
Laser	Conductor	
	

James	Noraky	and	Scott	Skirlo	
	

Introduction	
	
After	a	long	week	of	research,	most	MIT	graduate	students	like	to	unwind	by	playing	video	
games.	To	feel	less	guilty	about	being	sedentary	all	week,	some,	like	the	authors	of	this	
proposal,	prefer	to	play	active	games.	However,	because	of	the	low	graduate	stipends,	most	
students	cannot	afford	game	consoles	like	the	Wii	or	Xbox,	yet	alone	the	accessories	necessary	
to	play	active	games.	To	democratize	active	gameplay,	we	detail	how	graduate	students	with	
access	to	the	6.111	labkit,	a	NTSC	video	camera,	a	laser	galvanometer,	and	neon	green	gloves	
can	create	a	game	called	Laser	Conductor.		
	
Laser	Conductor	is	an	interactive	game	where	the	player	assumes	the	role	of	a	conductor.	With	
the	gloves	as	the	baton,	the	player	brandishes	different	gestures	as	the	music	of	a	symphony	
plays.	The	player	is	directed	by	arrows	drawn	by	the	laser	galvanometer,	which	indicates	how	
the	player	should	move	their	hands.	The	figure	below	shows	an	example	of	a	gesture	sequence	
drawn	by	the	laser	galvanometer	that	the	player	must	imitate.			The	player’s	gestures	are	then	
recognized	and	scored	using	visual	input	from	the	NTSC	video	camera.		
	

	
	

	
	
Laser	Conductor:	The	laser	galvanometer	draws	the	current	gesture	as	indicated	by	the	square	

and	the	player	moves	his	or	her	hand	in	the	direction	indicated	by	the	arrows.	
	



This	report	is	organized	as	follows.	First,	we	will	describe	gesture	recognition	module.	Then,	we	
will	describe	the	memory	module.		This	is	followed	by	the	game	logic	finite	state	machine.	This	
report	concludes	with	a	discussion	of	the	galvanometer	control	module.											
	

	
Gesture	Recognition	

James	Noraky	
	

In	Laser	Conductor,	the	users	play	as	a	conductor	and	move	their	hands	in	directions	drawn	by	
the	laser	galvanometer.	A	key	part	of	the	game	is	to	recognize	the	user’s	gestures	and	compare	
them	against	the	expected	gestures.	In	this	section,	we	describe	how	basic	gesture	recognition	
is	accomplished.	The	gesture	recognition	subsystem	takes	as	input	images	from	a	camera	and	
outputs,	if	any,	the	direction	that	each	hand	is	moving.	Figure	1	shows	the	key	components	of	
this	subsystem.	
	

	
	

Figure	1:	Gesture	recognition	system	with	the	relevant	signals	indicated	
	

First,	we	will	briefly	describe	how	the	camera	works.	Then,	we	describe	how	the	user’s	hands	
are	first	localized.	Finally,	we	will	describe	how	the	locations	of	the	hands	are	translated	into	
gestures.	These	gestures	are	fed	into	the	game	logic	finite	state	machine.		
	
Interfacing	with	the	Camera	
	
To	interface	the	lab	kit	with	the	camera,	we	use	a	NTSC	camera.	This	camera	outputs	an	analog	
signal	which	encodes	the	YCbCr	color	components	and	the	control	signals	f,	v,	and	h.	As	
opposed	to	the	raster	scan	operation	of	VGA	monitors,	the	frames	of	a	NTSC	camera	are	
interlaced.	Consequently,	there	are	two	fields	of	lines	that	correspond	to	the	even	and	odd	
lines	of	the	image.	This	is	signaled	by	the	f	bit.	Similar	to	VGA	monitors,	the	v	and	h	signals	are	
the	vertical	and	horizontal	sync	signals.	The	code	that	converts	the	analog	signal	into	a	digital	
form	and	that	obtains	the	f,	v,	and	h	signals	are	provided	in	[1].		
	
Hand	Localization	
	
To	localize	their	hands,	the	users	wear	neon	green	gloves	shown	in	Figure	2.	This	color	is	chosen	
because	it	is	uncommon	in	the	lab	area	and	would	minimize	any	sources	of	potential	
interference.	To	localize	the	hands,	we	first	apply	a	threshold	to	the	image	obtained	from	the	
NTSC	camera	to	obtain	a	binary	image	where	‘1’	represents	pixels	that	are	neon	green.		
	



The	NTSC	camera	outputs	pixel	color	in	the	YCbCr	color	space,	where	10	bits	are	allocated	for	
each	component.	One	approach	to	identifying	the	green	pixels	would	be	to	convert	the	YCbCr	
color	into	the	HSV	color	space,	where	a	threshold	can	be	applied	to	the	hue	value.	
Furthermore,	this	approach	is	also	appealing	because	the	code	to	convert	YCbCr	to	RGB	and	to	
convert	RGB	to	HSV	are	both	provided	[2].		Our	approach	instead	first	converts	the	YCbCr	color	
of	each	pixel	into	RGB.	We	then	threshold	the	green	value	of	each	pixel	to	obtain	the	binary	
image.	Because	we	are	not	converting	to	HSV,	we	minimize	the	latency	between	the	time	a	
pixel	is	read	to	when	a	binary	value	is	outputted.	This	approach	is	effective	in	localizing	the	
gloves	as	shown	in	Figure	2.	From	this	binary	image,	we	will	approximate	center	of	each	glove	
and	track	its	trajectory	to	identify	the	correct	gesture.		
	

	
	

Figure	2:	Pipeline	that	converts	the	YCbCR	into	a	binary	image	that	localizes	the	green	gloves,	
from	which	the	centroids	of	the	gloves	are	then	computed.	

	
	
It	should	be	noted	that	applying	a	threshold	based	on	a	minimum	value	alone	(G	>	Gthresh)	is	not	
effective.	This	approach	would	produce	a	binary	image	that	includes	both	the	green	gloves	and	
any	bright	light	sources	because	white	light	has	significant	values	for	all	three	RGB	color	
channels.	Here,	we	realize	that	we	must	also	impose	an	upper	bound	for	the	green	channel	
(G>Gmin	&&	G<Gmax),	which	accounts	for	the	fact	that	the	green	glove	does	not	reflect	all	of	the	
incident	light.	With	this	insight,	we	were	able	to	robustly	localize	the	gloves.	In	addition	to	
green,	we	found	that	this	approach	is	also	effective	for	identifying	blue	pixels.	
	
Once	we	obtain	a	binary	image,	our	task	is	to	then	localize	the	position	of	the	gloves.	Because	
there	will	be	some	spurious	noise,	we	can	consider	implementing	median	filters	or	
morphological	erosions.	However,	given	the	large	size	of	the	hands	in	the	binary	image,	the	
computation	of	the	centroid	is	robust	to	the	small	amount	of	noise.	Another	design	choice	was	
whether	to	segment	the	gloves.	This	can	be	done	use	some	integral	projections	to	figure	the	
axis	which	separates	the	images	of	the	two	gloves.	However,	one	reasonable	assumption	is	to	
use	the	center	of	the	image	to	separate	the	two	gloves.	This	simplification	leads	to	robust	
centroid	tracking.	



	
To	compute	the	centroid	location	in	real	time,	we	have	as	input:	a	binary	pixel	obtained	after	
applying	the	threshold;	f	which	denotes	the	frame	number;	v	which	is	the	vsync	signal;	and	h	
which	is	the	hsync	signal.	Using	the	v	and	h	signal,	we	can	compute	the	x	and	y	coordinate	for	
each	pixel.	Denoting	p	as	the	pixel,	the	centroid	location	for	the	left	glove	is	then:	
	

𝑥"#$%, 𝑦"#$% =
	𝑝+,, ⋅ 	 (𝑥, 𝑦)+01

∑𝑝+,,
	

	
An	analogous	computation	is	made	for	the	right	glove.	Since	we	are	computing	the	location	in	
real-time,	the	numerator	and	denominator	would	therefore	be	partial	sums.	To	compute	the	
centroid,	we	need	to	divide.	Given	the	size	of	the	NTSC	camera,	we	can	choose	an	appropriate	
size	register	bit	width	for	the	partial	sum	variables.	This	decision	is	important	because	dividers	
introduce	latency	to	the	computation	of	the	centroid	coordinate.	The	latency	of	a	restoring	
divider	is	equal	to	the	bit	width	of	its	arguments	[3].	However,	since	we	simply	need	to	appear	
real-time,	we	do	not	need	to	be	very	precise	because	the	player	cannot	perceive	a	few	cycles	of	
difference	in	a	27	MHz	clock.	To	start	the	divider,	we	make	use	of	the	f	signal	to	start	the	
division	on	the	transition	from	an	odd	to	even	frame.	To	figure	out	this	signal,	it	was	helpful	to	
use	the	logic	analyzer	to	see	what	signals	would	be	reliable	to	start	the	division.	
	
To	compute	the	centroid	locations	for	both	the	left	and	right	glove	(denoted	CX_L,	CY_L,	CX_R,	
CY_R),	we	use	4	restoring	dividers	that	run	in	parallel.	Because	of	the	latency	and	potential	for	
difference	among	the	dividers,	we	need	to	compute	a	ready	signal	that	takes	into	account	the	
status	of	each	divider.	This	step	is	important	so	that	spurious	coordinates	are	not	passed	into	
the	gesture	recognition	subsystem,	which	we	describe	next.		
	 	
Gesture	Recognition	
	
In	the	game,	the	laser	galvanometer	draws	different	arrows	which	represent	the	trajectories	in	
which	the	user	must	move	their	hands.	We	will	refer	to	these	hand	trajectories	as	gestures.	In	
our	implementation,	we	support	8	directions	as	shown	below.	
	
			

	
	



Figure	3:	The	directions	supported	by	the	Laser	Conductor	game.	The	blue	region	represents	
the	margin	of	error	that	the	centroids	are	allowed	to	still	be	classified	correctly.	

	
In	the	diagram,	the	blue	regions	represent	the	margin	in	which	the	trajectories	need	to	be	in	to	
be	correctly	categorized.	If	the	trajectories	do	not	fall	in	the	blue	region,	then	it	is	classified	as	
an	unknown	gesture.		
	
Trajectories	are	computed	by	maintaining	the	last	3	centroid	positions.	A	new	centroid	position	
is	loaded	in	when	the	ready	signal	is	asserted	from	the	hand	localization	subsystem.	From	these	
three	centroid	positions,	we	can	create	2	vectors	by	subtracting	the	most	recent	centroids	from	
the	earliest	centroid.	We	can	denote	these	vectors	as	(dx,	dy).	Then,	we	check	check	if	these	
vectors	are	contained	within	the	blue	region	as	shown	in	the	diagram.	For	example,	to	check	if	
the	gloves	are	moving	up,	we	have	to	make	sure	the	the	dx	position	is	within	the	bounds	and	
the	dy	position	keep	increasing.	For	the	diagonal	directions,	we	must	check	the	difference	
between	dx	and	dy	as	well	as	the	direction.		
	
We	repeat	this	process	for	both	the	left	and	right	glove	to	output	a	gesture.	This	gesture	is	
updated	for	each	new	centroid	position.	These	gestures	are	then	fed	into	the	game	logic	finite	
state	machine.		

	
Future	Work	
	
If	we	had	more	time,	a	natural	extension	would	be	to	detect	skin	color	directly.	If	the	camera	
sensor	has	a	good	color	response,	skin	color	can	be	detected	directly	without	the	need	of	green	
gloves.	For	example,	the	webcam	of	most	Apple	laptops	have	such	characteristics.	To	do	this,	
we	can	use	another	NTSC	camera	or	interface	a	webcam	with	the	lab	kit.	To	interface	a	webcam	
with	the	lab	kit,	we	will	describe	how	large	amounts	of	data	can	be	transferred	using	the	FTDI	
USB-to-FIFO	chip	when	we	describe	the	music	of	the	game.	
	
Furthermore,	we	can	further	increase	the	robustness	of	the	centroid	tracking.	To	do	this,	we	
would	use	integral	projections	to	localize	the	centroid	of	each	hand	without	assuming	the	
central	dividing	axis.	Coupled	with	a	trajectory	“smoother,”	we	can	also	get	more	robust	
results.	One	such	approach	would	involve	a	Kalman	filter.		
	
References	
	
[1]	NTSC	ZBT	Sample	Code.	http://web.mit.edu/6.111/www/f2016/tools/ntsc_zbtfix.zip	
	
[2]	Conversion	from	YCbCr	to	RGB.	http://web.mit.edu/6.111/www/f2011/tools/ycrcb2rgb.v	
	
[3]	Restoring	Divider.	http://web.mit.edu/6.111/www/f2016/index.html	
	
	 	



Music	Manager	
James	Noraky	

	
A	key	part	of	the	Laser	Conductor	game	play	is	the	music	since	the	user	is	playing	as	a	
conductor.	Furthermore,	if	the	user	performs	a	gesture	correctly,	a	chime	should	indicate	that	
the	move	is	correct.	To	handle	the	various	music	and	sounds	that	will	be	played,	we	
implemented	a	music	manager	that	stores	and	plays	both	a	song	and	the	chime	for	a	correct	
move.	The	input	of	this	module	are	flags	from	the	game	logic	FSM:	(1)	a	flag	that	indicates	the	
start	of	the	game	and	music	and	(2)	a	flag	that	indicates	a	correct	gesture	and	the	start	of	a	
chime.	
	
Due	to	the	different	durations	of	the	song	and	the	chime,	we	store	the	song	in	the	ZBT	memory	
and	we	store	the	chime	sound	in	BRAM.	Both	the	song	and	the	chime	are	uploaded	and	stored	
on	the	lab	kit	after	it	has	been	programed.			
	
Loading	the	Song	onto	the	Lab	Kit	
	
The	architecture	of	the	music	manager	is	similar	to	the	recorder	in	Lab	5.	In	the	recorder	lab,	
we	took	the	microphone	data	from	the	AC97	chip,	applied	a	low-pass	filter,	and	stored	a	
decimated	version	of	the	filtered	signal.	One	approach	to	load	data	onto	the	lab	kit	is	to	
connect	the	headphone	output	of	a	computer	to	the	microphone	input	of	the	lab	kit	and	store	
the	data	like	in	Lab	5.	The	benefits	of	this	approach	is	that	it	minimizes	the	complexity	of	the	
ZBT	timing.	However,	this	means	that	loading	in	a	song	after	the	lab	kit	has	been	programmed	
can	take	several	minutes.		
	
To	minimize	the	load	time,	we	use	the	FTDI	USB-to-FIFO	chip	to	load	data	from	a	computer	to	
the	lab	kit.	To	transmit	data	from	the	computer,	we	modified	the	provided	code	[1]	so	that	it	
can	compile	on	the	OSX	operating	system	and	send	larger	data	packets.		We	also	used	the	
supplied	Verilog	code	to	access	the	data	and	store	it	in	memory.	We	then	wrote	a	MATLAB	
script	to	convert	any	arbitrary	MP3	file	into	a	format	that	can	be	loaded	onto	the	FIFO	using	our	
modified	C++	code.	With	these	modifications,	we	can	load	several	minutes	worth	of	music	in	
approximately	10	seconds.	
	
In	our	implementation,	we	also	bypass	the	filtering	step	of	the	sound	input	and	load	the	filtered	
data	directly	onto	the	lab	kit.	During	playback,	we	would	apply	the	same	filter	to	interpolate	the	
signal	into	48	kHz.	Because	of	the	high	transfer	rate,	the	timing	for	the	ZBT	memory	becomes	
important.	To	make	sure	the	ZBT	memory	is	properly	functioning,	we	used	the	provided	the	
ramclock	module	[2]	to	correctly	use	the	ZBT	memory.	To	fully	utilize	the	memory,	we	also	
wrote	a	simple	memory	manager	to	fully	utilize	32	out	of	the	36	bits	of	each	ZBT	memory	row.	
By	doing	this,	we	can	store	more	than	a	5-minute	song	in	the	ZBT	memory.			
	
Loading	the	Chime	onto	the	Lab	Kit	
	



We	used	a	similar	approach	to	load	the	chime	except	that	instead	of	ZBT,	the	chime	is	stored	in	
the	BRAM.	In	playback	mode,	when	a	gesture	is	played	correctly,	the	chime	is	overlaid	with	the	
music	to	provide	audio	feedback	to	the	player.		
	
Putting	it	All	Together	
	
Instead	of	the	record	button	of	Lab	5,	we	wired	the	different	switches	to	load	in	music	for	the	
song	and	for	the	chime.	This	is	performed	after	the	lab	kit	has	been	programed.	When	both	the	
sounds	are	loaded,	the	recorder	enters	playback	mode	when	the	start	signal	is	asserted	by	the	
game	logic	finite	state	machine.	
	
One	potential	question	is:	why	did	we	not	store	the	data	in	flash?	We	stored	the	data	in	ZBT	
and	BRAM	for	the	possibility	of	the	user	being	able	to	change	the	music	instead	of	using	some	
preprogrammed	song.	As	a	future	feature,	we	could	include	a	simple	algorithm	that	converts	
the	loaded	music	into	the	different	gestures	for	dynamic	game	play,	allowing	our	game	to	
accommodate	different	musical	tastes.	
	
	References	
	
[1]	Data	transfer.	http://web.mit.edu/6.111/www/f2016/tools/flash_IO.zip	
	
[2]	Ramclock	module.	http://web.mit.edu/6.111/www/f2016/index.html	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	



Game	Logic	Module		
Scott	Skirlo	

	

	
Fig.	Schematic	diagram	of	system	

	
I	focused	on	developing	the	game	logic	module,	galvo_control	module	and	affiliated	modules	
associated	with	gesture	and	vector	graphics	storage.		
	
The	toughest	link	for	me	in	the	entire	project	was	figuring	out	best	how	to	flexibly	interface	
shape	retrieval	and	drawing	in	a	flexible	way.	Originally	I	envisioned	rewriting	a	shape	RAM	
every	single	frame.	This	RAM	would	contain	a	set	of	coordinates	for	the	galvo	to	step	through	
and	the	number	of	remaining	steps	in	the	shape	before	completion.	Upon	realizing	that	one	
shape	was	drawn	the	galvo	would	go	to	the	next	memory	address	in	the	RAM	and	proceed	to	
plot	the	coordinates	for	that	shape,	going	until	it	reached	a	"end	of	file"	number	indicating	that	
it	had	completely	gone	through	the	RAM	frame.	Originally	the	game	controller	would've	
directly	interfaced	with	a	gesture	ROM.	As	I	worked	through	the	problem,	I	realized	that	flexibly	
writing	a	variable	number	of	shapes,	of	different	types	and	coordinate	offsets	would	be	very	
challenging.	Because	of	this	I	tried	to	simplify	the	information	being	passed	between	the	game	
FSM	and	the	galvo	controller	as	much	as	possible,	reducing	this	only	to	a	shape	type	and	
coordinate	offset	types.		
	
Operation	then	proceeded	as	follows.	For	every	new	frame	the	game	FSM	would	fill	in	a	buffer	
containing	a	variable	number	of	shape	types	and	offsets	depending	on	the	user	inputs	and	the	
current	fetched	gestures	from	the	gesture	ROM.	During	a	"slave"	phase,	the	game	FSM	would	
then	respond	to	the	galvo	controller	for	requests	for	the	next	shape.	Upon	assertion	of	the	
"request_shape"	flag,	the	game	FSM	would	return	the	current	shape	and	offset	set,	and	
increment	the	shape	buffer	and	gesture	offset	buffers.	With	this	information,	the	galvo	
controller	would	then	request	the	shape	number	and	the	first	vertex	number	from	the	shape	
ROM.	Upon	receiving	these	coordinates	and	the	remaining	vertex	number,	the	galvo	controller	
would	add	these	to	the	point	offsets	and	set	the	x_pos	and	y_pos	values	to	this.	After	doing	this	
the	galvo_controller	starts	a	timer	to	allow	the	shape	to	be	drawn	and	wait	for	the	galvo	to	
mechanically	respond	to	the	new	voltages.	This	wait	time	was	determined	by	the	difference	
between	the	original	x	and	y	coordinates	and	the	new	x	and	y	coordinates	to	allow	the	laser	line	



"weight"	to	be	as	uniform	as	possible	for	the	entire	vector	graphic	figure.	Upon	registering	that	
only	one	vertex	is	left	from	the	shapes	being	drawn,	the	galvo	controller	turns	the	laser	off	and	
requests	the	next	shape,	if	"wait_shape_memory"	hasn't	been	asserted.		
	
"Wait_shape_memory"	is	asserted	by	the	game_FSM	when	the	final	shape	in	the	shape	buffer	
is	reached.	Upon	doing	this	the	game_FSM	checks	it's	own	timer	to	see	if	a	sufficient	time	has	
expired	to	update	the	next	move.	If	not,	it	simply	loads	the	shape	buffer	with	the	old	shapes,	
and	updates	the	offset	coordinate	buffers	as	necessary	before	returning	to	slave	mode.		
	
	
	

Galvo	Controller	Module	
Scott	Skirlo	

	
The	galvo	mirrors	were	controlled	by	2	8-bit	DACs	from	the	user	output's	of	the	labkit.	These	in	
turn	are	fed	to	two	sets	of	inputs	and	inverting	inputs.	To	create	the	second	inverted	signal,	the	
DAC	output	is	also	fed	through	an	LF-741	in	an	inverting	configuration.	The	DACs	are	on	a	0	to	5	
V	range,	so	the	effective	differential	input	voltage	of	the	Galvo	controller	ranges	from	0	to	10	V.	
There	were	some	small	issues	with	the	resistors	for	setting	up	the	op	amp	in	the	inverting	
configuration.	When	1	k	resistors	were	used,	we	noticed	that	there	tended	to	be	a	"ringing"	in	
the	DAC	output	which	resulted	in	a	notable	fuziness	in	the	screen	drawing.	Adjusting	these	to	
10	k	improved	the	performance.	The	addition	of	filter	in	a	low	pass	configuration	ended	up	
causing	oscillation.	Originally	it	was	planned	that	12	bit	serial	DACs	would	be	utilized	to	drive	
the	screen.	However,	in	practice	the	galvo	controller	mirrors	have	so	much	inertia	and	
mechanical	noise,	and	the	fact	that	the	laser	spot	size	is	already	not	so	narrow,	that	in	practice	
having	higher	resolution	is	not	useful	or	meaningful.		
	

	
	

Laser	source	



	
The	laser	source	was	obtained	cheaply	online	for	a	few	dollars,	and	produced	a	5	mW	red	laser	
output.	This	red	laser	was	perfectly	eye	safe	at	these	power	levels	(class	I),	so	that	no	extra	
precautions	would	be	necessary	for	using	the	system.	Originally	we	planned	on	drawing	a	total	
of	7	shapes	at	the	same	time.	Although	we	had	the	capacity	for	this	and	demonstrated	it	(see	
Fig	below),	for	the	simplicity	of	game-play,	and	to	allow	the	most	important	arrows	to	be	
brighter.	At	large	distances,	6	drawn	arrows	are	barely	visible,	whereas	2	are	quite	clear	at	the	
distance	of	1-10	meters.		
	
There	were	some	plans	to	update	the	resolution	of	the	galvo	controller	to	12	bits.		
	
The	galvo	had	certain	interesting	quirks	associated	with	it's	operation.		
	

	
	


