
6.111 Proposal

Natalie Mionis and Tianye Chen

October 2016

1 Introduction

With Touch and Go, users can draw a path on a touch screen and watch as a RC toy tank follows the path
in real time. We will use an Xilinx FPGA and a camera mounted on the ceiling to provide real time position
and angle feedback of the car. The dimensions of the camera field of view correspond to the dimensions of
the touchpad. Movements of the finger will be proportional to tank movements on the field. A simple user
interface will display the path the user is drawing on the VGA display. The division of work on this project
is as follows:

1.1 Natalie

1. video decoder

2. ntsc to zbt

3. RGB2HSV

4. filter

5. frame buffer

1.2 Tianye

1. touchscreen to vga

2. find finger path

3. tank direction and position

4. get direction

5. direction generator

6. get speed

7. speed generator

1.3 Shared

1. Remote Control

2. Hardware Issues

1



2 Goals

Baseline Goals: When we provide user input via the touch screen, we want the car to roughly follow the
path traced. There will likely be some delay in the tank’s reaction time, so the tank won’t trace the path in
exact real time, but to the human eye, it should be pretty close.
Reach Goals: Time permitting, we hope to display the camera’s feedback in real-time on the monitor. We
would like to overlay the path drawn on the touch pad onto this video feed. As the tank covers the path
drawn, the path could disappear from the screen.

2.1 Milestones

• Display the path drawn on the touch screen on the VGA monitor

• Be able to track the tank’s angle and position

• Send the tank data from the touch screen

• Hardwire signals into the tank’s remote controller so the car follows the path

3 Modules

1. video decoder
This module’s job is to convert the input signals from the camera, outputting a 30 bit YCrCb value.
This module will also output hcount and vcount to communicate the location of each pixel.

2. ntsc to zbt
This module will take in the 30 bit YCrCb value from the video decoder, as well as hcount and vcount,
to generate an address in ZBT memory. This module will then convert the 30 but YCrCb value to a
24 bit YCrCb value by truncating the two least significant bits. Then, it will convert YCrCb to RGB
using a 24 bit conversion. The module will then further truncate two more bits, and store an 18 bit
RGB value into the ZBT memory. The ZBT memory can store 36 bits at each address, so we will store
two RGB pixels at each address.

3. RGB2HSV
This module will take a 24 bit RGB value and output a 24 bit HSV value. We will pad the 18 bit RGB
values stored in ZBT memory to make them 24 bits. We are choosing to use HSV because we can filter
pixels based on a threshold of their hue, which will reduce noise from different lighting situations or
angles.

4. filter
This module takes in the 24 bit HSV values from the RGB to HSV converter as well as hcount and
vcount. There will be red and green tape (or paper) on the RC car, and this module will use filters
based on the hue of a pixel to either include or exclude a pixel in further calculations of the car’s angle.
Having filtered out the pixels below the threshold, the filter will take the center of mass of all the red
and green pixels by summing their x and y values, and dividing by the number of pixels included. The
module will output the two (x,y) values for the center of mass of the red and green parts of the car.

5. frame buffer
The frame buffer will store the last eight center of mass values in a circular buffer, and calculate the
average of the eight values stored in the buffer. This will hopefully reduce noise in the center of mass
readings since we will be averaging the last eight values, which will reduce the effect of possible outliers.
The output of this module will be the average position of the car and a vector of its angle, all calculated
from the (x,y) center of mass points.

2



6. find finger path
The capacitive touchscreen will be the source of user input. The capacitive touchscreen communicates
its x and y location through I2C. We will to decode the I2C messages to obtain the X and Y location
of the finger. This module will sample the X and Y at a constant rate and store the X and Y positions
in a buffer. The X and Y values will be 9 bits wide each, and so each X and Y buffer will be 18 bits
long.

7. tank direction and position
Calculates the angle of the tank, based on the detected front and back of the car. The angle calculations
will be arithmetically intensive(several squares) and will need to be pipelined and therefore delayed in
clock cycles in order to meet timing constraints. The angle will be referenced to the horizontal line
that intersects the tank position and be presented in degrees up to 1 decimal point. It also stores the
X Y position of the tank in two registers that are 9 bits wide. The degree will be stored in a register
9 bits wide

8. get direction
Calculates an angle between the last value in the find finger path buffer and the current tank po-
sition, referenced to the horizontal line that intersects the tank’s position. As with calculating the
tank direction, calculating the finger direction will also be arithmetically intensive, and will need
to be pipelined. The module compares the calculated angle with the tank angled calculated in
tank direction and position, and outputs a direction that is proportional to the difference. The degree
will be stored in a register 9 bits wide

9. direction generator
This module will generate a signal to control the remote control so that it will move the tank to the
desired direction as calculated in get direction.

10. get speed
Calculates the speed in ft/sec at which the tank should move to the next target position by finding
the euclidian distance between the last two values in the find finger path buffer and dividing it by the
sampling rate

11. speed generator
This module will create a PWM signal to send to the remote controller of the car to control the speed
of the vehicle. The input will be the desired speed of the vehicle, and the output will be the PWM
signal. The speed will be calculated within the get speed module, and will be in units of feet/second,
bit shifted to the right to avoid working with decimal values. We will run tests with the RC tank to
measure its maximum physical speed given the maximal speed input on the remote controller. With
this measurement, we can calculate the PWM cycle time needed to drive the car at a particular speed.
The PWM generator module will do this calculation and create the appropriate PWM cycle to send
to the remote controller as an output.

12. control fsm
The control fsm determines the state of the tank and the physical action of the tank. The tank will
first be initialized to a starting point by the user when they tap once on a certain point on the screen.
Any finger inputs before the car has reached its specified starting point is ignored. When the tank has
reached its initialization point, it will then be ready to receive commands from the finger and start
driving. When the tank is in driving mode, the remote control receives speed commands from the
speed generator and the angle from direction generator. When the car has reached it’s desired next
position, it waits for the next set of speed generator and direction generator commands. When the
user lifts the finger from the touchpad, the tank enters a state where it waits for an initialization (single
touch on the screen) to restart the process over again.

13. touchscreen to vga
We will display that the path the finger traces in real time on a VGA Screen. The module will map
the X and Y values from the output of find finger path onto corresponding pixels on the VGA screen.
The background will be white and the path that the person traces will be displayed in an RGB color.

3



The mapping will maintain the touchscreen ratio of 3:4. Whatever falls out of range of the touchscreen
will be displayed as black on the VGA Screen. The path that the person draws will also be thicker to
accommodate for the enlarged picture displayed on the VGA screen.This module will generate XVGA
signals.

4


