
3D Scanner

Jessy Lin & Evan Tey
lnj@mit.edu, tey@mit.edu

6.111 Fall 2016 Final Project

Contents

1 Introduction 3

2 Technical Background 3
2.1 Depth Reconstruction . 3
2.2 3-D Rendering . 6

3 Design and Dataflow 8
3.1 Block diagram . 8

4 Hardware setup (Jessy) 8

5 Image processing (Jessy) 9
5.1 Module: gaussian blur . 9

5.1.1 Challenges . 10
5.2 Module: threshold . 11
5.3 Module: skeletonize . 11
5.4 Module: save frame (Evan) . 12

6 Depth reconstruction(Jessy) 13
6.1 Module: rs232 transmit (Evan) 13

6.1.1 Challenges . 13
6.2 Camera calibration . 14
6.3 Module: depth reconstruction . 15

6.3.1 Challenges . 15

7 Rendering (Evan) 17
7.1 Memory . 17
7.2 Module: write2zbt . 17
7.3 Module: renderer . 18

7.3.1 Challenges . 18
7.3.2 Module: virtual camera 18
7.3.3 Module: trig LUT . 18

1

7.3.4 Blackout . 19
7.4 Module: zbt controller . 19
7.5 Timing . 19
7.6 Testing . 20

8 Conclusion 20

9 References 21

2

Figure 1: Laser scanning setup

1 Introduction

The demand for fast and cheap 3D scanning has skyrocketed since 3D printing
was popularized recently on the mass market. Previously an expensive process
reserved for specialized applications such as animation or industrial design, 3D
scanning has expanded to day-to-day purposes such as scanning objects, people,
and scenes so they can be manipulated virtually before re-printing into new
models.

Potential implementations include stereoscopic imaging, photogrammetry,
and triangulation from laser profiles, to name a few. The core technical challenge
for most of these 3D scanners lies in reconstructing 3D data from typical 2D
data, such as images from conventional cameras. This task is both complex and
computationally intensive.

In this project, we implement a fast, hardware-based version of a 3D laser
scanner, using triangulation to reconstruct a point cloud for the object given
the parameters for the physical setup and images from a NTSC camera. The
3D point cloud will be rendered on the display in real-time.

All the code for this project can be found in our Github repository.

2 Technical Background

2.1 Depth Reconstruction

A 3D laser scanner projects a thin laser line on to the object to be scanned,
revealing an object profile that is captured by the camera (Figure 1). The laser
and camera are positioned at an angle to one another. Knowing the location of
the laser and certain properties of the camera, by looking at the laser profile we

3

https://github.com/evantey14/3dscanner

Figure 2: Transformation from camera to world coordinates. Figure taken
from [1].

can calculate the corresponding points in 3D space that are illuminated. This
section will describe how to perform this transformation.

Given a pixel in the processed image, we translate its image coordinates
to world coordinates by applying the transformation between the camera and
world coordinate systems (Figure 2). We can express this in terms of the ex-
trinsic parameters of the camera, position and orientation, as represented by a
translation vector T and a rotation matrix R with respect to the origin of the
world coordinate system. If pC , pW are the 3D vectors representing the point in
camera and world coordinates, respectively, then

~pC = R · ~pW + ~T

.

Figure 3: Finding the intersection of the laser plane and the camera. Figure
taken from [1].

We model the setup as an intersection between the plane of laser light and
the camera ray to the projected laser line (the object’s profile) to calculate pC
(Figure 3).

4

Thus, we can do some matrix math convert given 2D pixel coordinates (x, y),
we can convert them to corresponding 3D world coordinates (xworld, yworld, zworld).

First, we note that we need to correct for the intrinsic parameters of the
camera (e.g. focal length) at some point during the conversion to pixels to real-
world coordinates. The intrinsic parameters of the camera can be determined
with a one-time calibration procedure and represented in the form of an intrinsic
matrix:

KK =

 fc1 αc ∗ fc1 cc1
0 fc2 cc2
0 0 1

where:

• fc1, fc2 are the focal lengths in x and y pixels respectively. While the
physical focal length of the camera is fixed, the focal length in x and y
pixels may be different if we have rectangular pixels.

• αc is the skew coefficient (the angle between the x and y pixels; nonzero
if pixels are not perfectly rectangular)

• cc1, cc2 are coordinates of the principal point, i.e. the projection of the
center of the camera on to the image plane (the ”true center”).

.
The coordinates of the pixel, on the image plane, with respect to the origin

of camera is:

u =

 x− cc1
y − cc2

1

where the z dimension arises if we assume a physical focal length of 1.

The coordinates of the object point in camera coordinates lies on the ray
from the origin of the camera to p, extended to the object. Thus the 3D object
point with respect to the origin of the camera is some multiple of the pixel in
camera coordinates, pC = λu.

Now we consider what we know about the laser plane: in our hardware
setup, we can set it to pass through the origin of the world coordinate system,
for simplicity. Referring to Figure 4, if the laser is at θ degrees to camera, given
the world coordinate system, the normal to the laser plane is:

n =

 0
a
b

where tan(90− θ) = a

b . Since the plane passes through the origin, the parame-
terized equation of the laser plane is {p : nT p = 0}.

We wish to find the unknown λ, so then the point of interest in camera
coordinates is λu. Starting from the equation of the laser plane, we know both
the intrinsic matrix and the rotation matrix have inverses, so

5

Figure 4: Hardware setup, with θ and n indicated.

pc = K(RpW + T)

λu = K(RpW + T)

R−1(K−1λu− T) = pW

Multiplying both sides by nT and knowing that the point lies on the laser
plane with equation {p : nT p = 0},

nTR−1(K−1λu− T) = 0

λ =
nTR−1T

nTR−1K−1u

Thus the coordinates of the point relative to the camera origin is λu, and

relative to the world origin is pW = R−1(K−1λu− T) .

2.2 3-D Rendering

In order to render 3 dimensional points on the monitor, we make a few as-
sumptions. These limit the abilities of the renderer, but are necessary to allow
implementation practicality.

First, we assume that we’re observing the object from very far away. As
we observe any object from farther and farther, we lose perspective skew. So,

6

for example in Figure 5, if we’re looking at a box up close, we can distinguish
the top and front faces, but when the box is very far away, we can only see the
front edge. This allows us to simply use the flat projection of an object onto a
plane to generate 2 dimensional points, then scale that projection so it fits in
monitor. (A separate way to think about this is that the monitor is a camera
with a focal length of infinity.)

Figure 5: Perspective skew of a box.

Making this assumption allows us to save many trigonometric calculations
associated with skew and a focal point, because given (x, y, z) coordinates, we
simply have to scale and shift (x, y) until the object can be seen in the monitor.

So

(x, y, z)→ xvga = a ∗ x+ xoffset
yvga = a ∗ y + yoffset

where a is a scaling factor.
Second, we assume lighting always comes from the monitor’s direction. This

can be thought of as having a flashlight mounted on our pretend monitor-camera
pointed directly at the object, so pixels in the front appear brighter than pixels
in the back.

This assumption allows us to simply use an appropriately scaled z-value as
luminance rather than introducing light ray tracing (this could be an entire
project on its own).

So
(x, y, z)→ pixel[7 : 0] = z[9 : 2]

(where x, y, and z are each 10 signed bits.)
Given all of this, we’d like to rotate around our objects so we can view the

point cloud from many angles.
To start with, we need rotations around the y axis – the equivalent of walking

around an object to the left or right. Given any point and angle, we can calculate
the point’s new position after rotation by applying a rotation matrix to it, so x′

y′

z′

 =

 cos(θ) 0 −sin(θ)
0 1 0

sin(θ) 0 cos(θ)

 x
y
z

Using the new (x′, y′, z′), we can project into the xy-plane and use z for

luminance. Confining ourselves to a single rotation puts a limit on the calcula-
tions required during any clock cycle. This ensures that we can still store the
new points in ZBT memory because that process is extremely time-sensitive.

7

Allowing rotations around the x-axis (looking from the top or bottom of
the object) does not require much more mathematical work. It is simply the
multiplication of another rotation matrix so

 x′

y′

z′

 =

 1 0 0
0 cos(φ) −sin(φ)
0 sin(φ) cos(φ)

 cos(θ) 0 −sin(θ)
0 1 0

sin(θ) 0 cos(θ)

 x
y
z

3 Design and Dataflow

Altogether, the process for scanning an object is as follows:

1. Place object on rotating platform. The object should be small enough to
be contained within the camera image. Additionally, less reflective objects
and a dark environment are ideal for accurately capturing the laser profile.

2. Camera data is streamed through the preprocessing stages where noise is
filtered out and the laser profile is cleaned to the width of a single pixel.

3. The camera coordinates of each of these pixels is then converted to real
world coordinates and stored in ZBT memory.

4. These points are then received from memory and written to a visual RAM
(a bitmap representing the monitor.

5. This visual RAM is then read out through the VGA port to the monitor.

3.1 Block diagram

A more detailed diagram of how the scanner will work can be seen in 6.

4 Hardware setup (Jessy)

Our hardware setup consisted of a circular platform mounted on a 28BYJ-48
stepper motor + stepper motor driver (Figure 7). The motor was controlled by
an Arduino with the Stepper library and made to rotate 10 degrees (57 steps)
every 300 ms. A 65 nm, 5 mW red line laser was mounted at the height of the
platform at θ = 40 deg to the camera and passing through the axis of rotation
(the center) of the platform. We ensured that the line laser was approximately
perpendicular to the platform by placing a paper cup on the platform and
checking that the line aligned with the seam of the cup.

The NTSC camera location and height, as well as the focus on the lens,
were fixed for calibration. We were able to determine the extrinsic parameters
with calibration procedure (described later), and the camera parameters were
left constant after calibration.

8

Figure 6: Detailed flowchart of 3D scanner

5 Image processing (Jessy)

The input from the NTSC camera has a resolution of 640 x 840 pixels, with 30
bits of YCbCr color per pixel. The 3D scanner must distinguish between bright
pixels of the laser line on a black background, so only the 8 bits of luminance
(Y) are necessary for our application.

5.1 Module: gaussian blur

The gaussian blur module averages each pixel with its neighbors to reduce noise
from the camera. In our implementation, we stream the bits directly from the
camera into the module and implement preprocessing in real time.

Figure 8 illustrates the circuitry we used for preprocessing. When pixels are
streamed in from the camera, they are initially passed to the set of 25 registers
holding the 25 values currently under the filter. As the filter moves to the right
in the image, filter values are shifted to the left. Once the pixel passes (0, 4), it
is no longer under the filter and it is passed to a line buffer (which also shifts all
its values to the left every clock cycle) of width img width− 5 to store for the
remainder of the current line. When the filter starts the beginning of the next
line, the pixel at the end of the line buffer will be passed to the second row of
the filter. This ensures that the current values in the filter registers are always
correct, while maintaining pixels that already came from the camera, are not
currently under the filter, but will be used again later as the filter shifts down.

We used 5x5 kernel with standard deviation 2, using coefficient approxima-
tions with denominator 1024 from Matt Hollands and Patrick Yang’s Fall 2015
Project[2]. On each clock cycle, the values that are currently in the filter regis-
ter are multiplied by the corresponding coefficient and summed together. The

9

http://web.mit.edu/6.111/www/f2015/projects/pbyang_Project_Final_Report.pdf
http://web.mit.edu/6.111/www/f2015/projects/pbyang_Project_Final_Report.pdf

Figure 7: Hardware setup, without the camera

result is the blurred value for the pixel currently at location (2, 2), the center of
the filter.

With a 5x5 filter as shown, a latency of 2 ∗ img width + 2 clock cycles
is introduced from when a pixel is first output from the camera to when its
blurred value is calculated. This appears to be the minimum possible to achieve
for real-time blurring, since it is absolutely necessary to wait for the camera
to provide two rows of pixels below the current one in order to calculate the
correct blurred value. The throughput is 1 clock cycle; we continuously output
pixels at the same rate that the camera provides them.

5.1.1 Challenges

Gaussian filters from typical projects in previous years have calculated blurred
values based on pixels stored in memory. However, since our application de-
manded a fast and real-time solution we strove to implement it with only reg-
isters.

Our circuitry relies heavily on knowing the correct image width (since it
parameterizes the width of the line buffers). Although the NTSC camera spec-
ified 640 pixels per line, through the process of debugging we discovered that
this may not be the case for our practical purposes; 2D filtering outputted a
duplicated image that suggested our line buffers were not the correct size. We
reverted to using repeated applications of a long 1D filter to achieve sufficient
noise reduction for our application (viewing a clear laser line). The implemen-
tation seems otherwise correct (see GitHub code), and it may be worthwhile
for future teams to experiment further with the line buffer lengths to achieve a
successful real-time 2D filter implementation.

10

Figure 8: Line buffer for real-time Gaussian blur

5.2 Module: threshold

The threshold module is used to separate the bright laser line more clearly from
a dark background. Given a threshold, the module reassigns white to all the
pixels that are above that threshold, and black to all pixels below. Because we
found that the clarity of the red laser line sometimes depended on the color
of the object itself, we made the threshold adjustable using the labkit buttons,
which would allow us to increment or decrement the threshold by 5 as needed
and immediately see the results. We chose thresholds that allowed us to see the
largest possible laser line without exposing any of the background or introducing
excessive noise from the camera.

This module is also real-time, taking in the (delayed) pixel stream from
gaussian blur and outputting the updated value one clock cycle later.

5.3 Module: skeletonize

The skeletonize module is used to thin a thick laser blob into a line, in order
to increase the precision of depth reconstruction (which calculates the depth of
individual pixels given to it).

At a high level, the skeletonization module takes the pixel stream from
threshold as input and keeps track of the longest block of white pixels on
the line and its midpoint using a simple running count. At the end of each
row, we output row and the midpoint of the longest block on the row. These
pixel coordinates will be converted to a corresponding point in 3-space by the
depth reconstruction module.Figure 9 shows the effect of skeletonization.

White noise on the black background is not problematic, but the module
accounts for potential black noise in the middle of white blocks, which could
disrupt the midpoint calculation. The implementation uses an finite state ma-

11

Figure 9: Pre-skeletonization thresholded (left) and post-skeletonization
(right) image of a cup

chine with three states: WHITE, NOISE, and BLACK. If we are in the mid-
dle of a white block (WHITE) and we encounter a black pixel, we enter the
NOISE state and keep a running count of the number of black pixels we have
encountered since we entered the state. If the number exceeds 3 (an arbitrary
threshold), we end the white pixel count and enter the BLACK state. If the we
encounter a white pixel before the noise threshold exceeds 3, we continue the
previous running count and fill in the noisy pixels, adding them to the running
count.

This module was thoroughly tested in simulation to ensure the timing and
values were correct.

5.4 Module: save frame (Evan)

Up until this point, data has been constantly streaming through the pipeline –
being blurred, thresholded and skeletonized. We don’t want to keep all of this
information, however, because some camera frames will contain laser profiles
that are somewhere in between a 10 degree rotation and others will simply have
redundant information. We just want to keep profiles for every 10 degree mark,
which means we need a way to capture frames at a given interval.

To do this, we want to assert a signal for an entire camera frame – at first in
response to a button. So once a button is pressed, we wait until the next vsync
and hold a latch signal at 1 until the next vsync happens. This latch signal can
then be used to allow / not allow the further passage of data.

We use it by only allowing the writing of coordinates when latch is high.
So just before any data is written, we AND latch with the write signal (which
expresses that coordinates have successfully been calculated and are ready to
be written).

Due to troubles with depth reconstruction, save frame was only successfully
appended to skeletonization, where latch was ANDed with the row done signal
from skeletonize. This was then written to ZBT memory and rendered for
testing.

12

6 Depth reconstruction(Jessy)

The core part of our project involves calculating the corresponding point in 3D
space (a point on the object illuminated by the laser) for a given pixel coordi-
nate. In order to calculate the 3D point properly, we needed to know intrinsic
properties of the camera such as focal length, as well as extrinsic properties such
as its position and orientation relative to the origin of the world coordinate sys-
tem. To find these parameters, we transfer images of a standard checkboard
from the labkit to a laptop and run a calibration procedure in MATLAB.

6.1 Module: rs232 transmit (Evan)

RS-232 is a serial communication standard which we use to transmit data from
the FPGA to a computer. We were provided with a simple Verilog file readily
sent bytes of data (specified by switch configuration) to a laptop at the press
of a button. From the computer side, we used minicom to allow the receiving
of serial data. Transmission also required an RS-232 to USB converter so the
cable could run from the FPGA to my laptop.

6.1.1 Challenges

The most difficult aspect of setting up working RS-232 transmission was the
timing. First, we had to update the baud rate to match the clock we were
using. Originally, the file provided a timing setup using a 27 Mhz clock which
we had to update for a 40.5 Mhz clock. This just consisted of updating the
clock Divisor to match the 115200 baud rate.

With this working, we needed to find a way to send a single frame across
the transmission. To do this, we froze all NTSC writing to ZBT in response
to a button. This button additionally triggered an iteration through all ZBT
memory addresses containing pixel data.

At first, we tried a naive approach of simply displaying pixels from all lines
of ZBT memory. This, however, only produced static because we couldn’t find
an appropriate image width to use when displaying the image in Matlab.

After some experimentation, we found that the vram display module shows
the monitor only reads out addresses of the form

wire[18 : 0]vram addr = 1′b0, vcountf , hcountf [9 : 2];

where hcount and vcount max out at 1048 and 805 respectively and where
each address holds 4 pixels (hence ignoring the last two pixels of hcount). So
these are also the pixels we want to iterate through.

Now given the correct address lines of ZBT, we needed to send over 4 pixels
for each line. This process takes several clock cycles because protocol bits as
well as information bits have to be sent over. So while sending any given bit,
we ran a counter to allow the transmission module enough time to send over
the correct bit.

13

https://help.ubuntu.com/community/Minicom

Altogether, this meant we needed an FSM to keep track of what state we
were in. At a high level, there are two main states – reading from ZBT and
sending pixel data. Within the SEND state, we separated the sending phases for
each of the 4 pixels in a line of memory. Upon entering each of these substates,
we pulse the send signal to start the transmission procedure and wait until a
14-bit counter finishes one full iteration. Next we move to the next pixel, and
once all pixels are finished, return to the READ state so we can read the next
appropriate line of ZBT.

After all of this was done, we got more coherent images on the computer,
but still had to make an adjustment. By careful inspection, we found the pixel
that should appear first in the image was routinely being displayed last in its
group of four, meaning we needed to cycle the order which we were sending each
pixel. After this, the RS-232 transmission was successful.

6.2 Camera calibration

To perform camera calibration, we use Jean-Yves Bouguet’s calibration toolkit.
The procedure involves capturing images of a checkerboard mounted on a rigid,
flat surface in various orientations (Figure 10) [3]. By specifying the actual width
of the checkerboard squares and extracting the corners manually, the toolbox is
able to calculate camera parameters that effectively specify the correspondence
between a pixel and a unit of length in the world.

Figure 10: Twenty-four checkboard images used for calibration and the ex-
tracted corners

The toolbox outputs several intrinsic parameters. The particular ones of in-
terest to us are contained in the intrinsic matrix, which we will use to reconstruct
depth later. For our particular camera,

KK =

 764.374 0 373.826
0 723.787 262.280
0 0 1

Once we have an intrinsic matrix, we can calculate the extrinsic parameters

(translation/rotation) for the camera coordinate system relative to any arbitrary

14

http://www.vision.caltech.edu/bouguetj/calib_doc/index.html

Figure 11: Visualization of the extrinsic parameters: position and orientation
of our camera relative to each calibration checkerboard in a camera-centric

(left) and world-centric (right) view

origin. Figure 11 shows the result of calculating the extrinsics for the calibration
images – we are able to show how the camera is positioned and oriented relative
to the checkerboard in each image.

We captured a picture of a checkerboard with the top-left corner (which we
define as the origin) over the center of the rotation platform, so that the laser
plane would pass through the origin, simplifying calculations. The rotation and
translation matrices to transform the camera coordinate system into the world
coordinate system are:

Rc =

 −0.0679 0.9977 −0.0025
0.9811 0.0663 −0.1819
−0.1813 −0.0148 −0.9833

Tc =

 3.6920
−70.4300
243.2743

6.3 Module: depth reconstruction

We implement the calculations as described in section 2.1 with 36-bit signed
arithmetic throughout the module. The module takes the (x, y) pixel coordi-
nates ((0, 0) at the top-left corner of the camera image) as inputs. The pixel
coordinates are technically each 11 bits unsigned, but we used 12 bits signed
wires so we maintain signed arithmetic throughout the module. The module
outputs 13 bit signed (x world, y world, z world) coordinates ((0, 0, 0) at the
origin of the world coordinate over the center of the platform, as defined during
the calibration procedure).

6.3.1 Challenges

We implemented a working version in MATLAB first. Transferring the code
to Verilog was relatively straightforward, but we needed to approximate the

15

non-integer camera parameters. Similar to the Gaussian blur module, we use
fractions with powers of 2 in the denominators so we shift bits instead of im-
plementing division. The calculation of λ requires dividing by a variable, so
we use the divider.v module provided in lecture to calculate the quotient over
BIT WIDTH = 36 clock cycles of pipelined division. ii The hardware im-
plementation threw us unexpected challenges. In simulation, we compared the
calculated 3D points with those the MATLAB implementation yielded, and
discovered the following problems:

1. Loss of precision. Repeatedly multiplying by decimal factors that were
then truncated by Verilog caused imprecise calculations to build up and
output grossly incorrect values. To resolve this, we multiplied by a power
of two early onto carry decimal places throughout the calculation, and
then shift out the bits right before outputting the final 3D coordinates.

2. Tradeoff between precision and overflow. We initially chose a large
decimal factor, which made our simulation-outputted values much closer
to those from MATLAB. However, they still were as much as 40% off from
the true values, so we attempted to make our fractional approximations
more accurate. In some cases, this visibly caused overflow (as reflected
in coordinates that were suddenly very far off), so for the sake of divider
latency and resource efficiency we decided to settle for less precision by de-
creasing our decimal factor and accepting less-than-ideal approximations.

After experimenting with these modifications in simulation, we were able to at-
tain coordinate calculations that were within 5% of the true values as outputted
by MATLAB.

After synthesizing the module, however, we encountered further problems.
We attempted to debug by outputting to the logic analyzer and hex display.

1. Apparent timing glitches. We created a signal that pulsed whenever
the inputted pixel coordinate changed to signal to the divider that it
needed to start a new calculation. However, often the signal did not pulse
despite the point changing, or the divider did not output a done signal
despite the assertion of a valid start and inputs. We still do not know the
cause of the glitches, and it is uncertain whether this had an effect on the
module’s failure to compute correct values.

2. Incorrect calculations, but no overflow. We ensured that the cal-
culations were all smaller than 36 bits, but probing into the intermediate
calculations of the module revealed that some numbers were still being
truncated.
We are still uncertain of the cause, but our running hypothesis is that al-
though the numbers are small enough to fit in the bit width, multiplying
such large numbers still exceeds timing or resource constraints. Decreasing
the precision of our approximations further and precomputing any values
we could (such as multiplying our coefficients by the decimal factor in
advance, instead of letting it be an adjustable parameter) often fixed the

16

problem.
The debugging process during this particular step was painstakingly slow;
we had to put each of the 36-bit signals involved in the lengthy matrix cal-
culations out to our debugging tools one-by-one, since they were so large.
We had to experiment with different approximations and modifications
until something worked. Sometimes the modifications were arbitrary – in
one case, switching the order of multiplication of two signed numbers of
the same width changed the result to the correct value!

The latest problem we were unable to debug was the divider module out-
putting zero, despite valid inputs of a start pulse and a non-zero dividend and
divider. We did not complete this part of the project.

7 Rendering (Evan)

Given three dimensional coordinates from truction, we’d like to store them in
memory, find their ”display” coordinates, and store them in a visual RAM so
they can be piped out to VGA and appear on a monitor. Additionally, we want
the object to be shaded and viewable from various angles to really highlight the
3D quality of it.

7.1 Memory

In order to render points, we first need some form of visual RAM. This visual
RAM acts as a bytemap for the monitor to read out pixels. Just like in the
example NTSC code, vram display sequentially reads out lines of ZBT to the
VGA output. Where a certain three dimensional point, however, will appear on
the monitor, depends the angle and position from which the monitor is viewing
the object. This means, we need to store the original three dimensional points
as well as a visual RAM. Unfortunately these two memory sources fill out the
two banks of ZBT that we have. Unlike other projects, we aren’t able to store
camera data directly or have a second visual RAM buffer for rendering (to
remove lag and glitches).

7.2 Module: write2zbt

With this in mind, once the (x, y, z) coordinates of a single point come out of
depth reconstruction, we store them in ZBT memory. Based on a data valid
signal from depth reconstruction, we hold increment our write address and hold
our new write data, using the protocol

write data = {6′b0, x, y, z}
where x, y, and z are all signed 10 bit numbers.
There were no significant difficulties in creating this module, however be-

cause of where this module is in the pipeline, it was difficult to test this module
for correctness.

17

7.3 Module: renderer

The goal of the renderer module is to retrieve these (x, y, z) points, then use
the math outlined in 2.2 to translate them into monitor coordinates and pixel
value so they could be used for updating the visual RAM.

7.3.1 Challenges

The greatest challenge here didn’t come from the implementation of the mod-
ule, but instead from our definition of coordinate systems. Without really any
thought, I defined right on the monitor to be positive x, down on the monitor
to be positive y, and towards the viewer to be positive z, this meant that first,
I had to translate the (x, y, z) from the world coordinate system in depth re-
construction to monitor coordinates, and second I had to rotate in reverse. The
rotation I mentioned in 2.2 only works for right-handed coordinate systems, so
instead I had to use x′

y′

z′

 =

 cos(θ) 0 sin(θ)
0 1 0

sin(θ) 0 −cos(θ)

 x
y
z

Additionally, the actual implementation of the math had to be played with

until it got into a working form. Altogether, this required lots of testing with
various point clouds to ensure the correct effect occurred.

7.3.2 Module: virtual camera

In order to perform the rotation, we needed to control a user’s angle around
the object. Additionally, we needed to control horizontal and vertical offsets
so users could center the object in the screen. These were all taken care of
by the virtual camera module. For each of these actions – angle, left offset,
and right offset, I created an incrementer module which incremented and
decremented each of these according to a step size, initial value, and max value.
When the appropriate button (for example buttons 0 and 1) are held down long
enough, the value (angle) is incremented or decremented by step size. If the
value ever goes past 0 or above max, it gets wrapped around.

7.3.3 Module: trig LUT

Once we have an angle, we need to evaluate cos(θ) and sin(θ) to do the rotation
calculation. Since Verilog can’t evaluate trigonometric functions, I created a
lookup table to just grab the value. I calculated both cos(θ) and sin(θ) for
every angle multiple of 5 from 0 to 255, then multiplied the result by 64 to
maintain precision. Later in renderer I shift 6 bits to the right to renormalize
the value.

18

7.3.4 Blackout

An additional effect of rotations was that although rotations meant writing to
a new point, the visual RAM still had the old monitor position of the point in
memory. This meant that as you rotated, points would leave ”trails” of where
they had once been as a result of rotation. In order to solve this, I inserted a
short blackout whenever angle, left offset, or right offset changed. This meant
that when any of these values changed, a blackout signal switched all ZBT
writing to simply black values for several frames. Though theoretically, a single
frame should be enough, lots of noise appeared on the screen after a blackout.
This prompted increasing blackout time to several frames. Further investigation
could be done into decreasing blackout time, as it did cause a noticeable delay
in rendering (whenever you rotate, the screen appeared black for a couple tenths
of a second), but we did not have time to make this smoother (also again, we
did not have a second ZBT memory to use as a visual RAM buffer).

7.4 Module: zbt controller

With renderer complete, we need to update the second ZBT memory bank (the
visual RAM) with the appropriate pixel. First, we determined the correct line
of ZBT memory we needed to edit

addr = {y, x[9 : 2]}

because this mirrors the addresses read by vram display

addr = {vcount, hcount[9 : 2]}

This led to issues, though, because when multiple points appear at the same
monitor coordinates, we want only the closest (brightest) point. This naive
approach doesn’t consistently deliver the brightest pixel value, instead switching
between the multiple valid pixel values.

To fix this, we introduce an extra read request. We read the ZBT line we
want to write to then compare the old pixel value with the new, and on the next
write cycle, write whichever pixel value is higher to memory (while maintaining
the rest of the pixels on that line of ZBT).

7.5 Timing

Each of these modules was fairly easy to create individually, but the biggest
challenge was integrating them all together so they worked out timing-wise.
Trying to keep with the original sample NTSC ZBT interaction, we divide up
clock cycles based on the value of hcount[1:0]. During hcount[1:0] = 2, write2zbt
writes to the point cloud ZBT. In the following cycle, on hcount[1:0]=1, renderer
reads the valid point from the point cloud ZBT. zbt controller needs to use this
information to update its address then read from the visual RAM ZBT so it can
compare pixel values to maintain the brightest pixels in front. It does this in the

19

following cycle on hcount[1:0]=1, then on hcount[1:0]=2, ZBT controller uses
this information as well as the old point information to write to the visual RAM
ZBT. Additionally, vram display is reading on hcount[1:0]=0 out to VGA.

Developing this timing scheme took a lot of precision and planning. Being
one clock cycle off in almost any direction led to a complete failure of rendering.

7.6 Testing

In order to test the renderer, I wrote a manual write2zbt module which acts like
a write2zbt module, but writes points of my choice into memory. At first, this
was limited simply to 4 points on a diagonal, but as the rendering developed,
I could test overlayed points with different z-values, and in the end shapes
generated in Python to test rotations. Unfortunately, I was unable to take any
pictures of these objects. If I had time, I planned on generating a more complex
point cloud, like a duck, to demonstrate the full powers of the renderer.

Like write2zbt, this module output a write address as well as a write value.
The write address was incremented every 4 cycles (so that it would be held for
an entire hcount cycle, then a large case switch was used to select write data
based on address.

This module was extremely useful for testing each part of the rendering
pipeline.

8 Conclusion

While we were unable to complete our project, we feel like we made a lot of
progress towards completing a working 3D scanner. We wish we could have
another day or two to complete the project and think that if we did, we likely
would be able to finish, but given the time constraints did almost as much as
we could to complete the project.

At this point, all parts of the project are working except the depth recon-
struction math. As the math does require precise floating point values and
many multiplications and divisions, it is a difficult process to debug, especially
as we’ve started to see it become dependent on Verilog’s synthesis procedure.
Once this module is working the 3D scanner altogether will be functional be-
cause all the preprocessing is completed and verified and all the rendering is
completed and verified.

Overall, we are glad that we took on this challenging project. At first when
we proposed this project, we didn’t have a good idea how to implement it –
how to take it from an abstract idea to hard modules that we could actually
code. This entire process helped us learn how to break larger problems into
much smaller ones that were more achievable and verifiable.

For example, the process in which we developed the renderer consisted of
first simply moving data from the first ZBT to the second and then rendering
it. Next we included a dummy module (which would become zbt controller) to
take data from the first ZBT and write to the second. Next, we created the

20

manual write2zbt module to render my own points to the screen. From there
we continued to build up in extremely small steps so that we didn’t have to
worry about testing large modules and trying to find where they broke.

We also both feel that we learned a lot about how to think in a data / signal
processing mindset. Both coming with more of 6-3 backgrounds, we were used
to high level, abstract thinking. This project forced us to really consider how
data is physically flowing through our system and about what should happen
to it at each stage.

Last, we are both glad that we were really challenged by this project. We
don’t think we would’ve learned this much if we had chosen a less interesting,
but easily more practical project. The entire process taught us about FPGAs,
but also about teamwork and designing and planning.

For any future students, we advise you to stay organized and communicate
well, just like in any team setting. We also highly recommend thinking about
developing testing frameworks for each little development step, whether visual
(through the LED display or monitor) or through a testbench, because once a
module is completed, it can be deceptively difficult to see where things went
wrong.

To end, we would like to thank Gim, Victor, and Shawn for advising the
project throughout the process and being so dedicated to our success, from
thinking through the debugging process with us to having faith in our ambitious
project.

9 References

[1] http://mesh.brown.edu/byo3d/notes/byo3D.pdf
[2] http://web.mit.edu/6.111/www/f2015/projects/pbyang Project Final Report.pdf
[3] http://www.vision.caltech.edu/bouguetj/calib doc/index.html

21

	Introduction
	Technical Background
	Depth Reconstruction
	3-D Rendering

	Design and Dataflow
	Block diagram

	Hardware setup (Jessy)
	Image processing (Jessy)
	Module: gaussian_blur
	Challenges

	Module: threshold
	Module: skeletonize
	Module: save_frame (Evan)

	Depth reconstruction(Jessy)
	Module: rs232_transmit (Evan)
	Challenges

	Camera calibration
	Module: depth_reconstruction
	Challenges

	Rendering (Evan)
	Memory
	Module: write2zbt
	Module: renderer
	Challenges
	Module: virtual_camera
	Module: trig_LUT
	Blackout

	Module: zbt_controller
	Timing
	Testing

	Conclusion
	References

