
Extended Sight with EOG

Crystal Wang and Elizabeth Mittmann

Abstract

For the 6.111 project we propose a digitally augmented EOG. The
wearer of this device will have their eye muscle movement tracked by
electrodes which will control the view in either a virtual reality or a camera
in an alternate location. If there is time, more complex applications can
be developed, for example a moving camera in a real world or a more
complex virtual reality to explore (such as a maze). The user will be able
to choose program options through blinking.

1 Overall Design

1.1 Project Description

An Electro-Oculogram (EOG) is a device which measures the position of the
retina along with whether the eye is open or closed using electrodes. These
electrodes can be placed in pairs above and below or to the sides of the eye. As
the eye changes states, the potential difference between the pair of electrodes
changes to indicate the new state (the eye acts a dipole). From an EOG the
wearer’s eye movement can be recorded.

For our 6.111 project we first aim to create a functioning EOG and output
display. This display will simply show the state of the user’s eyes as determined
from the EOG data. From this base we will implement a pair of environments
the user can interact with through the EOG.

• Real World Environment: In this environment an external camera will
be displayed on the monitor. As the user moves their eyes the image
displayed on the monitor will move to show what is in that direction (i.e.
if the user looks up the monitor image will pan up slightly). We also aim
to add a motor for panning the camera left/right.

• Virtual World Environment: In this environment a pre-generated image
will be used instead of a live camera feed. This pre-generated image will
allow the user a 360 degree ability to view the virtual world, as the image
will wrap back on itself in a sphere-like format.

To switch between these monitor display options of eyes, real world, and virtual
world, we will implement a menu which the user can enter with an extended
blink. In the menu the user can scroll (again with eye movements) through the

1

display options, and select one to view.

To allow the user to see the screen while controlling the camera’s view we will
implement an incremental movement system. If the user wants to pan the cam-
era to the right they can simply look right and then look back at the screen–the
degree of turning will depend on the length of time they’re looking right.

As stretch goals we could expand each of the environments by:
• Real World Environment: We would like to add functionality such that

when the user can take a photo of the current displayed view and it will
be stored on an SD card. Super-stretch goals (to show the potential of
the project but probably will not have time to implement) include adding
multiple cameras (a security system for example), displaying the saved
pictures, and adding a second motor (for up/down movement)

• Virtual World Environment: We would like to make the virtual world
more interactive by allowing the user to walk through and look around a
virtual world maze. Super-stretch goals include cursor control and a more
complex virtual environment

2

1.2 Block Diagram

1.3 Design Description

The design of our EOG relies on electrodes measuring the differential voltage
up-down and left-right across the eyes. Both of these differences are then am-
plified so that they are readable once put into the Nexys4.

The next large module is EOG processing which consists of reading the analog
signals into a digital format in the ADC and then filters these signals so that

3

feature detection can be run on them. EOG processing will output variables
indicating the direction the user is looking in or if they are blinking for an ex-
tended period of time.

From here the next large block is Graphics Generation where a MUX switches
between displaying the menu, data output, a “real world” and a “virtual world”.
This large block is also connected to the camera (through a camera processing
module), a motor (through a motor control module), and the SD card (through
the SD controller module).

2 Implementation

2.1 Internal Components

2.1.1 Clock Wizard IP (in Vivado)

Inputs: internal 100MHz clock

Outputs: clock 65MHz, clock 104MHz

Complexity/Level of performance: This module will create a 65MHz clock
(for graphics) and a 104MHz clock (for data processing) to use and sync
with

· Number and type of arithmetic operations: created by Vivado

· Size of internal memories: none

· Required throughput: will output every 104 MHz and 65 MHz

How it will be tested: Display clock signals on logic analyzer

2.1.2 ADC

Inputs: Differential amplified analog signals from electrodes coming out
of instrumentation amplifier, clock 104MHz

Outputs: Three 8 bit values at a rate of 62.5kHz (ground, left/right,
up/down), ready

Complexity/Level of performance: The Nexys 4’s XADC has dual ADCs
that each return 1M sample per second but needs to run on a 104 MHz
clock to process the sample at that rate. The ADC will also digitize
the sampled voltages, and output sequences of 12-bit two’s complement
numbers (referred to as the pulse-code modulated or PCM data). We will
down sample and take one of every 16 samples for a overall rate of 62.5kHz
and take the 8 most significant bits

· Number and type of arithmetic operations: Conversion will require
arithmetic operations, however this has already been written and
optimized on the Nexys 4’s ADC

· Size of internal memories: none

· Required throughput: For every incoming 16 samples on a 1MHz

4

clock, the ADC will output one sample. This will result in a through-
put of 62.5k per second

How it will be tested: We will hook up the electrodes through the instru-
mentation amplifier and view the output after it has passed through the
ADC on the logic analyzer

2.1.3 Filter

Inputs: Signals from electrodes coming out of ADC, clock 104MHz

Outputs: Two 8 bit values at a rate of 62.5kHz (left/right, up/down)

Complexity/Level of performance: Sample EOG filters needed a low pass
filter, high pass filter, notch filter, and a non-inverting amplifier. Thus
this will be roughly 3 times as complex as the filter we created for lab 5,
and will likely be pipelined

· Number and type of arithmetic operations: multiplication, addition

· Size of internal memories: We will store the incoming samples in a
32 register array, each 8 bits wide

· Required throughput: This module will be pipelined with respect to
a 104 MHz clock, but will be able to process one frame of the signal
through three filters before the new data arrives from the ADC

How it will be tested: We will test each filter first individually with sample
inputs like we did in fir31 test.v for lab 5, then some overall simulations.
When both this module and the ADC have been tested individually, we
will calibrate and test using the logic analyzer

2.1.4 Feature Detection

Inputs: Two 8 bit values at a rate of 62.5kHz (left/right, up/down) from
filter, clock 104MHz

Outputs: A 6 bit number (eye state 104Hz [5:0]) describing the in-
stantaneous state of the eyes (Left, Right, Up, Down, Closed, Forward)

Complexity/Level of performance: Output will be delayed roughly one
second to filter out blinking (which are roughly 1/3 second long) and
distinguish between them and intentionally closed eyes

· Number and type of arithmetic operations: To determine from the
data which category the eye direction falls into we will need a simple
set of cutoffs in a case statement. From there we determine blinks
vs. closed by looking at these states over time

· Size of internal memories: We plan to start with a 2 BRAMs of 8x64k
which will store the last second or so of data

· Required throughput: new data at a rate of 62.5kHz

How it will be tested: This can be tested in simulation with overly sim-
plified inputs to ensure integration and replacement for blinking works.
Then it can be tested with the process signal (filter) module, as electrodes

5

can be hooked up and the binary output numbers can be displayed on the
FPGA

2.1.5 Synchronizer

Inputs: clock 104MHz, eye state 104Hz [5:0]

Outputs: eye state [5:0] on 65 MHz clock

Complexity/Level of performance: Synchronizes EOG data (104MHz)
with graphics clock (65MHz)

· Number and type of arithmetic operations: none

· Size of internal memories: none

· Required throughput: 65 MHz

How it will be tested: Input sample data at one clock rate and see it
synched on logic analyzer

2.1.6 XVGA (1024x768 @60Hz)

Inputs: clock 65MHz

Outputs: hcount, vcount, hsync, vsync, blank

Complexity/Level of performance:
· Number and type of arithmetic operations: none (same as lab 3’s

xvga module)

· Size of internal memories: none

· Required throughput: 65MHz

How it will be tested: Shouldn’t need (same as lab), can have color bars
to check

2.1.7 Virtual World

Inputs: eye state [5:0], clock 65MHz

Outputs: vpixel [11:0] (Nexys 4 has 12 bit color)

Complexity/Level of performance:
· Number and type of arithmetic operations: depends on complexity

of world, if attempt to make 3D will take more cycles–definitely will
be pipelined

· Size of internal memories: The module will need to store a virtual
world, which in it’s simplest state will be an image that is roughly 4
times as tall and 4 times as wide as the actual screen. Thus it will
store 4*1024x768 pixels in an internal BRAM

· Required throughput: We plan to display 1024x768 on the monitor
with a 65MHz clock to achieve a 60Hz refresh rate

How it will be tested: This can be tested by connecting the inputs to
FPGA buttons and viewing the output on the monitor

6

2.1.8 Real Logic

Inputs: eye state [5:0], camera data, clock 65MHz

Outputs: pixel [11:0], motor on, wr (write enable, to SD Controller)

Complexity/Level of performance: Based on the input of eye state the sec-
tion of the camera view displayed will change. This will be done through
changing vertical and horizontal offset variables which will then be refer-
enced when placing a given camera pixel on the monitor screen. Since our
camera only has a resolution of 640x480, we do some math to scale the
input by 2 in both dimensions

· Number and type of arithmetic operations: Addition, subtraction,
and boundary comparisons will be needed

· Size of internal memories: Ideally images video would be stored
in BRAM+DRAM, will store 6 frames to minimize frame tearing.
Thus, 6*12*640x480bits. However given that the posted code can
only store in BRAM, we will start out referencing and scaling the 1
12*640x480bit image in BRAM

· Required throughput: 65MHz for a 60 Hz refresh rate

How it will be tested: How it will be tested: This can be tested by connect-
ing the inputs to FPGA buttons and viewing the output on the monitor

2.1.9 Data Visualization (eyes)

Inputs: eye state [5:0], clock 65MHz

Outputs: dpixel [11:0]

Complexity/Level of performance:
· Number and type of arithmetic operations: The state of the eyes will

be input into a case statement to return the center dimensions of the
pupils to be displayed. For each pixel a computation on whether it
is inside the circle (of the eye and/or the pupil) will be run, and then
the pixel will be assigned a color. To run the calculations for the
circles, this process will need to be pipelined

· Size of internal memories: none

· Required throughput: 65MHz for a 60 Hz refresh rate

How it will be tested: This can be tested by connecting the inputs to
FPGA buttons and viewing the output on the monitor

2.1.10 Menu

Inputs: eye state [5:0], clock 65MHz

Outputs: mpixel [11:0], which module has been selected (module state

[1:0]–real world, virtual world, or data visualization; may be bigger if we
decide to add more modules)

Complexity/Level of performance: The state of the eyes will be input into
a case statement to return the button which the eyes are selecting. From

7

this selection, the module (virtual, real, or data out) will be selected and
the monitor output will change to that

· Number and type of arithmetic operations: There will be a waiting
period as a given option must be “clicked on” for a second or so
before the user is transitioned to that output. There will also be a
selection to show the user what they are clicking on which will need
to be refreshed with the screen refresh but will not involve complex
arithmetic

· Size of internal memories: menu display images (12 bit pixel x 1024
x 768) (3, one for each possible state)

· Required throughput: 65MHz for a 60 Hz refresh rate

How it will be tested: This can be tested by connecting the inputs to
FPGA buttons and viewing the output on the monitor

2.1.11 Camera Processing

Inputs: Raw camera data, clock 65MHz

Outputs: pixel [23:0], href, vsync

Complexity/Level of performance:
· Number and type of arithmetic operations: The camera will have

storage operations to the BRAM.

· Size of internal memories: In the BRAM one image of 640 by 480 by
12 bit depth. This totals 3686400 bits or .46 Mb of BRAM

· Required throughput: 65MHz for a 60 Hz refresh rate

How it will be tested: This can be tested by creating a simulation with
a preset camera input and an output variable to display the color at a
specified location

2.1.12 Motor Control

Inputs: eye state[5:4] (left/right), motor on (from real world), clock 65MHz

Outputs: PWM signal to the servo

Complexity/Level of performance: This can be accomplished with a case
statement that sets the servo output to one of two pre programmed settings–
turning left or turning right

· Number and type of arithmetic operations: none

· Size of internal memories: none

· Required throughput: to sync with the system logic, this can trigger
on the 65MHz clock, although for the camera’s use throughput speed
is not critical

How it will be tested: Simulation, then connected to servo with FPGA
button inputs, and then paired with real world module

8

2.1.13 SD Controller

Inputs: miso, rd, wr, din [7:0] (from pixel [11:0] of real world),
reset, address [31:0], clock 65MHz

Outputs: cs, mosi, sclk, dout [7:0], byte available, ready, ready for next byte,
status [4:0]

Complexity/Level of performance: We will reference the SD card infor-
mation on the “Tools” tab

· Number and type of arithmetic operations: none

· Size of internal memories: none needed

· Required throughput: probably no more than 1 photo per second
(blinking speed limitations)

How it will be tested: We will find test photos and store them onto the
SD card and then put the SD card into a computer to verify images have
been stored correctly

2.2 External Components

2.2.1 EOG Electrodes

Cost: We can use electrodes from 6.169’s EKG class project for free as they
bought hundreds. If those don’t work or we decide other electrodes would
be better we can ask the EKG group where they are getting their electrodes
as high quality ones run about $100 for a set (https://mfimedical.com/
products/reusable-gold-cup-eeg-electrodes)

Complexity: Not particularly complex, we just need to find ones that work

How to interface: The wires from the EOG sensors will connect to the
hardware amplifier

2.2.2 Implementation Amplifier

Cost: We could use two INA 128 as our amplifier as it has a high CMRR
(common more rejection ratio) for it’s cost ($7.92 each), or we could use
an AD620 which is used in 6.169 as the amplifier for their EKG circuit,
and thus we might be able to get some to use for free

Complexity: Not particularly complex - we can follow the wiring diagram

How to interface: Supply power and ground, input signals to amplify

2.2.3 Monitor

Cost: None, already exists

Complexity: Same as past labs

How to interface: Over VGA cable

9

https://mfimedical.com/products/reusable-gold-cup-eeg-electrodes
https://mfimedical.com/products/reusable-gold-cup-eeg-electrodes
http://www.ti.com/product/INA128

2.2.4 Camera

Cost: None, will borrow a Nexys 4 camera

Complexity: We plan to use the code Weston posted, and we will only
have to crop the frame rather than any image or color recognition, so
shouldn’t be too different from sample code

How to interface: Over the provided cable

2.2.5 Motor (servo)

Cost: None, we own springRC SM-S4303R servos we can use

Complexity: Just need to get it to turn slowly in the correct direction -
precise positioning or speed is not critical

How to interface: Need to be sent a PWM signal, along with power (4.8 -
6V) and ground

2.2.6 SD Card (memory for pictures)

Cost: None, lab already has 2GB SD cards we can use

Complexity: We need to configure the SD card

How to interface: Stick it in the Nexys 4

3 Timeline

• Week of October 31
− EOG hardware and amplifier connected to ADC and outputting
− Data visualization tested and working (display) + menu selection

interface
• Week of November 7

− Filter and feature detection tested and working
− Camera data displayed on monitor & camera data processed given

eye state
• Week of November 14

− Virtual world
− Integration, end-to-end testing

• Week of November 21
− Virtual world
− Motor integration + mount

• Week of November 28
− Debug and stretch goals

• Week of December 5
− Debug and stretch goals

• December 12 - Final Project Check Off

10

10/31-11/6 11/7-11/13 11/14-11/20 11/21-11/27 11/28-12/4 12/5-12/11

EOG hardware
and ADC

E

Data visualiza-
tion + menu

C

Filter + feature
detection

E EC

Real world +
camera

C

Virtual world C C

Integration E

Motor integra-
tion + mount

E

Taking pictures EC EC

Maze game EC EC
Key: E = Elizabeth, C= Crystal

4 Conclusion

In conclusion, our project will be an EOG with data, camera, and virtual world
display modes. Selection between these modes will be controlled by a menu
which can be selected and sorted through with eye movements. Possible exten-
sions include taking photos with the camera and/ or navigating a maze in the
virtual reality. We foresee the filtering of input data to reliably trigger on user’s
eye movements, and creating a seamlessly patched 360 degree 3D world to be
challenges. Our goal is to integrate and expand on what we have learned about
FPGAs to effectively capture and intriguingly display eye movement data. Sim-
ilar systems to this have played a key role in communicating with people who
have limited movement capabilities. This system can help expose others to how
this technology and interface works.

11

	Overall Design
	Project Description
	Block Diagram
	Design Description

	Implementation
	Internal Components
	Clock Wizard IP (in Vivado)
	ADC
	Filter
	Feature Detection
	Synchronizer
	XVGA (1024x768 @60Hz)
	Virtual World
	Real Logic
	Data Visualization (eyes)
	Menu
	Camera Processing
	Motor Control
	SD_Controller

	External Components
	EOG Electrodes
	Implementation Amplifier
	Monitor
	Camera
	Motor (servo)
	SD Card (memory for pictures)

	Timeline
	Conclusion

