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1 Introduction

The demand for fast and cheap 3D scanning has skyrocketed since 3D printing
was popularized recently on the mass market. Previously an expensive process
reserved for specialized applications such as animation or industrial design, 3D
scanning has expanded to day-to-day purposes such as scanning objects, people,
and scenes so they can be manipulated virtually before re-printing into new
models.

Potential implementations include stereoscopic imaging, photogrammetry,
and triangulation from laser profiles, to name a few. The core technical challenge
for most of these 3D scanners lies in reconstructing 3D data from typical 2D
data, such as images from conventional cameras. This task is both complex and
computationally intensive.

In this project, we will implement a fast, hardware-based version of a 3D
laser scanner, using triangulation to reconstruct a point cloud for the object
given the parameters for the physical setup and images from a NTSC camera.
The 3D point cloud will be rendered on the display in real-time.

2 Design

2.1 Hardware setup
2.1.1 Parts Needed
o (1x + 1 extra, $4.99 ea) laser line module)

o (I1x + 1 extra, $8.49/two) 28BYJ-48 stepper motor + ULN2003 driver
boards

e (1x) Arduino

e Materials to build fixed laser + camera mount



2.1.2 Scanning setup

The object to be scanned will be centered on a rotating platform mounted on
top of a stepper motor. It would be possible to control the motor with the
FPGA to synchronize the rotation and camera capture more precisely, but as
we don’t foresee synchronization issues, for simplicity we will use an Arduino
to control the motor rotation. The setup can thus be thought of as a rotating
object (self-contained, black box to the FPGA) and the camera setup, image
processor, and model renderer on the FPGA.

At regular intervals, the platform will rotate a fixed number of degrees (to
be determined empirically), allowing the camera to capture uniformly spaced
profiles of the object illuminated by the laser line. We will construct mount for
the laser and camera that will fix their relative angles and positions so the setup
does not need to be re-calibrated.

Additionally, the object will be scanned in the dark to minimize noise and
increase the contrast between the laser line and the rest of the environment.
This will greatly simplify later image processing.

2.2 Camera Capture

The main function of the camera setup will be to record luminance values into
memory for further processing. With this hardware setup, a camera will be
mounted in a fixed known location. The camera will go through an offline
calibration procedure so the correct intrinsic parameters can be passed to the
processing phase.

2.3 Image processing
2.3.1 Preprocessing

In order to prepare the raw camera input for the more complex algorithms
further down the pipeline, we perform a series of preprocessing operations to
the black-and-white camera input:

1. Noise reduction. In order to make the system more robust to camera noise,
we will apply a Gaussian blur to the image. Each pixel will be recalculated
as a weighted average of its neighbors.

2. Thresholding. We will use an iterative thresholding algorithm to extract
the laser outline from the rest of the background based on pixel brightness.
The process involves choosing an initial threshold, partitioning the image
based on the threshold, calculating the mean value for each part of the
partition, and recalculating the threshold accordingly.

3. Skeletonization. We will thin the outline of the laser line by applying the
skeletonization structuring elements across the image repeatedly.
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Figure 1: Figure taken from [1].

2.3.2 Depth reconstruction

Given a pixel in the processed image, we translate its image coordinates to cam-
era coordinates by applying the transformation between the camera and world
coordinates (Figure 1). We can express this in terms of the extrinsic parameters
of the camera, location and orientation, as represented by a translation vector
T and a rotation matrix R wrt. world coordinates. If pc, pyw are the 3D vectors
representing the point in camera and world coordinates, respectively, then

pc = Rpw +T

We model the setup as an intersection between the plane of laser light and
the camera rays to the projected laser line (the object profile) to calculate pc
(Figure 2). The pixel in 2D coordinates is simply the projection of the point in
the image plane.
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Figure 2: Figure taken from [1].

We also note that we will need to correct for the intrinsic parameters (e.g.
focal length) of the camera during this stage of the process.Both the extrinsic



parameters of the camera (location and orientation with respect to the world
coordinate system) and the intrinsic parameters can be determined with a one-
time calibration procedure.

2.4 Rendering

Once we have a representative point cloud, we will display the the cloud on a
640x480 monitor. Modeling the screen as a virtual camera viewing the point
cloud, users will be able to rotate around the cloud, viewing the object from
different angles. Fixing the the user’s distance, we can determine where a 3D
point (x,y, z) should end up on the monitor (z’,y’) by a simple rotational change
of bases.
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Figure 3: High-level block diagram.

4 Module Implementation

4.1 Camera capture module (Evan)

Since the main functionality of the camera module is to simply turn a video
stream into luminance values, the modules will be roughly the same as the
sample NTSC to ZBT files provided. These files will have to be adjusted to be



compatible with VGA transmission. This module can be tested by displaying
the luminance data in the ZBT directly to the screen.

4.2 Preprocessing module (Jessy)

The filtering, thresholding, and skeletonization modules take image data from
the first bank ZBT memory as input and output the processed image. They
can be tested by inputting artificially generated images, displaying the output
on the VGA display, and checking that they are processed as expected.

4.3 Camera calibration module (Jessy)

This module will be used for the one-time checkerboard calibration procedure.
It will calculate the camera intrinsic and extrinsic parameters and output the
rotation and translation matrix for the camera coordinate system, relative to
world coordinates.

4.4 Depth reconstruction module (Jessy)

The depth reconstruction module will take camera transformation and rotation
matrices (from the previous module) and the processed image (from ZBT mem-
ory) as input. It will output a set of 3D coordinates to the second bank of
ZBT memory, to be processed by the renderer. Testing this module will require
checking that, given 2D pixel locations for which we know the 3D coordinates
(e.g. the center of the world coordinate system at the center of the scanner, the
camera itself), the coordinates are indeed calculated correctly.

4.5 3D rendering module (Evan)

The main module in the 3D renderer will take in the camera position as well
as data from the point cloud ZBT and transform the data into 2D points to be
displayed in the monitor. This means first, a virtual camera module is needed
to specify the (6, ¢) position of the virtual camera in response to user input (up
and down buttons), and a VGA display module is needed much like in lab 3 to
display the points generated from the transformation in the main module. Since
this won’t be fast enough to be directly displayed, these transformed points will
be passed into a buffer to be displayed during the next cycle.

This can be tested iteratively, starting with simply rendering a self generated
set of points (like a cube) from a fixed position (maybe even before this, a serial
connection can be used to test the points generated by the main 3D rendering
module in a Matlab plot). Next, the virtual camera can be tested on the point
cube, and last, the ZBT timing integration can be tested via testbench.



5 Stretch Goals

The main stretch goal we have is creating a mesh from the point cloud and
rendering that mesh. A variety of surface generation (for example, Delaunay
triangulation) exists to generate surfaces from point clouds. These polygons
would then need to be stored (likely via their vertices), then rotationally trans-
formed according to the virtual camera, and finally shaded with some basic
shading.

Separate stretch goals include allowing non-fixed virtual camera distance
from the object (so users could zoom in and out) or gesture-controlled virtual
camera movements.

For the camera capture / image processing sections, a stretch goal is line
extraction without darkness (so, recording color data for the camera and per-
forming hue filtering to select the laser).
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