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Abstract 

Lightsaber Training is an augmented reality game, where the user holds a device representing a 

lightsaber handle, while a lightsaber blade is projected on-screen. The user can then swing the 

handle around and attempt to hit as many objects on-screen as possible with the blade in a 

given time frame. This is accomplished via image tracking from a video feed, a wireless IMU 

embedded in the lightsaber handle, a button to extend and retract the blade, and generated 

sprites. The project’s three primary modules are the sensor data, which includes wireless 

accelerometer and gyroscope data and button inputs; video, which includes camera input and 

image thresholding; and gameplay, which includes blade projection, sprites, and game 

mechanics.  
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Overview 

We implemented an augmented reality game in which a user, wielding a lightsaber handle, 

attempts to hit objects displayed on-screen. Our project uses image tracking from a camera 

connected to the FPGA labkit and IMU data transmitted via bluetooth from the handle to project 

the lightsaber blade on-screen, overlaid against the real-time video stream from the camera. A 

button on the handle also lets the user extend and retract the blade. The user’s movements are 

continually tracked so that the projected lightsaber blade moves with the handle. Gameplay 

includes sprites that appear on-screen and a scoring system that tracks when the user hits a 

sprite with the lightsaber blade within a given time frame.  

High-Level Block Diagram 
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Part 1: Sensor Data (rsyang) 

Overview 

The first main part of our project was to wirelessly transmit data from the lightsaber handle and 

decode it on the FPGA. Specifically, the data that was transmitted was all 3 axes of the 

gyroscope and accelerometer data from the IMU (MPU9250) and the states of the blade button 

and the gyroscope drift reset button. The data was encoded by an Arduino Nano, sent out via a 

Bluetooth SMiRF Silver transmitter module, received by a Bluetooth SMiRF Silver receiver 

module, and then wired directly into the FPGA. The data was then decoded on the FPGA and 

filtered before being sent to the necessary video and gameplay modules. 

Block Diagram 
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Schematic 

 

Serial Protocol 

Serial Port Profile (SPP) 

The serial protocol used to communicate via bluetooth was SPP with zero parity bits. In other 

words, each packet in the protocol contains exactly 10 bits: 1 start bit (logic low), 8 data bits 

(LSB to MSB), and 1 stop bit (logic high). For this project, the communication rate used was 

9600 baud. 
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Data Representation 

For the IMU that we used (MPU9250), the accelerometer data ranged from -2g to +2g and the 

gyroscope data ranged from -250 deg/s to +250 deg/s. To retain some of the IMU’s precision 

but not create too much overhead, I decided to use 8-bit values to represent the magnitude of 

each axis of the accelerometer and gyroscope data. To make it easier to handle negative 

values, I included an additional 9th bit as a sign bit, where 1 indicates a negative number and 0 

indicates a positive number. 

Serial Data Encoding / Decoding Protocol 

I needed to transmit six 8-bit numbers with 1-bit signs each for the IMU data and 2 bits for the 

button data, which meant that a total of 56 bits of data needed to transmitted every cycle. Since 

it was important to know the order of the packets to decode the data, I needed to reserve the 

LSB of each packet to signal if the packet was the first packet (1) or not (0). Because of this, 

each packet could only transmit 7 bits of useful data at a time. Since there are a total of 56 bits 

of data to be transmitted, that meant that each cycle of data transmission would require 8 

packets. To split up the 56 bits of data into its 8 packets, I used the following protocol: 

 

Packet 1: [first 7 MSB of magnitude of x-axis accelerometer data] 1 

Packet 2: [first 7 MSB of magnitude of y-axis accelerometer data] 0 

Packet 3: [first 7 MSB of magnitude of z-axis accelerometer data] 0 

Packet 4: [first 7 MSB of magnitude of x-axis gyroscope data] 0 

Packet 5:  [first 7 MSB of magnitude of y-axis gyroscope data] 0 

Packet 6: [first 7 MSB of magnitude of z-axis gyroscope data] 0 

Packet 7: [LSB of accelerometer x, y, z, gyro x, y, z, respectively] [blade_button] 0 

Packet 8: [sign bit of accelerometer x, y, z, gyro x, y, z, respectively] [drift_reset] 0 
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Verilog Modules 

read_data 

The read_data  module takes in the serial receiver_data and then decodes and stores 

the raw data. Specifically, the module is composed of two FSMs. The first FSM keeps 

track of the current packet number that is being read by the FPGA. Once this FSM 

detects a 1 on the LSB bit of the packet to signal that it’s the first packet, a second FSM 

is triggered to read in each bit of the packet. When all of the bits in a particular packet 

are read, the second FSM signals to the first FSM to store the each bit value in the 

corresponding variable as per the packet protocol defined in the Serial Protocol: Serial 

Data Encoding / Decoding Protocol  section of this report. The outputs for this module are 

the raw data for the IMU and buttons. 

 

sample_timer 

The sample_timer  module is used to signal when the FPGA should sample the value of 

a bit. The timer is signaled to start by the read_data  module at the beginning of every 

packet. Then, the timer asserts the enable signal once every bit to signal the read_data 

module to read the value of the bit. After the stop bit of a packet, the timer stops running, 

i.e. the enable signal remains deasserted until the next start_timer signal from the 

read_data  module. 

 

debounce 

The debounce  module is used to debounce the raw button data, i.e. raw_blade_button 

and raw_drift_reset, from the bluetooth receiver. The debounced blade_button output 

signal is sent to the Gameplay part of the project (see Part 3: Gameplay), and the 

debounced drift_reset output signal is sent to the process_data  module. 

 

process_data 

The process_data  module is used to filter the raw accelerometer and gyroscope data 

with a moving average filter. To deal with the signed aspect of the data, the format of the 

data is converted into two’s complement, i.e. signed form, from its original 8-bit 

magnitude with a 1-bit sign bit form. Once this is done, the data is averaged and the 
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filtered average values of all three axes of the accelerometer and gyroscope data are 

outputted. These outputs are then sent to the Video part of the project (see Part 2: 

Video). This module also uses the debounced drift_reset signal to calibrate the 

gyroscope. Every time the drift_reset button is pressed, the process_data  module stores 

the current gyroscope data values for all three axes as the new ‘zero’ for the gyroscope. 

This ‘zero’ value is then used as an offset for all incoming raw gyroscope data. 

Arduino 

Two Arduino Nanos are used in this project. The first Arduino is used to configure the Bluetooth 

SMiRF Silver transmitter module as the master and provide the module with data to send, as 

per the packet protocol defined in the Serial Protocol: Serial Data Encoding / Decoding Protocol 

section of this report.  The second Arduino is used to configure the Bluetooth SMiRF Silver 

receiver module as the slave. (Note: the slave Bluetooth module must be powered on before the 

master Bluetooth module in order for the modules to connect with each other.) 

 

The Github project link that contains both the transmitter and receiver Arduino code can be 

found in the Appendix. 

Logic Level Differences 

The IMU, Bluetooth modules, and FPGA all operate on a 3.3V logic level; however, the Arduino 

Nano operates on a 5.0V logic level. At first, I considered using level-shifters between all logic 

levels, but this turned out to not be absolutely necessary.  

 

The Arduino Nano accepts digital inputs as high for voltages greater than 3.0V. Since the IMU 

I2C lines were not expected to deviate very much from their specs of 3.3V logic high, the Nano 

still was able to properly read the IMU I2C input, so logic shifting was not needed there.  

 

To transmit the data wirelessly, the Nano had to send 5.0V logic level serial signals to the 

Bluetooth transmitter module. This technically was over the maximum acceptable input of the 

Bluetooth module, but it was within 1.0V of the maximum allowed voltage so the module was 

still able to function. (If this project were to be further refined, level-shifting circuitry should be 
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added between the Nano and the Bluetooth transmitter to not unnecessarily stretch the 

capabilities of the Bluetooth module.) 

 

On the receiving end, since the Bluetooth receiver was outputting the received serial signals at 

a 3.3V logic level, there was no problem with directly hardwiring these signals to the FPGA, 

which also operates at a 3.3V logic level. 

Power 

To power the transmitter circuitry in the lightsaber handle without a tether, a 9V battery is 

connected to the input of the Arduino’s onboard voltage regulators. Since the transmitter 

circuitry draws a small amount of current (on the order of a couple hundred mA), no additional 

regulators or power circuitry was needed. In addition, the battery is connected to a SPST switch 

for the user to turn on/off the lightsaber handle’s circuitry. 

 

Since the receiver circuitry is stationary and only needs to sit on the desk, the receiver Arduino 

is powered via a USB cable connected to a laptop. 

Challenges 

The biggest challenge for me was understanding SPP and developing a data protocol to 

communicate all of the IMU and button data wirelessly. First, I worked on understanding the 

Bluetooth SPP protocol by trying to send data wirelessly from the Arduino to my laptop. It took a 

while to figure out the necessary configuration for this to work. Once that was up and running, I 

had to design a packet data protocol to ensure that all the data I wanted could be transmitted in 

as few packets as possible. 

 

After I had come up with the packet data protocol, I had to first write up the transmitter Arduino 

code and make sure the data was transmitting correctly. Only after I got this working was I able 

to even start writing Verilog modules to interface with the received data as without successfully 

transmitting data, I would have no way to test my code or have enough knowledge to properly 

design my Verilog modules. 
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Once I got the Arduino code working, a lot of my time was spent refining the read_data  module. 

My original design had only used one FSM to read in all 8 packets per cycle, but this ended up 

with greater than 90 states. So, I had to rethink my design to read in data and that’s how I came 

up with the nested FSM design to greatly reduce the total number of states needed. After the 

high-level design of this module was completed, it still took many cycles of refinement to 

eliminate all of the bugs, especially timing-related bugs, to properly read in the receiver data. 
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Part 2: Video Processing (lcarter) 

Overview 

The central part of this project was to process NTSC video data to extract the position and size 

of the lightsaber hilt to the gameplay module. To do this, the video was read in, buffered through 

ZBT RAM, and processed via HSV thresholding and center-of-mass averaging to determine the 

centroids of the pink and green hilt ends. This data was then passed on to the gameplay 

module. 

Block Diagram 
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Verilog Modules 

ntsc_decode 

This module was provided by the staff, and implements an FSM to read in NTSC data 

as 10:10:10 bit YCrCb data. 

 

ycrcb2rgb 

This module was generated by Xilinx IP Core to convert YCrCb data from the NTSC 

stream to RGB data for conversion to HSV and for display. 

 

ntsc2zbt 

This module was provided by the staff to buffer ntsc video through ZBT ram. However, 

the staff implementation buffered only 8 bits from the Y channel of the YCrCb video 

stream. Since we wanted to use color, I modified this code to buffer 18-bit RGB data 

instead. YCrCb was converted to RGB through a Xilinx IP Core module on the input, 

then ntsc2zbt was modified to store 2 pixels per address rather than 4. This allowed for 

the greater bit depth required for 18-bit RGB instead of 8-bit Y. 

 

zbt_6111 

This module was also unmodified from the staff implementation, but provided a pipelined 

ZBT ram writing module. 

 

rgb2hsv 

This module was also provided by the staff, and supplied with an IP Core divider module. 

This module converted the stored RGB data to HSV data for easier threhsholding. It is 

easier to consider thresholding over HSV than RGB, because human vision more closely 

approximates HSV than RGB. Furthermore, pink and green are further from one another 

in the HSV color space than the RGB color space, allowing for easier separation. 

 

A pair of 16 bit dividers from Xilinx IP Core was required for each instance of this module 

to perform the linear transformation. 
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hsv_threshold 

This module was the core of the video processing, taking in a stream of HSV data and 

thresholding it versus preset thresholds to detect green and pink values indicating that 

the pixel is part of the end of the lightsaber hilt. This module also performed the 

frame-averaging, which did center-of-mass averaging on the selected pixels. Pink and 

green pixels positions were averaged in x & y over each frame to determine the center of 

the x and y pixels. In future iterations, this should be replaced with proper blob detection 

- the provided NTSC cameras turned out to be noisy enough that a relatively large 

number of random pixels were included in the thresholding, even after optimizing the 

thresholding constants. It was not anticipated that the provided NTSC camera would be 

so noisy, so we figured simple center-of-mass averaging would be sufficient until testing 

it. We had further difficulties filtering for pink values especially, since the provided NTSC 

camera had quite low saturation, which made the pixel values for skin and the red end of 

the lightsaber hilt very similar, even when viewed in the HSV color space. This added a 

significant amount of noise if the Jedi user did not wear the proper hooded brown/black 

cloak. 

 

In particular, the thresholding was performed with min_hue, max_hue, min_val, and 

min_saturation. These 4 values allowed a relatively intuitive control over thresholding 

for pink and green pixels. Furthermore, Switch 6 was employed to provide an overlay of 

which pixels were being selected, along with an overlay of the x & y values selected as 

the average. This helped significantly for debugging dumb mistakes. For example, when 

writing the averaging, I initially forgot to reset x_sum and y_sum on every frame refresh, 

which was revealed by the selected x and y values increasing on every frame refresh, 

even when only a few pixels met the thresholding criteria. 

 

These 4 thresholding values were applied as follows for green: 
   assign green_detected = (in_frame && 

      cropped_hsv[23:16] > green_h_low && 

cropped_hsv[23:16] < green_h_high && 

      cropped_hsv[15:8] > green_s_low && 

cropped_hsv[7:0] > green_v_low); 
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And for pink: 
   assign pink_detected = (in_frame && 

      (cropped_hsv[23:16] < pink_h_low || 

 cropped_hsv[23:16] > pink_h_high) && 

      cropped_hsv[15:8] > pink_s_low && 

cropped_hsv[7:0] > pink_v_low); 

 

In particular, note that only in_frame pixels are allowed (in_frame was set by a simple 

cropping function). Also note that since pink is in the range of the 0/360 degree mark on 

the hue circle, values were OR’d between two extrema to include the 0/360 rollover. 

 

Originally, I had intended to put a 3-5 frame low-pass FIR filter on the centroids to 

minimize the effects of noise. However, my implementation of this had bugs that I could 

not resolve in time, and furthermore the extreme amount of noise proved too much to be 

effectively filtered out anyway. In future iterations, enabling the FIR filter based on the 

accelerometer and gyroscope data would improve stability without sacrificing latency. In 

addition, blob detection would improve robustness to input noise. 

 

A pair of 28-bit dividers was also required for each instance of this module to divide 

x_sum and y_sum by the number of pixels selected. This in particular added a significant 

amount of utilization and compile time to our project. 

 

debounce  

Debounce was used again in the video processing block, this time to debounce button 

input to adjust thresholding on the fly. Buttons 0-3, left/right, and switches 1 and 2 were 

debounced to provide control over the HSV thresholding. Switch 6 was used to select an 

overlay which showed selected pixels for green and pink thresholding, as well as the 

calculated centroids for the pink and green regions. This was invaluable for quick 

iteration. A small 20-bit clock divider was also set up to generate a ~60 Hz clock, where 

the values were incremented on the positive edge of the clock divider’s MSB. This 

allowed the thresholding values to be tuned at a quick but manageable rate. 
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display_16hex  

This module was used to display the threshold select values. Displayed on the left 8 hex 

digits were the values for the pink thresholding, while green thresholding values were 

displayed on the right 8 hex digits. This module was incredibly helpful for setting 

constants, since constants could be iterated in real-time rather than waiting for the 

6-minute compile time of our final code. Since values for thresholding were displayed on 

the hex display, we could also copy them down and feed them into our program as 

initialization values for the thresholding registers. 

 

divider & pixel_divider 

These two modules were dividers generated through Xilinx IP core, and were 16-bit and 

28-bit dividers, respectively for rgb2hsv and hsv_threshold. The especially-large divider 

was required for hsv_threshold for the corner case when every one of the pixels was 

selected, leading to an x_sum of over 2^27. Future iterations including blob detection 

rather than center-of-mass averaging could potentially remove this module, depending 

on the implementation (eg, skeletonization would not require a large divider, but simple 

connected-component thresholding on center-of-mass averaging would still require a 

large divider for the corner case of every pixel selected). These dividers necessitated a 

large delay in pixel throughput, so all hsv-corrected pixels were 22 cycles behind the 

RGB display. The effect of this was to right-shift all of the overlay data and (x,y) 

coordinates of the centroids by 18 pixels. Though the x_sum and y_sum dividers were 

larger, and thus had a larger delay (30 clock cycles, according to the Xilinx IP core 

spec), this delay was unimportant because it happened during the NTSC sync period, so 

it produced effectively no real-world latency. 

 

vram_display 

This code was also part of the staff-provided code, but modified for color. This code 

reads pixels from ZBT ram to display on the VGA monitor. It was originally written to 

display 4-pixel packed ZBT addresses as Y-only data, but I modified it to display 2-pixel 

packed ZBT addresses as 18-bit RGB data. 
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Coordination in overall “finallabkit.v” module 

Overall, modules were hooked together very similarly to the staff implementation of 

NTSC video display, with the addition of hsv_threshold and the corrections appropriate 

to turn the signals from Y-only into RGB-enabled. Furthermore, to provide quicker 

iterations on hsv_threshold, buttons and the fluorescent hex display were hooked in to 

allow on-the-fly adjustment of HSV thresholding values. Switch 6 was also hooked in to 

toggle overlay of the pixels selected in the thresholding module, as well as the x,y 

coordinates selected by the averaging in the thresholding module. 

Testing 

As with the gameplay module that follows, most of the testing and calibration was able to be 

performed visually. As previously mentioned, a small user interface was implemented with the 

switches, 16 digit fluorescent hex display, and buttons to allow users to tune the thresholding 

constants when switching cameras, lighting conditions, or if the module was behaving 

suboptimally otherwise. The values could be read off of the hex display and set as the 

initialization value for future iterations to prevent recalibration on every new firmware flash. 

Challenges 

The biggest challenge for me for this was modifying the ntsc code to work with color. Though I 

understood the concept, it was difficult to test changes incrementally because there was no nice 

intermediary between “working b&w” and “working color”. One interesting mistake I made was to 

originally synthesize an 8-bit input YCrCb to RGB converter, while we had 10-bit YCrCb input. 

The effect of this was to chop off the two MSB’s of each of the 3 channels, which led to a very 

psychedelic display: 

17 



 

 

 

After I had succeeded with the color NTSC conversion, the noise of the camera proved much 

higher than anticipated. This manifested as extremely noisy position estimates, even after 

careful thresholding. Setting everything up against a black backdrop and wearing black clothing 

and gloves helped significantly. Pink in particular was difficult, because the camera was 

extremely low-saturation. This manifested in skin being included in the pink position estimates. 

Even with blob detection fully working, this would have been a very difficult problem to tackle 

without simply wearing gloves. 
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Figure illustrating noise, as well as low levels of saturation. The pixel offset is due to the latency 

on the dividers. 

 

Even with a black backdrop and tuned constants, due to the low saturation, skin is included in 

the thresholding for pink, and some white edges are included in the thresholding for green.  
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Part 3: Gameplay (lolzhang) 

Overview 

The final part of the project was to take the sensor and image data and integrate the information 

into gameplay. The (x,y) coordinates of the handle were used to calculate the blade projection 

using dot products, and data from the button was used to extend and retract the blade as well 

as change its color. Sprites were generated with different properties based on the level selected 

by a switch on the labkit. On the “easy” level, the sprite would stay in place until the player hit it 

with the lightsaber, while on the “6.111” level, the sprite would take the form of a labkit and 

change position every second. The game mechanics also included a thirty second countdown 

timer and a score tracker that counted how many sprites had been hit; both the timer and score 

were displayed on screen.  

 

Block Diagram 
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Verilog Modules 

blade_block 

The blade_block  module displays the blade projection and takes hcount, vcount, (x,y) 

coordinates of the top and bottom of the handle, handle width, blade color, and 

background color from the camera as inputs. Its outputs are the 24-bit hex color of the 

pixel at (hcount, vcount) and an indicator of whether or not the pixel is occupied by the 

blade. I set the pixel location of the bottom of the blade to be equal to the top of the 

handle and then calculated the pixel location of the top of the blade by extending the 

handle vector to be three times the length of the handle. I then determined the area to be 

occupied by the lightsaber blade projection by taking the dot product of (hcount, vcount) 

and handle vector. If the dot product is less than a constant (either determined by the 

width of the handle or hard-coded) and (hcount, vcount) was in the blade space, then 

occupied is set to 1 and the pixel is shaded the appropriate blade color. Additionally, to 

make the lightsaber blade seem more realistic, I set the pixel to the blade color 

alpha-blended to the background color if the dot product was less than twice the 

previous constant. Otherwise, occupied is set to 0 and the pixel color is set equal to the 

background color. However, with this method I ran into a problem where if the handle 

was perfectly horizontal or vertical, then the blade projection would disappear because 

of the dot product math. I fixed this issue by displaying a rectangle if the x-coordinates or 

y-coordinates of the blade top and bottom were within a certain margin of each other. 

This solution ensures that the blade never disappears, even if the handle is pointed 

directly at the camera (the blade becomes a small square projection). I also solved a 

problem with the blade wrapping around the screen by using signed variables and 

increasing the size of the registers for the blade and handle coordinates. Finally, I 

accounted for the 22 pixel offset due to the hsv-corrected pixels being 22 cycles behind 

the RGB display, by subtracting 22 from the x-coordinates of the blade handle. Boundary 

cases were not an issue because the camera image was in the middle of the screen 

surrounded by a border larger than 22 pixels.  
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sprite 

The sprite  module displays a circular sprite and takes hcount, vcount, an (x,y) position, 

sprite color, and background color from the camera as inputs. Its output is the 24-bit hex 

color of the pixel at (hcount, vcount) and an indicator of whether or not the pixel is 

occupied by the sprite. I check if (hcount, vcount) is in the circle with center (x,y) with a 

constant radius and set occupied to 1 and the pixel to the sprite color if so. If not, then I 

check again with double the previous radius and set occupied to 1 and the pixel to the 

sprite color alpha-blended with the background color. Otherwise, occupied is set to 0 and 

the pixel is set equal to the background color.  

 

alpha_blend  

The alpha_blend module makes objects look transparent by blending colors and takes 

the 24-bit object color and background color as inputs. Its output is the 24-bit hex color 

of the alpha-blended pixel. The formula used is as follows, with 0 < α < 1:  

R(blended) = R(object) * α + R(background) * (1- α) 

G(blended) = G(object) * α + G(background) * (1- α) 

B(blended) = B(object) * α + B(background) * (1- α) 

However, since Verilog does not have built-in dividers, I used multiplication and 

right-shifting to achieve the equivalent of division.  

 

picture_blob 

The picture_blob  module displays an image of the iconic 6.111 labkit and takes hcount, 

vcount, an (x,y) position, and background color as inputs. Its output is the 24-bit hex 

color of the pixel at (hcount, vcount) and an indicator of whether or not the pixel is 

occupied by the image. I displayed the .JPG image of the labkit by following the 

instructions outlined on the 6.111 tools webpage. I first converted the .JPG image to a 

256 color .BMP file using GIMP and then modified the MATLAB script sample to 

generate .COE files of the red, green, and blue color maps, as well as a mapping from 

the image pixel address to the color palette. I then added four Block ROMs to the project 

using the generated .COE files as sources. The pixel address to color palette Block 

ROM had a width of 8 and a depth of 7700 (since the image was 100 pixels by 77 

pixels), while each color map Block ROM had a width of 8 and a depth of 256 (since I 

used a 256 color palette). In the picture_blob module, I calculated the ROM address of 
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the (hcount, vcount) pixel and read the location to use in the color map to create the 8 

bits of red, 8 bits of green, and 8 bits of blue. I then assigned occupied to 1 and the pixel 

color to the color mapping if (hcount, vcount) was in the image space. Otherwise, I 

assigned occupied to 0 and the pixel color to the background color.  

 

random_number 

The random_number  module generates a pseudorandom number and takes a seed 

value, new value indicator, and offset indicator as inputs. Its output is a 10-bit 

pseudorandom number. On reset, the number is set to the seed value. At each clock 

cycle, the next number is generated using a linear feedback shift register as shown 

below:  

num_new[9] = 0 

num_new[8] = num_old[7] 

num_new[7] = num_old[6] 

num_new[6] = num_old[5] 

num_new[5] = num_old[4] 

num_new[4] = num_old[3] 

num_new[3] = num_old[2] 

num_new[2] = num_old[8] XOR num_old[7] 

num_new[1] = 0 

num_new[0] = 0 

This generates a pseudorandom binary sequence, which exhibits statistical behavior 

similar to a truly-random sequence. When the new value indicator is asserted, then the 

output number is assigned to the current random number; otherwise, the output number 

stays the same. When the offset indicator is asserted, then an offset constant is added to 

the calculated random number. The reason I added this offset option is because the 

random_number  module is used to generate random locations for the sprites, and I 

wanted to minimize the probability that the sprite would generate onto the blade, which 

would add unintended points to the player’s score.  

 

bcd_ascii 

The bcd_ascii  module calculates the ASCII code of a decimal number from its 

corresponding binary input. Its output is the decimal 1’s place and decimal 10’s place in 
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ASCII. The module first converts the binary number to binary coded decimal (BCD) using 

the double-dabble method, also known as the shift-and-add-3 algorithm. Because 

bcd_ascii  is used exclusively for outputting the time and score on screen, I decided to 

convert the outputs to ASCII within the module by adding an offset of 48 to each decimal 

place.  

 

char_string_display 

The char_string_display  module displays an ASCII encoded character string in a video 

window at some specified (x,y) pixel location. The code is unmodified from the staff 

implementation.  

 

one_hz 

The one_hz  module is asserted high once per second and takes a 65MHz clock and a 

start indicator as inputs. Its output is a 1Hz enable signal. At every clock cycle, a counter 

is incremented by 1, and when the counter reaches 65,000,000 then the output is set to 

1 and the counter is reset to 0. Otherwise, the output is set to 0.  

 

timer 

The timer  module counts down from a given number and takes a start time parameter, 

start indicator, and one hertz enable signal as inputs. Its outputs are a countdown 

number and a time expired indicator. When start is signaled, then the countdown number 

is set to the start time and the time expired indicator is set to 0. At every one hertz 

enable signal, the countdown number is decremented by 1. When the countdown 

reaches zero, then the timer stops counting and the time expired indicator is set to 1.  

 

gameplay 

The gameplay  module contains the game mechanics and takes hcount, vcount, (x,y) 

coordinates of the top and bottom of the lightsaber handle, the level switch (switch[0] on 

the labkit), and the background color from the camera as inputs. Its outputs are the 

24-bit hex color of the pixel at (hcount, vcount), the time left in countdown, and the player 

score. The module stores the state of the blade (on/off and color), which changes when 

the button on the handle is pressed. The blade cycles through four states as the button 

is pressed: off, blue, magenta, and green. Additionally, the player can change the level 

24 



 

of gameplay by toggling switch[0] on the labkit. On the “easy” level, the sprite  module is 

used, and the sprite changes position randomly only if it is hit by the lightsaber blade. On 

the “6.111” level, the picture_blob  module is used, and the sprite changes position 

randomly every second, as well as when it is hit by the blade. The player is able to 

immediately change levels in the middle of gameplay. To decrease the probability of the 

sprite generating on top of the blade, an offset is added to its x-coordinate every other 

location change so that the sprite appears on the other side of the screen. A hit is 

determined by tracking whether any pixel on screen is occupied by both the blade and 

the sprite. If a hit occurs, then a new (x,y) value is randomly generated for the sprite, and 

the player’s score is incremented by 1. However, the player can only hit sprites if the 

timer has not expired. Once the timer expires, then the sprites disappear from the screen 

and no additional points can be scored, although the lightsaber blade projection still 

remains on screen for the player to practice with.  

 

Coordination in overall “finallabkit.v” module 

Integration in the overall labkit module proved to be more difficult than expected. All 

three parts of the project had been using the labkit hex displays to display data, and in 

the end, we ended up displaying the thresholding values for quick adjustments. 

Additionally, the resolution of the camera image was smaller than the resolution of the 

screen, so I had to adjust the placements of the timer, score, and level strings to be 

more aesthetically pleasing. I chose to allow the sprites and lightsaber blade projection 

to extend outside of the camera image rectangle and into the black borders. This forces 

the player to step closer to the camera to make the blade longer if they want to hit the 

sprites that are near the edge of the screen and results in more active gameplay.  

 

Testing  

Because almost all of the gameplay is displayed on screen, I was able to test the majority of my 

code visually. To test the blade projection, I set the bottom of the handle to a constant point 

near the center of the screen and the top of the handle to be a point controlled by the up, down, 

left, and right buttons on the labkit. This allowed me see how the blade projection responded to 

changes in the handle angle and length. I was able to incrementally add each component of 
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gameplay so that the user could play the full game by using buttons on the labkit before 

integrating the other parts of the project. Additionally, I was able to test the game mechanics by 

displaying the timer and score on the hex digits on the labkit before displaying them on screen.  

 

 

Figure illustrating commitment level project testing with solid white lightsaber blade and solid 

square magenta sprite.  

 

Figure illustrating goal level testing with alpha blended lightsaber and sprite, as well as timer 

and score displayed on screen.  
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Figure illustrating stretch goal level testing with .JPG image sprite and different color lightsaber.  

 

Challenges 

There were a few main challenges I faced with the gameplay portion of the project. The first 

challenge was determining the best way to display the lightsaber blade. I researched a few 

algorithms for generating graphics, including Bresenham's line algorithm and Xiaolin Wu's line 

algorithm. However, both of these algorithms are incremental, and I would have had to do all 

calculations during the blanking period. Additionally, it would have been difficult to make the top 

and bottom ends of the blade perpendicular to the handle angle. Thus, I decided to use my dot 

product method, which could be calculated quickly for each pixel and naturally made the top and 

bottom ends of the blade pointed. While this method had its own drawbacks, including the 

problem with vertical and horizontal dot products mentioned previously, I believe that it was the 

optimal choice after the fixes I made. I think that although I spent a lot of time researching the 

benefits and drawbacks of the different algorithms, I ultimately saved time by not trying to 

immediately implement the first one I stumbled upon and also learned more theory. I would 

definitely recommend doing substantial research and planning before jumping into coding.  
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Another challenge I faced involved timing. I originally had many multiplications in my blade 

projection and sprite calculations, which did not meeting timing limits. Because of this, there 

seemed to be a lot of “noise” in my graphics when I was testing. I fixed this problem by 

pipelining some of my multiplications and decreasing the sizes of my registers. These problems 

reinforced the idea that Verilog is based in hardware, and must satisfy the restrictions imposed 

by hardware. In the future, I would advise others to keep in mind the timing requirements and 

not add unnecessary bits to registers to prevent this problem. 

 

Finally, the last challenge in this project revolved around integration of the gameplay and video 

processing. I ran into a problem where the camera image would override the gameplay 

projections instead of the other way around, which led me to find a bug in my gameplay logic 

that I couldn’t catch in testing. Additionally, there was a problem where Landon and I used 

switch[0] to display different things, which led to a display of red and blue bars instead of the 

camera image when the player was on “6.111” level. This could have been avoided with more 

careful communication while integrating, which I would advise for everyone, and not just during 

final projects.  

28 



 

Conclusion 

We were able to achieve all of the goals we had initially set for this project. For the sensor data 

part, we successfully transmitted all data via Bluetooth and filtered this data for use in other 

modules as well as incorporated gyroscope drift compensation. For the video part, we achieved 

reasonably accurate position sensing of the two ends of the lightsaber hilt with no noticeable 

lag. For the gameplay part, we had an alpha-blended lightsaber blade projection and dynamic 

alpha-blended sprites as well as the player score, game level, and timer displayed on-screen. 

 

Besides reaching our goals, we were also able to achieve some of our stretch goals. Although 

we didn’t have time to extend our project to work with a physical quadcopter, we were able to 

change lightsaber colors via the wireless blade button, have preloaded images used as sprites, 

and had a completely untethered lightsaber handle. All video processing was also done in a 

timely manner so that there any lag was imperceptible to the human eye. 

 

The material learned while working on this project has been quite rewarding. We would like to 

thank Professor Hom, Mitchell Gu, and the rest of the 6.111 staff for providing us with advice 

and guidance on this project. 
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Appendix 

Github Link 

Our Verilog and Arduino files can be found here: https://github.com/lycarter/6.111-finalproj/  

Pictures 

 

 

Final lightsaber hilt with buttons for accelerometer/gyroscope reset and blade color change. 
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Final user interface with thresholding overlay turned on (only x-values, no blob-center y-values). 

Note the pixel offset due to divider latency. This was manually corrected for in the gameplay 

module. 
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