3D Scanner

Jessy Lin & Evan Tey 6.111 Final Project 2016

Problem

Overview

- Sweeping laser line scanning
 - Hardware platform
 - Laser line frames
 - Point cloud construction
 - 3D Rendering

Camera

NTSC camera:

use luminance values to extract laser line profile

FSM chooses frames later in processing pipeline

Preprocessing

Camera

Processed frame

Gaussian Blur

Take weighted average of neighbors to reduce noise

 $\frac{1}{16} \begin{pmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{pmatrix}$

Threshold

Binary threshold (manual on first pass) to select illuminated pixels

Skeleton

Thin rough laser outline to line with skeletonization structuring elements

Depth reconstruction

Calculate intersection between plane of laser light and camera ray for each point

Depth reconstruction

Transform from camera coordinates to world coordinates

3D Renderer

Virtual camera transformations:

- Fixed POV projection
- Rotate around object (fixed z)

 $R_x(\theta) = \begin{vmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{vmatrix}$ $R_y(\theta) = \begin{bmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{bmatrix}$ $R_z(heta) = egin{bmatrix} \cos heta & -\sin heta & 0 \ \sin heta & \cos heta & 0 \ 0 & 0 & 0 \end{bmatrix}$

Memory

Two Frame Buffer

- Write
- Display

Stretch Goals

- Additional transformations (zoom)
- Surface mesh (triangulation/shading)
- Gestural interactions with object

Schedule

