Laser Conductor

(or DDR with your hands...)

James Noraky and Scott Skirlo

Introduction

Introduction

Introduction

Introducing Laser Conductor

Interactive game that combines music, lasers, and video processing as you play as a conductor!

Blob Detection

Convert YCbCr pixel from the decoder to RGB

Threshold color channels to get binary image

Converting YCbCr to RGB

Source: http://www-mtl.mit.edu/Courses/6.111/labkit/appnotes/xapp283.pdf

Pipeline Register

Threshold to Obtain Binary Image

- High threshold for green and low threshold for red and blue
 - Pass green but reject white
- Compression! [23:0] RGB is represented as a single bit!
- Even more compression! Sequence of bits can be compressed using run length encoding

Centroid Calculation

Additional circuitry and logic required to avoid normalizing the sum

Gesture Classification

- Many algorithmic approaches from Hidden Markov Models, Neural Nets, Convex Hull estimation
- Challenges: (1) Computationally expensive (2) Requires a lot of data to train

Gesture Classification

- Many algorithmic approaches from Hidden Markov Models, Neural Nets, Convex Hull estimation
- Challenges: (1) Computationally expensive (2) Requires a lot of data to train

Simple solution! - Track the trajectory of the centroids

(x, y)

curr_x <= x-x_start; curr_y <= y-y_start;</pre>

(x, y)

(x_start, y_start)

curr_x <= x-x_start; curr_y <= y-y_start;</pre>

curr_x <= x-x_start;

curr_y <= y-y_start;</pre>

```
gesture <= UP;</pre>
```

end

```
//... continue for other gestures
```


Matlab Demo

Gesture Buffer

• Stores a sequence of gestures to be recognized in DRAM and their dwell time (in 0.5 sec increments), @(posedge timer) update

Shape memory

• Stores a sequence of points for plotting vector graphics

Galvo controller

Game logic FSM

- Game logic decides whether or not valid gesture has been completed in interval, and makes buzzer sound if player has failed.
- Game logic plays music to go with gesture
- Game logic loads new moves in from gesture buffer to be displayed on screen and updates shape memory appropriately

Sound and music memory

