used as a substitute for
detecting blinking for reasons discussed later). For looking up/down/left and
right each data point in the past ∼1 second was compared to these thresholds,
and if it was greater than its threshold from the its respective average in the
correct direction it was considered a detection of that movement. The same
thing was done for taps (called blinks in the code), however they were only
counted over the past ∼1/4 of a second as an attempt to allow double taps to
be closer together in time than one second and still be able to be distinguished
from single taps for purposes of entering the menu.

Once tallies were taken for up/down/left/right/blink these tallies were com-
pared to each other and preset threshold to determine the state of the eyes.
Blinks were accounted for first - if eyes are categorized as blinking they cannot
also be looking in a direction. Next left and right alongside up and down were
compared in such a way that the eyes could be for example, just left or both
left and up, depending on the data collected.

This module was tested by displaying the state of the eyes encoded into the
colors of the two multicolor LEDs on the Nexys4, and after some adjustments
to the thresholds, the same thresholds worked fairly reliably for both myself and
Crystal the ∼15 or so times we stuck electrodes on our faces to work with it.

4.3.1 Dealing with Drift

One significant issue I encountered when working on the filter module was that
the filtered data (and the unfiltered data) drifted gradually over time. This
drift in filtered data occurred to the extent that in less than a minute the data
would have drifted roughly 3 - 5 units on the 8 bit (225 unit) filtered left/right
or up/down value. Given that the threshold for distinguishing left/right or
up/down in comparison to forward was of similar magnitude (roughly 3-5 units)
this was a significant issue. To remedy this I tried adjusting the edges of the
digital bandpass filter, which did not noticeably change anything. I also tried
adding a lowpass analog filter, which did appear to slow the drift a little, but
ultimately I just created my thresholding method around the assumption there
was drift.

By creating a thresholding system that was based off a 20 second average of
past data we ran into limitations where you couldn’t just look in one direction
indefinitely, as after about 10 seconds of looking in that direction, the average
would be 50% looking in a direction, and would start counting it as looking
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forward rather than looking in that direction. However by creating a threshold-
ing system that was based off a 20 second average of past data I also allowed
flexibility in where the user wanted to define as center - I could center looking
at the nexys4, the screen or the scope, which was helpful as I was wearing the
probes while debugging the code. This dynamic averaging also allowed us to
not have a calibrate mode as once the probes were connected they would settle
to whatever DC offset the user naturally had across their face - an important
feature as the natural DC offset changed significantly user-to-user, day-to-day,
or due to a slight difference in probe placement.

Ideally this dynamic averaging could be used to set up the probes and then
eliminated later if the user wanted. To do this we would have to look into
ways to solve the drift problem. Next steps to solving the drift problem might
include adding an analog high pass filter, or expanding the digital bandpass
filter to include more than 31 taps to improve the ability of the filter especially
at low frequencies that cause drift. If those attempts still failed to eliminate
drift the methods of detecting eye state could change to detect the edge of the
DC offset and the magnitude of that jump, rather than relying on knowing what
the DC offset should be for any given state.

4.3.2 Trying to Distinguish Blinking

Our initial project goal set out to distinguish intentional blinks in addition to
left/right/up/down. However with the probe setup we used and filtering the
data from 1 - 35 Hz blinks in a normal but longer than usual matter appeared
to have a similar DC offset and shape to looking up. One time when we tested
the signals from the blinks appeared to be slightly more triangular than the
simple DC offset of looking up, however trying this a few other times on other
days when I was wearing a new set of probes, resulted in no consistent noticeable
difference. Below are some screenshots of left/right and up/down filtered data
as I alternate between looking up and blinking:

Top line: left/right differential
Bottom line: up/down differential

Sequence: center-up-center-blink-center-up-center-blink-center (once in each
image)

We also tried blinking by closing our eyes as “hard” as possible (i.e. maximize
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muscle contraction) these blinks were definitely noticeable, but would offset the
data for a fairly long time after each blink, making the eye movements following
unreadable. This more dramatic motion also sometimes resulted in a step in
the average voltage read from looking forward, which was undesirable as then
the data needed 10-20 seconds to re-average. Here are some examples of those
sorts of “hard” blinks:

Top line: left/right differential
Bottom line: up/down differential

Sequence image 1: center-up-center-blink-center-up-center- hard blink-center
Sequence image 2: center-up-center- hard blink-center-up-center- hard

blink-center

Due to these issues we decided to use tapping a probe (the user placed their
finger on one of the electrodes + alligator clips for some fraction of a second)
as our replacement for the blinking trigger in the code. This signal was clearer
as it created a short spike of greater magnitude than looking in any direction
and was reliably detectable between users, different days, and slight differences
in electrode placement. It still did create some issues as the greater magnitude
of the spike would offset the running 20 second average more than desired,
especially if the density of clicks in the past 20 second was high.

To improve the fact that the taps offset the average I tried to adding to their
detection that they should not be added into the running average, however this
created issues as with user movement, the user would sometimes change their
average to the extent that everything looked like blinks and then the code would
get stuck in a state where it couldn’t recognize any external inputs. With
more time and effort this problem would be solvable (i.e. by adding a timer
so that if the user had been “blinking” for too long blinks would start being
average again). However, to solve the larger problem of actual blinks looking
too much like looking up next steps might be looking at higher frequencies or
using different probes.

10



5 Graphics

5.1 Overall Graphics (Crystal)

We wanted to use XVGA so we could have a larger screen to work with. This
also allowed us to simply zoom the real world camera by a factor of 2 and give
us some space to scroll about. To do this I used the clock wizard IP to generate
a 65 MHz clock signal which all the graphics module would use and modified
Lab 4’s VGA module to get the appropriately timed signals.

5.2 Menu (Crystal)

5.2.1 Mechanics

The menu is a FSM that manipulates the overlaid menu sprites. It operates
with an overall menu of data visualization, real world, and virtual world with
submenus under the real world (camera 1, camera 2, and pictures) and the
virtual world (the virtual room, maze, and a 3D maze). Depending on which
direction you looked, it would prepare the next menu state as you looked in
a direction and switch once you looked back center. While this worked out
pretty well with button testing, it was a little harder with your actual eyes,
since determining center wasn’t extremely reliable. When a mode was finally
chosen it changed the overall state and turned off the menu. In the main Nexys
4 module the overall state was taken in a case statement and changed the output
pixel source. Since some of the graphics modules took multiple clock cycles to
complete computation, registers were added accordingly.

Since there were submenus, I decided that in order for the menu to pop up
reliably only when desired (and since some of the modes such as the maze or
pictures would benefit from having an added clicking mechanic), it would be
opened via double clicking (double-blinking at the time). Thus, I made two
modules related to this (“blink” and “doubleblink”, these were named before
we changed to tapping the probes). Blink took the “closed” signal (when the
difference was above the threshold), and compared the previous and current
states, giving a single short signal when it believed the blinking/tapping had
completed. Double blink was a very simple FSM that changed to a one-blink
state when a blink happened and if another blink happened within a specified
time frame the double blink single was given, else it returned to the no blink
state.

5.2.2 Reading Sprites

Since we knew that the camera code that Weston provided worked only with a
frame buffer placed in the BRAM which would take up ∼70% of the space. Thus,
I run-length encoded the menu sprites through a python script, generating .COE
files for a ROM to read. With a few more commands I determined the most
efficient number of bits to have per run-length would be 8 bits max. Originally
since there were going to be only two colors I was trying to use a run length
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encoding that switched between the two colors (no color bit basically), where
when a run of one color had a length longer than 255 pixels there would be an
entry after that was 0 (to signify the other color had a run length of 0) and
then the next entry would continue the count of the first color. I saved these
all using a ROM IP. The plan was to have, as a countdown occurred starting at
the previous run length, the next entry would be read to prepare since it takes
several cycles to read from memory. However, since I had run-lengths of 0, I
either had to read several entries ahead or to find a different method.

In the end I added a bit for the color, which eliminated entries of run length
0 but also increased the bit width of each entry to 9. There still were issues
though, and eventually figured out it was when the run lengths were either 1 or
2. It probably was still the same issue as above, but instead I just went through
and hand-corrected entries. If it was 1 and the previous entry was the same color,
I decreased the previous entry and increased the next; if the previous entry was
a different color, I removed the color entirely and increased the count of one of
the surrounding entries. Similarly, for entries of 2 with the same previous color
I altered them accordingly and with different previous colors I went through the
pixels and decided whether they’d be better/smoother having no color change
there or if they should be expanded into three pixels, and if so, which direction
to expand them in. This process was aided by a python-generated .txt file with
1’s and 0’s based on the run lengths (since I started originally with a picture
seeing distinct pixels as 1’s and 0’s helped make it obvious what was going on
at that scale). All these scripts and original files can be found in the “python”
folder.

5.3 Data Visualization (Crystal)

For the cartoon eyes I made an eye module that makes a single eye and then
duplicate it for the pair of eyes. The calculation was done in two cycles. First,
it determined how far a pixel was from the center of the eye whites and, de-
pending on the eyestate, how far it was from the center of the eye pupils. The
pupil locations were determined parametrically/through parameters depending
on where the center of the eyes were placed. In a second cycle it would deter-
mine whether or not the pixel was within the specified eye radius. This module
was implemented with relatively no issues.

5.4 Real World (Elizabeth)

The real world takes as inputs the eye state, the camera data, and the 65 MHz
XVGA clock. It was modified from Weston’s camera code found here: https://
www.dropbox.com/sh/lndgbb8hylncgp6/AAD2tzv HgQlrHxNSZA0N BQa?dl=
0 The unexpected difficulty I ran into with the camera was actually primarily
having links to incomplete and out of date files, but once I acquired code that
had the top level module written the camera was significantly easier to under-
stand.
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The first main modification I made was “zooming in” on the camera by a
factor of 2. To do this I divided the memory location being sent to the bram to
request the image for the coordinate of (x/2, y/2) rather than the coordinate
(x,y). This meant that each pixel of the camera was displayed as 4 pixels on the
screen, allowing the camera data which only fills up a VGA screen of 640x480bits
to fill up the entire XVGA screen of 1024x784bits and leave a little extra not
displayed.

The second main modification I made was allowing the camera to pan around
this enlarged image. To do this I again edited the location of memory the display
module was retrieving from by adding counters for when the left/right/up/down
signals were true, and then adding those counters to the variable that controlled
what memory location was pulled for each pixel. I also put limits on these
variables to not allow the user to pan outside of the shot of the camera. Through
testing I found a speed that seemed reasonable for the user to pan up/down and
left/right.

5.4.1 Two Cameras

To alternate between displaying two cameras I created duplicate modules for
each camera up to the point the camera data was stored in the bram. (This
means I duplicated the camera configure and camera read modules.) Then
before the camera address gen where the bram address was generated I used
the state of the menu to decide which camera’s data to pass to the cam-
era address gen module.

The other complication of having two cameras was that they both had to run
off the same camera clk out, as the JB[7] pin was the only pin on the nexys4 that
could handle the required data transfer. However, it worked out that both cam-
eras were similar enough that using the cameraclkoutofcamera1forcamera2workedwithoutanyapparentglitches.

Near the end when we copied my code over into Crystal’s project we thought
we had another camera issue as the camera was displaying only a black and very
dark blue image, however I discovered (using ‘default nettype none) that that
was simply because we had failed to declare the wire that transferred the image
from my module to the menu, and thus Verilog assumed it was a 1 bit wire.

5.4.2 Servos on Cameras

To allow the user to have a wider range of view in the real world I sewed the
cameras to the horns of finite rotation servos. I used one HiTec HS-311, and one
Vigor VS-2A. The two servos functioned similarly though they had slightly dif-
ferent max and min PWM durations, and the HiTec HS-311 functioned smoother
as it had a higher torque (it turned out the camera wire produced some torque)
and was a newer servo.

I created and controlled the servo signal from the video playback module, as
once the camera reached a left/right limit within the current camera position
I would check the servo position and if it was not at a limit (of the possible
PWM signals the servo could handle) modify the PWM signal to rotate the
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motor slightly in the direction of the user’s desired movement direction. When
troubleshooting the PWM signal I first ran into the issue that the servo drew
more current than the batteries could provide at the voltage required, so I
switched to powering the servos from a 5V external voltage generator. I thought
I had checked the spec sheet that this voltage generator was connected to a
non-floating ground, but when the ground voltage from the ADC produced odd
oscillations with respect to the ground of the power supply, I realized that was
my issue rather than the code generating the servo signal. This had me stuck
for longer than I should have been as a kept trying to troubleshoot my servo
signal rather than the grounding of all my power supplies.

5.5 Virtual World (Crystal)

Unfortunately, the virtual world modes weren’t successfully implemented. Here
we look at the ideas and math behind the process.

5.5.1 Basics

To start, the viewer has a theta and phi angle associated with the direction they
are currently looking at. These two values come from the standard spherical
coordinate representation of them, where theta is the angle from the positive
x-axis to the vector projected to the xy plane and phi is the angle from the
positive z-axis to the vector itself. After consulting with a friend as to what
would feel most natural, they believed that turning “left” or “right” would
simply change the angle theta while “up” and “down” would change phi (rather
than, in contrast, having wherever you were looking have left & right be relative
to the current screen), as though there were a camera on an up-down servo and
the combined component be mounted on another left-right servo.

There were various ways to then determine whether a pixel was in a rectangle
or not, which, in retrospect, some might have been more implementable, though
with cons. One method would be to project the corners of walls onto the viewing
screen, and then one of the methods to create a line between neighboring corners.
I didn’t originally choose this method mainly because it seemed hard to fill in
the wall faces/determine whether a pixel was inside a polygon or not without
complicated math. Since I was hoping to implement a maze there would be no
point if they could see through the walls. I also had originally thought that
since the planes walls were in would have a normal vector “pointing towards the
viewer”, thus able to describe the planes in spherical coordinates (how far away
the plane is and then in which direction) which I hoped would be easier as the
viewer was in spherical coordinates, and somehow transform a point projected
onto them into one relative to the plane they were on, then easily determine
whether this point was in a rectangle. This however, I soon realized, wasn’t as
straightforward and involved way too many conversions between spherical and
rectangular coordinates, and also would make it a little difficult for defining the
walls on the plane when changing the location of the viewer (relevant for the
maze).
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I finally decided on a scheme that went like this: depending on where the
viewer was currently looking, a vector from the viewer to a pixel on the screen
(so depending on hcount and vcount) would be created in a vector module.
Then the vector would be projected to a plane (defined by a normal vector
and a point on the plane (in rectangular coordinates). Finally, a module would
determine whether or not this projected point was in the rectangle or not, and
color in the original pixel accordingly.

5.5.2 Math

For the first module, vector, which would be used for all walls, I used Rodrigues’
Rotation formula. To rotate a vector v by an angle theta around an axis unit
vector k (determined by the cross product of the original vector and the desired
vector), we have

vrot = v cos θ + (k× v) sin θ + k(k · v)(1 − cos θ)

To determine the vector which the present pixel is part of, I started with a vector
from the center to the point (512, 512-hcount, 384-vcount), which is basically
the screen centered around the vector pointing along the x-axis, and then first
rotated it by the viewer’s current theta around the z-axis, and then rotated
the resulting vector by phi along the axis (sin θ,− cos θ, 0), which is the vector
perpendicular to both the z-axis and the current vector (in the direction of
their cross product). The result of this module would be a vector relative to the
viewer’s location pointing in the direction a pixel was aimed towards. While this
took several cycles to compute, since theta and phi changed at a much slower
rate (∼half a second of cycles before changing values), I didn’t really bother
with registers for this calculation, since it would quickly settle down.

A plane is defined by the equation (p − p0) · n = 0, where n is the vector
normal to the plane and p0 is a point on the plane. In other words, p is on the
plane if the vector from p to p0 is perpendicular to the normal vector. We can
express the point p as tvrot + c, where c is where the viewer is located in the
world. Solving for t we get

t =
p0 · n− c · n

vrot · n

After calculating t we can multiply it by vrot and add it to c to get the actual
point p that is on the plane.

Finally, to check whether a point is within a rectangle we can do the following
calculations. If the point p we are checking is coplanar then if given points p0,
p1, and p2 where p0 is the corner between p1 and p2, then if we make the vectors
u = p0 − p1 and v = p0 − p2, p is in the rectangle iff u · p1 ≤ u · p ≤ u · p0
and v · p2 ≤ v · p ≤ v · p0. We do this straightforward check to determine if
the projected point from the project to plane module is within the defined
rectangle.
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5.5.3 Implementation Attempts and Problems

When I did this the first time, I imagined the screen was placed one “unit”
away from the viewer, and thus the original vector needed to be scaled down
by 512 for the “actual” length. Since this would result in values less than 1,
I pretended the decimal point was simply 9 bits from the end. For sine and
cosine, I again made a python script, and finding that π/2 in binary was close
to 202 in binary with 10 decimal points, to make a corresponding COE file for
angles from 0 ∗ π/202 to 807 ∗ π/202. Thus, in general, angles were expressed
in terms of multiples of π/202.

At any rate, the vector module was wrought with issues, first mainly because
signed arithmetic was difficult with verilog. One issue was that even though I
multiplied signed values and then right-sign-shifted (to account for the extra
decimal points), and thus needed a smaller bitwidth, if I assigned this value to
a smaller bitwidth than the sum of the factors since I no longer needed such a
large bitwidth, it would no longer be correct, since the sign bit was the most
significant bit. Also, an issue that came up more later, was that decimals were
getting hard to keep track of.

Wanting to stop using signed values (although it’s inevitable for vector), I
had originally decided to keep the possible positions only in positive coordinates,
and only go up to 64 (6 bits) in any coordinate. It was in project to plane that
I would try to scale the extra 512 factor. I thought of it as more of projecting
down to the smaller space from a larger screen 512 away, since the vector would
be the same whether it was at 512 away or 1 away. Since it was unlikely that
after projecting to the plane the points would be on lattice points, I had added
two more bits for decimals. Again, keeping track of how many fractional parts
was tedious and a source of errors. There was a bigger issue though, but I didn’t
learn this until later. There also was a clash between the signed and unsigned
wires, where verilog could not interpret math correctly between a mix of the
two (even if they all end up positive, as I was trying to make happen, it just
didn’t work). I didn’t realize the severity of this issue until I was debugging
in rect, which is an extremely straightforward module but was working really
strangely, due to this signed/unsigned clash.

My second clean attempt had me restart and give up on only having positive
values after the vector step. I also decided that instead of thinking of decimal
points I would think of it as scaling up by 512, so now I would have 16 bits to
describe a point instead of 8 bits, and that everything would be signed. Now I
would not need to keep track of decimals as much (I would still have the issue
with vector of signed multiplication and then division being inaccurate if you
cut off the number of bits).

I soon realized a big problem was actually the division required for the
project to plane module. There are still a couple things I would like to try if
I have more time in regards to making this module work, but what I did do to
start was involve a division IP. Since it seems like I’ll have to use one for each
plane and since division is extremely expensive, if I want to use many many
planes I’ll probably have to look into adding a frame buffer (which may take up
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too much space if the camera is also using one, though maybe we can use the
same space since only one is displayed at a time) and changing between which
plane I’m using the division IP on at any point, and maybe switch really quickly
between showing each plane.

I used the radix-2 implementation with fractional parts, but this gave me
some issues. It seemed like since it was fully pipelined, one quotient would come
out each clock cycle, for a division that started ∼20+ cycles before/latency. I
thus made a memory so that it would cycle through and store the coordinates
so that t could be multiplied by the correct number. However, I was getting
a problem wherein the diagonal lines were at the wrong slope but occasionally
dropped to the right value. . . At first I thought it was because the division
wasn’t getting enough precision, but after using an ILA I determined that the
latency wasn’t the same for all divisions! Or that at least the division only
occasionally matched up. I think I either need to read the specifications of the
IP again to see why this is happening or perhaps switch to trying out the High
Radix implementation instead. I also made the modules less general and had
more hardcoded, such as only creating planes that are parallel to either the xy,
yz, or xz planes, hoping this would reduce the range of possible issues.

5.5.4 Maze Mechanics

Even though the basic wall generation was not quite done, the maze mechanics
have been thought out. Basically depending on the angle you’re looking at you
travel in different directions with a click. With maze3d you can also possibly
go up/down. Each cell is represented by a 6 bit number, with 0 corresponding
to an open path in that direction from the cell and a 1 if the path has a wall in
between. Unfortunately, without solving the problem of division, it isn’t likely
that very much of the map can be generated. With this in consideration, it’s
possible to instead just generate the walls of nearby cells, as often further ones
are simply un-seeable, blocked by the ones in front. This would require an
additional model to convert an entry in the bram to a form that the modules
would understand. Probably project to plane won’t change even as you move
around since the cells would be at the same distance away, but in rect would
depending on the state of the walls. It might even be that we would not need c
if we can calculate everything relative to the viewer.

To figure out which wall is in front, we use the t scaling value that was saved.
Since at any one pixel the base vector is the same length, comparing t in a single
clock cycle will be sufficient to find the wall that is closest (that is, if the walls
are different colors). If the walls are the same color then as long as there’s one
wall at that pixel it can be colored in; it doesn’t need to know which wall it’s
on. An important note about t is that it can be negative, which means there’s
a wall behind you at the same angle. We therefore disregard any pixels from
in rect with negative t from the corresponding plane.
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6 Lessons Learned and Advice for Future Projects

6.1 Elizabeth

Through this project I reinforced and grew my past knowledge about amplifiers,
filters, and PWM control in addition to gaining experience with dividing up
and defining large software problems, understanding Verilog functionality and
features, and troubleshooting when things didn’t go as I expected. I think this
is the largest code-based project I have ever created which seemed intimidating
at first when I had to define every single module, it’s memory and how it would
interface with other modules. However I found that by stepping very slowly
through each module I could gain a good understanding of it.

In specific, through creating IPs for clocking, the xadc, many ilas, and mov-
ing the camera IPs from one project to another I got more comfortable with
reading online specifications for timing and troubleshooting hints. By working
with the camera code Weston wrote I got practice going through code to figure
out which parts I needed to modify in which manner - I made flow charts with
inputs and outputs and had to understand what each one did in order to add
a new camera. I also debugged using numerical output on the screen of the
nexys4, the ila, and the logic analyzer. By using all of these methods I learned
more about the strengths and weakness of each and feel like I have a better
understanding of how to choose one in the future.

I also learned from how this project helped us manage our time from the
abstract to the proposal to the checklist, as I’ve previously struggled to clearly
divide up and define timeline for large projects and have seen others do the
same. I thought the act of writing checklist was an interesting checkpoint in
the middle and may even try that with the high school physics students I’m
teaching!

I think this project could be improved through further investigation into the
difference between sensing blinks versus looking up. One could try different
probe placement, different probes, or different cutoff frequencies for the filter
as it would be nice to detect blinking (possibly detecting both intentional and
automatic blinking to). If the signal was better, possibly through other probes,
or more amplification and filtering before routing into the Nexys4 I think the
project could be extended so that we could not only group a look into the boxes
of left/right/up/down but define its magnitude and direction more precisely
which would allow for smoother manipulation of something like a computer
mouse. I think the camera “real world” side could be made more interesting by
attaching the camera to a drive base or two a second servo, allowing a translation
form of motion or a second degree of rotation.

6.2 Crystal

I definitely underestimated the difficulties of generating 3D graphics would be
– a lot of things that might be relatively simple with a computer are less trivial
on an FPGA. There are a lot of considerations, from space issues (making
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sure everything fits in memory) to computation limits (how many divisions one
can do, for example), and timing (time to read from memory or to process
a computation). I’ll probably look into what other people do for these sorts
of problems instead of figuring out all the math on my own, which, though
probably correct, are likely not to solve the problem in the most efficient and
effective way possible.

Scaling is also a problem I hadn’t really thought about – in my mind after
making a single wall it would be extremely easy to to just add more modules
of the same type, but it’s really not that simple. Whether it takes up more
resources (I originally had thought to read from the sprites all at the same time
on one memory to save on space, but you can’t actually read that many entries
at once, even if it’s a read-only ROM), and making more just makes copies and
you don’t actually save space, or whether it takes up computation power (if I
really want to do the more complicated graphics, having a divisor module for
each wall would definitely not be practical).

I wish I had been taught how to use the ILA and IPs in general earlier/during
the courses, as I hadn’t learned about the ILA module until relatively late, and
it was only then that my debugging turnaround sped up.

If I were to do it again, I would probably have liked to change the goals a
bit, making a single plane move in perspective as the goal with multiple walls
as a stretch (and a maze as a superstretch).

Like many others I’m sure, I’d advise others to start early. Maybe not
necessarily be on top of things always (though it’s better to be) but to definitely
have a good understanding of the difficulty of the problems each section will
face so making a timeline will be more effective and accurate, and so you’re less
surprised last minute when things aren’t working out so well. Maybe also take
lots of pictures/document your work throughout, as then when you’re writing
your paper without an FPGA handy you have pictures to insert (but also it’s just
nice to have records). Oh another annoying thing I had was that my athena
account had reached its quota in terms of memory and so Vivado would get
stuck or crash at certain tasks a lot, so make sure you’re not running into this
problem (I doubt it’d be very common problem but it was really frustrating
until I figured it out).

7 Code

You can find our code here: https://www.dropbox.com/sh/3yklng80mfg4l1r/
AADpYEYmVGUQvc-41b-6CVNFa?dl=0.
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