

Pivot: A Motion Based User Interface
6.111 Final Project Report

Nestor Franco and Andrew Kurtz

1 Overview (NF + AK) 2

2 Design Approach (AK) 3
2.1 Software 3

2.1.1 High level Block Diagram 3
2.1.2 Definition of User Input 3

2.2 Hardware 4
2.2.1 Product Requirements 4
2.2.2 Component Selection 4

3 Implementation 5
3.1 Block Diagram (NF) 5
3.2 FPGA Modules 5

3.2.1 I2C Interpreter (NF) 5
3.2.2 Converter Module (AK) 6
3.2.3 Binary to BCD and Ascii Modules (AK) 6
3.2.4 Builder Module (NF) 7
3.2.5 Shifter Module (NF + AK) 7
3.2.6 Serial Module (AK) 8

3.3 Teensy Code (AK) 8
3.4 Hardware Construction (AK) 9

3.4.1 Mojo Shield 9
3.4.2 Button Daughter Board 10
3.4.3 Custom Enclosure 10

4 Challenges 11
4.1 Hardware (NF) 11
4.2 Teensy Serial Issues (AK) 12
4.3 Debugging Communication Issues (NF) 12

5 Future Work (NF) 13

6 Conclusion (NF + AK) 14

Appendix A: Verilog Sources 15

Appendix B: Mojo Constraints 41

Appendix C: Teensy Code 43

1

1 Overview (NF + AK)
With the advent of online video streaming sites such as YouTube and Netflix, traditional cable
and satellite TV subscriptions are declining. As such, more and more people are connecting a
computer to a TV screen not just to stream video, but also to play games and browse
websites. It can be inconvenient to use a full sized wireless keyboard and mouse while sitting
on the couch - a better alternative would be to have some kind of compact, handheld
controller that contains both keyboard key input and mouse control.

Our final project focused on developing the mouse portion of this controller using a
combination of angular rate, and acceleration sensors. We used an Inertial Measurement Unit
(IMU) to collect these measurements, and fed these signals into a small FPGA board. The
FPGA translated the signals into mouse movement and function (e.g. mouse clicks and
scrolling). The mouse signals were then communicated to a computer through USB utilizing
the HID protocol. Additionally, a housing, with built in wiring, mounting points, buttons, and
power was constructed.

2

2 Design Approach (AK)

2.1 Software

2.1.1 High level Block Diagram

One item of note from this high level diagram is the inclusion of a microcontroller. To make
our lives easier, we will be using a standard off the shelf microcontroller to produce the USB
HID protocol, but more on that later.

2.1.2 Definition of User Input

User inputs can fall in 5 categories: translations, rotations, taps, button presses, and
gestures.

● Translations are defined as planar motion in either the lateral/longitudinal plane or
the lateral/vertical plane.

● Rotations are defined as either pitch, roll, or yaw motions.
● Taps are defined by an event of large acceleration (as recorded by the IMU) happening

over a short time period (on the order of 10ms).
● Button presses are defined as an action by the user to actuate a physical momentary

push button on the device.
● Gestures are defined as a planar motion which traces out a distinct path. For example

if the user were to quickly trace a circle with the controller this would be considered a
gesture.

3

Our device is able to recognize rotations and button presses. We hoped to add gestures and
taps but this proved infeasible in the time allotted.

2.2 Hardware

2.2.1 Product Requirements
At the beginning of this endeavor, to ensure our device would be as unobtrusive, and user
friendly as possible, we set the following requirements:

● The device shall be graspable within the hand of 95% of adults.
● The device shall interface with any modern operating system (e.g. Mac, Ubuntu,

Windows)
● The device shall interface using a single USB 2.0 cable, and require no additional,

external, cables or connections
● All device sub components shall be attached to each other using standard connectors

and fasteners to allow for easy assembly, disassembly, and maintenance.
● All wires between sub components shall be soldered in place.
● The device shall have at least 2 user programmable, external, buttons.
● The device should have a clean, outward design.
● The device should be simple enough to operate that new users do not need

instructions.

2.2.2 Component Selection
After developing our requirements and discussing the available components with our advisor
we made the following component selections:

IMU:​ For the IMU we went with the Invensense MPU-9250. This chip contains a 3-axis
accelerometer, a 3-axis gyroscope, and a 3-axis magnetometer. This chip is extremely
inexpensive and commonplace in a wide variety of consumer grade applications. Additionally,
the chip comes with extensive documentation and a wide knowledge base available on the
internet.

FPGA:​ For our FPGA we will be using the Mojo V3, which is a small development board from
EmbeddedMicro featuring a Spartan-6 chip. This board is just small enough (less than 1/4th
the footprint of the nexys-4 dev board) to fit comfortably in a user's hand, so it made the
obvious choice for our project. An added bonus for selecting the Mojo was the large number
of in depth tutorials offered online by EmbeddedMicro.

Microcontroller:​ In order to stay small, we chose to go with a Teensy 3.2 microcontroller.
This micro is capable of extreme speeds, is easy to program, and features a large amount of
available code bases and tutorials available online.

4

3 Implementation

3.1 Block Diagram (NF)

3.2 FPGA Modules

3.2.1 I2C Interpreter (NF)
The purpose of the i2c module is to communicate with the IMU using the i2c protocol in order
to retrieve gyroscopic and accelerometer data. It has a clock input from the 50 MHz clock
from the Mojo, a reset input, bidirectional input/outputs for SDA and SCL, and 16 bit outputs

5

for each IMU reading.The module consists of an 82 state FSM, which changes state with a
frequency of 200 kHz using an internal 200 kHz clock module. What the states do is that they
drive the SDA pin to send the start signal, send the device address of the IMU (0x68), send a
write bit (0), wait for acknowledgement, send the register address for the MSB of the x
acceleration (0x3b), wait for acknowledgement, send a restart signal, send the device address
again, send a read bit (1), wait for acknowledgement, and then read the bits on the SDA line
being driven by the IMU. Whenever the IMU finishes sending a byte of data, it automatically
increments the register address that it is looking at by 1, and so by acknowledging the IMU
after every byte received, the i2c master can receive the data in each register sequentially
without having to specify each register address. We do run into the problem of reading some
unwanted data (temperature sensor data) since it is in between the accelerometer and
gyroscope registers, but rather than having to go through the process of specifying a new
register address for the IMU to look at, we just collect the unwanted data and leave it
unused. After the LSB of the z gyro register is collected, the i2c master does not acknowledge
the IMU, and then the i2c master sends a stop bit and updates all of its data outputs in one
chunk.

Creating 82 states for this module may not have been the most efficient way to collect data,
but the benefit of creating so many states was that it was bound to be relatively error free.
And indeed it was, as we were able to assign the readings to the 8 LEDs on the Mojo board
and verify that they changed they we expected it to when we manipulated the IMU. In the
future though, if we had to read data from many more than 12 registers we would probably
design it to work in a way similar to how our shifter and serial modules work together.

3.2.2 Converter Module (AK)
The information found in the IMU registers are in a fractional 2’s complement form. Meaning
that if the value of the z gyro register was 11796 in binary, then we would have to multiply it
by the full scale range of the register (250 degrees per second), and divide by 2​15​, giving us a
value of 90 degrees per second, in binary. So in this module, the original values are converted
and passed onto the ASCII module.

This module also offers to some degree control over how fast the mouse will move because it
depends on this converted number, so by using a different multiplier we can make its speed
faster or slower.

3.2.3 Binary to BCD and Ascii Modules (AK)
An ASCII module will take a signed 8 bit number and convert it to a 3 byte ASCII
representation of the value, to be used by the builder module. It makes use of a binary to
BCD converter to determine what the values for byte 2 and 3 should be, and there is a
combinational block that checks whether the number is positive or negative, and sets the first
byte to either the ASCII code for “-” or “0”.

6

3.2.4 Builder Module (NF)
The builder module constructs a 30 byte message for the serial module to send out, where
each byte is an ASCII code. The format of the message is
“X000_Y000_W000_L0_R0_M0_K000_Z”, where the numbers following X tell the Teensy how
many pixels to move the mouse in the x direction, and so on. The Y corresponds to y
movement, W for scrolling movement, L for left click, R for right click, M for middle click, K
for key press, and Z is just a “stop” signal. So for example, the 5 bytes “X-10_” would look
like “0x58, 0x2D, 0x31, 0x30, 0x5f”. The module takes in external inputs in the form of
buttons, which allow for clicks and the enabling of scrolling and mouse movement.
Furthermore, it has an internal timing system such that it will signal the shifter module to
start, wait for the “done” signal from the shifter, and then trigger a timer, which causes the
builder to only send out a message every hundredth of a second.

An issue with the shifter module caused the last byte of the message to never be transmitted,
and after many hours of trying to debug the shifter module we decided to just add an extra
byte to the end of the message that the builder builds, so that the shifter will transmit the
second to last byte.

3.2.5 Shifter Module (NF + AK)
The Serial module requires that only one byte of data be transmitted at one time. The shifter
module was made to take the 30 byte message produced by the builder module, then send it
to the serial module one byte at a time, while waiting to receive confirmation from the serial
module that the previous byte had been sent before providing the next byte to send.

This module was designed as a small finite state machine, with states WAIT, SHIFT, and
TRANSMITTING. The module normally stays in the WAIT state until it receives a signal from
the builder module telling it to start, after which it will bounce between SHIFT and
TRANSMITTING. When it is transitioning between these two states, builder keeps an index of
the byte that it is providing for the serial module to send, and shifts its position whenever the
serial module says it’s done sending the current byte. When builder reaches the last byte of
the message, it returns to the WAIT state and signals the builder module that it is done
shifting.

This module also gave us the most trouble while trying to integrate, mainly due to timing
issues and a few logic errors in our verilog code. We probably re-wrote this module from the
ground up 3 or 4 different times. It just goes to show that you should ​always​ start with a
block diagram before trying to code an FSM. We tested this module by providing it with the
message “abcdefg...0123” to send (but in ASCII), and we ran into errors such as the shifter
only sending every other byte (“aceg…”), sending every other byte and then sending the
missing bytes (“aceg...02bdfh...13aceg…”), or sending everything but the last byte
(“abcde...012”).

7

3.2.6 Serial Module (AK)
Unlike usual serial systems, this serial module is a purely transmitting one since there is no
need to receive any data from the Teensy microcontroller. This module is a FSM with states
IDLE, START_BIT, DATA, and STOP_BIT. The state is normally in IDLE where the tx output is
held high until a signal is sent to the module that says new data is available and ready to be
sent. Then it moves to the START_BIT state where it pulls tx low for 434 clock cycles, which is
the necessary number of cycles for the agreed upon baud, which is 115200 in this case. After
the start bit is sent, then the state transitions to DATA, where it sends every bit in the byte
LSB first, and then transitions to STOP_BIT, where it transmits a 1 on the tx line, and then
returns to IDLE. While the module is in the START_BIT, DATA, or STOP_BIT states it outputs a
busy signal, which can tell the shifter module its current status.

3.3 Teensy Code (AK)
The Teensy code (written in C++) interprets the serial commands from the Mojo, and spits out
commands to the computer over USB following the HID protocol. We used open source
libraries for the HID protocol and serial communications.

All that the code needed to do was read each individual ASCII character from the onboard
serial buffer sequentially and concatenate it to the “message” if the message had not yet
reached its full length, or if it had not yet received the “stop” character.

The code then split the message up and interpreted the individual parts as their commands
for functions such as mouse movement, scroll wheel movement, mouse clicks, or keypresses.

8

3.4 Hardware Construction (AK)

3.4.1 Mojo Shield

Since our entire project revolves around our ability to easily manipulate our device, it was
important that we create a semi-permanent mounting for our electronics, so that we wouldn't
have to deal with a mess of breadboards and wires. We thought about potentially etching a
custom PCB but settled on using some standard perf board instead.

9

3.4.2 Button Daughter Board

At the time of creation of the Mojo shield and button daughter board, it had not yet been
determined where exactly the buttons would be placed in the enclosure. Therefore to ensure
that we would not limit ourselves later on, we decided to put the buttons onto a separate
small daughter board.

3.4.3 Custom Enclosure

A custom enclosure for Pivot was designed and 3D printed. It features ample room for all the
electronics plus a power source, as well as a power switch, pass throughs for reprogramming
the FPGA and the Teensy, as well as external, user programmable buttons.

10

4 Challenges

4.1 Hardware (NF)
The Mojo V3 board uses an FPGA in the Spartan 6 family, and choosing to go with an FPGA
that is not typically used in the course curriculum posed a few constraints. The versions of ISE
and Vivado installed on the lab computers did not have the option to program FPGAs in the
Spartan 6 family, so I had to install ISE and a custom Mojo IDE on my personal desktop
computer, restricting the possible places I could work on this project. Luckily I managed to
obtain one of the logic analyzers that was being given away making it easier to see and debug
signals at home, although that came with a learning curve as well.

For an unknown reason, the Mojo board we received at the start of the project had a few non
functional IO pins. Our original plan was to use the SPI protocol to communicate with the IMU
since it is a simpler communication scheme, and around the time that I had first started to
view some working signals on the logic analyzer, Andrew had created the Mojo shield.
Unfortunately, some of the Mojo pins that breadboard wired the IMU pins to turned out to be
bad, which I did not realize until later. When I failed to see the same signals on the logic
analyzer that I did previously, I got frustrated and stopped developing the SPI module. At that
point, I decided to use the i2c module that Joe Steinmeyer had developed, since it was
proven to work. When I replicated Joe’s setup, I unknowingly reverted back to using the good
pins that I was testing with before, and surely enough I got readings from the IMU that made
sense. It was only when I plugged the IMU into the breadboard shield and saw that nothing
worked did I realize that the Verilog module was not the problem, but rather the pins.

rest in peace SPI

11

4.2 Teensy Serial Issues (AK)
Originally, it had been assumed that writing the few dozen lines of code which would be
needed to get the teensy functioning in a stable state would be trivial, even having gotten a
few demos of the HID protocol working with some analog potentiometers. While testing,
however, There was just nothing we could do which was working properly. We could not get
the teensy to properly read in serial commands, at any baud rate. Eventually, after many
hours of testing, debugging, and trying different things we found that we could get the code
to work fine if we added a 7ms delay at the end of each code loop, before the start of the
next.

Even after figuring out how to circumvent the weird bug one it took a few additional hours,
with the help of a Computer Engineer who was more experienced with C++ firmware to find
the source of the error: the teensy code ended up calling the serial.available function too
quickly, which revealed a race condition between the serial.available() method and
cal;calculating how many bytes were in the serial buffer and the serial interrupt that handles
putting bytes into the serial buffer. If it was called too quickly there was a higher chance of
the update interrupt going off between the serial.available() method copying the head and
tail values of the buffer locally before calculating their difference and that would cause an
incorrect number of bytes to be calculated inside the buffer.

4.3 Debugging Communication Issues (NF)
The shifter module also proved to be a problem even though it appeared to be a simple
concept: provide a byte out of the entire 30 byte message for the serial module to send, keep
track of which byte it is currently providing, and loop back when it reaches the end of the
message. The first error that we encountered was the first one that was mentioned
previously, where the output was just every other byte in the message. First, we tried to
work alongside the bug, so we doubled the length of the message to 60 bytes by adding a junk
ASCII character after every valid byte in hopes that the bugged shifter would simply send the
good bytes and skip the junk bytes. Instead, it would send out our desired message
“abcde….xyz0123” followed by “a999999….”, with “9” being our junk character. After going
through a few iterations of our shifter and other undesirable outputs, we ended up with a bug
that we could work with, which was where the last byte of our message was never sent. So
hoping that the bug would be consistent, we added a junk character to the end of our
message making it 31 bytes long instead of 30, and luckily that worked out.

12

5 Future Work (NF)
One thing that remained underutilized from the IMU were the accelerometers. Our intentions
were to develop some kind of tap detection so that we would not need to use a button for
mouse clicking, but our top priority was to at least get click functionality working. Another
thing that the accelerometers could have been used for is gesture recognition. Gestures like
drawing a circle could trigger a command such as reload page, or go back a page.

Another thing we tried to implement after base mouse functionality was achieved was
keyboard shortcuts, as referenced by the “K000” portion in the builder module. Mouse users
might have found it convenient to have a button that acts as the Control/Command + W keys
to close tabs and windows, or perhaps an Alt/Command + Tab button to rapidly switch
between programs.

Ideally, this project would have been completely contained within the FPGA (apart from the
IMU of course). We believe with a bit more research and work into how USB devices
communicate, we could have gotten rid of the the Teensy, making this a wholly
hardware-based controller.

13

6 Conclusion (NF + AK)
Our motivation was simple: The ways in which humans interact with computers has not
changed much in the last 20+ years. We knew there had to be a better way.

At the start of this project we had a simple goal: implement a motion based user input device
designed on an FPGA which could recognized by any computer as a standard keyboard/mouse
interface. We achieved, and in a lot of ways, exceeded this goal.

Our final product may not have all of the functionality which we had originally desired, but it
has something even more valuable: robust functionality in a user friendly package. The effort
we put into the hardware (soldered circuit boards and 3D printed enclosure) and software
(robust management of HID/USB interfacing and modular FPGA code) design created a stable
development platform which can easily be used by future students to test and implement
additional features, such as more complex motion tracking or gesture recognition, without
having to worry about messy wiring, I2C clocks, or serial communications. Further, effective
development on any user interface requires the designers be able to easily and rapidly test
changes, our “no worries” enclosure allows for significantly more effective testing then a few
precariously stacked breadboards could ever allow.

14

Appendix A: Verilog Sources
//this is the top module in the hierarchy, that puts together all the other
modules

module mojo_top(
 // 50MHz clock input
 input clk,
 // Input from reset button (active low)
 input rst_n,
 // cclk input from AVR, high when AVR is ready
 input cclk,
 // Outputs to the 8 onboard LEDs
 output[7:0]led,
 // AVR SPI connections
 output spi_miso,
 input spi_ss,
 input spi_mosi,
 input spi_sck,
 // AVR ADC channel select
 output [3:0] spi_channel,
 // Serial connections
 input avr_tx, // AVR Tx => FPGA Rx
 output avr_rx, // AVR Rx => FPGA Tx
 input avr_rx_busy, // AVR Rx buffer full
 inout p33, // SCL
 inout p35, // SDA
 input p29, //button 0
 input p26, //button 1
 input p23, //button 2
 input p21, //button 3
 output p67 // Tx to Teensy
);

wire db_p29;
debounce db1(.reset(1'b0), .clock(clk), .noisy(p29), .clean(db_p29));

wire db_p26;
debounce db2(.reset(1'b0), .clock(clk), .noisy(p26), .clean(db_p26));

wire db_p23;
debounce db3(.reset(1'b0), .clock(clk), .noisy(p23), .clean(db_p23));

wire db_p21;
debounce db4(.reset(1'b0), .clock(clk), .noisy(p21), .clean(db_p21));

15

wire rst = ~rst_n; // make reset active high
wire [6:0] state_display;
wire [15:0] x_accel, y_accel, z_accel, x_gyro, y_gyro, z_gyro;
wire sys_clock;
i2c_master i2c(.clock(clk), .reset(rst), .scl(p33), .sda(p35),
.x_accel(x_accel), .y_accel(y_accel), .z_accel(z_accel),
 .x_gyro(x_gyro), .y_gyro(y_gyro),
.z_gyro(z_gyro),.state_out(state_display), .sys_clock(sys_clock));

wire [7:0] x_accel_new, y_accel_new, z_accel_new, x_gyro_new, y_gyro_new,
z_gyro_new;
converter poop_convert(.clk(clk), .x_accel(x_accel), .y_accel(y_accel),
.z_accel(z_accel), .x_gyro(x_gyro), .y_gyro(y_gyro), .z_gyro(z_gyro),
 .x_accel_new(x_accel_new), .y_accel_new(y_accel_new),
.z_accel_new(z_accel_new), .x_gyro_new(x_gyro_new), .y_gyro_new(y_gyro_new),
.z_gyro_new(z_gyro_new));

wire [23:0] x_mouse;
ascii mouse_x(.clk(clk), .toConvert(z_gyro_new), .message(x_mouse));
wire [23:0] y_mouse;
ascii mouse_y(.clk(clk), .toConvert(y_gyro_new), .message(y_mouse));
wire [23:0] wheel;
ascii mousewheel(.clk(clk), .toConvert(y_gyro_new), .message(wheel));

wire shifter_done, shifter_start;
wire [247:0] word;
builder bob(.clock(clk), .mouse_x(x_mouse), .wheel(wheel), .mouse_y(y_mouse),
.enable(db_p21), .left_click(~db_p29), .right_click(~db_p26),
.middle_click(~db_p23), .shifter_done(shifter_done),
.shifter_start(shifter_start), .word(word));

wire serial_done, serial_start;
wire [7:0] serial_to_send;
shifter shifty(.clock(clk), .word(word), .serial_done(serial_done),
.start(shifter_start), .serial_start(serial_start), .done(shifter_done),
.serial(serial_to_send));

serial_tx #(.CLK_PER_BIT(434))
 toTeensy(.clk(clk), .rst(1'b0), .tx(p67), .block(1'b0),
.busy(serial_done), .data(serial_to_send), .new_data(serial_start));

////////////////this stuff is in every skeleton module of mojo_top, so just
ignore//////////////////////////////
// these signals should be high-z when not used
assign spi_miso = 1'bz;
assign avr_rx = 1'bz;
assign spi_channel = 4'bzzzz;

16

///
/////////////////////////////////

assign led = z_gyro[15:8]; //use LEDs for easy debugging of signals

endmodule

module debounce (input reset, clock, noisy,
 output reg clean);

 reg [19:0] count;
 reg new;

 always @(posedge clock)
 if (reset) begin new <= noisy; clean <= noisy; count <= 0; end
 else if (noisy != new) begin new <= noisy; count <= 0; end
 else if (count == 100000) clean <= new;
 else count <= count+1;

endmodule

//the i2c_master module is a modified version of Joe's module. I added like 50
more states to the original module,
//which basically just keeps acknowledging after every byte that the IMU sends,
until this module has received
//the information in all the accelerometer and gyroscope registers, after which
it sends a "not acknowledge"

module i2c_master(input clock,
 input reset,
 output reg [15:0] x_accel,
 output reg [15:0] y_accel,
 output reg [15:0] z_accel,
 output reg [15:0] x_gyro,
 output reg [15:0] y_gyro,
 output reg [15:0] z_gyro,
 inout sda,
 inout scl,
 output [6:0] state_out,
 output sys_clock);

 localparam IDLE = 7'd0; //Idle/initial state (SDA= 1, SCL=1)
 localparam START1 = 7'd1; //FPGA claims bus by pulling SDA LOW while SCL is
HI
 localparam ADDRESS1A = 7'd2; //send 7 bits of device address (7'h68)
 localparam ADDRESS1B = 7'd3; //send 7 bits of device address
 localparam READWRITE1A = 7'd4; //set read/write bit (write here) (a 0)
 localparam READWRITE1B = 7'd5; //set read/write bit (write here)

17

 localparam ACKNACK1A = 7'd6; //pull SDA HI while SCL ->LOW
 localparam ACKNACK1B = 7'd7; //pull SCL back HI
 localparam ACKNACK1C = 7'd8; //Is SDA LOW (slave Acknowledge)? if so, move
on, else go back to IDLE
 localparam REGISTER1A = 7'd9; //write MPU9250 register we want to read from
(8'h3b)
 localparam REGISTER1B = 7'd10; //write MPU9250 register we want to read
from
 localparam ACKNACK2A = 7'd11; //pull SDA HI while SCL -> LOW
 localparam ACKNACK2B = 7'd12; //pull SCL back HI
 localparam ACKNACK2C = 7'd13; //Is SDA LOW (slave Ack?) If so move one,
else go to idle
 localparam START2A = 7'd14; //SCL -> HI
 localparam START2B = 7'd15; //SDA -> HI
 localparam START2C = 7'd16; //SDA -> LOW (restarts)
 localparam ADDRESS2A = 7'd17; //Address again (7'h68)
 localparam ADDRESS2B = 7'd18; //Address again
 localparam READWRITE2A = 7'd19; //readwrite bit...this time read (1)
 localparam READWRITE2B = 7'd20; //readwrite bit...this time read (1)
 localparam ACKNACK3A = 7'd21; //like other acknacks...wait for MPU to
respond
 localparam ACKNACK3B = 7'd22; //else go back to IDLE
 localparam ACKNACK3C = 7'd23; //"""""
 localparam READ1A = 7'd24; //start reading in data from device
 localparam READ1B = 7'd25; //this data is 8MSB of x accelerometer reading
 localparam ACKNACK4A = 7'd26; //Master (FPGA) assets acknowledgement to
Slave
 localparam ACKNACK4B = 7'd27; //Effectively asking for more data
 localparam READ2A = 7'd28; //start reading next 8 bits (8LSB)
 localparam READ2B = 7'd29; //assign to lower half of 16 bit register
 localparam ACKNACK5A = 7'd30; //Master (FPGA) assets acknowledgement to
Slave
 localparam ACKNACK5B = 7'd31;
 localparam READ3A = 7'd32; //ACCEL_YOUT_H
 localparam READ3B = 7'd33;
 localparam ACKNACK6A = 7'd34; //Master (FPGA) assets acknowledgement to
Slave
 localparam ACKNACK6B = 7'd35;
 localparam READ4A = 7'd36; //ACCEL_YOUT_L
 localparam READ4B = 7'd37;
 localparam ACKNACK7A = 7'd38; //Master (FPGA) assets acknowledgement to
Slave
 localparam ACKNACK7B = 7'd39;
 localparam READ5A = 7'd40; //ACCEL_ZOUT_H
 localparam READ5B = 7'd41;
 localparam ACKNACK8A = 7'd42; //Master (FPGA) assets acknowledgement to
Slave
 localparam ACKNACK8B = 7'd43;

18

 localparam READ6A = 7'd44; //ACCEL_ZOUT_L
 localparam READ6B = 7'd45;
 localparam ACKNACK9A = 7'd46; //Master (FPGA) assets acknowledgement to
Slave
 localparam ACKNACK9B = 7'd47;
 localparam READ7A = 7'd48; //TEMP_OUT_H
 localparam READ7B = 7'd49;
 localparam ACKNACK10A = 7'd50; //Master (FPGA) assets acknowledgement to
Slave
 localparam ACKNACK10B = 7'd51;
 localparam READ8A = 7'd52; //TEMP_OUT_L
 localparam READ8B = 7'd53;
 localparam ACKNACK11A = 7'd54; //Master (FPGA) assets acknowledgement to
Slave
 localparam ACKNACK11B = 7'd55;
 localparam READ9A = 7'd56; //GYRO_XOUT_H
 localparam READ9B = 7'd57;
 localparam ACKNACK12A = 7'd58; //Master (FPGA) assets acknowledgement to
Slave
 localparam ACKNACK12B = 7'd59;
 localparam READ10A = 7'd60; //GYRO_XOUT_L
 localparam READ10B = 7'd61;
 localparam ACKNACK13A = 7'd62; //Master (FPGA) assets acknowledgement to
Slave
 localparam ACKNACK13B = 7'd63;
 localparam READ11A = 7'd64; //GYRO_YOUT_H
 localparam READ11B = 7'd65;
 localparam ACKNACK14A = 7'd66; //Master (FPGA) assets acknowledgement to
Slave
 localparam ACKNACK14B = 7'd67;
 localparam READ12A = 7'd68; //GYRO_YOUT_L
 localparam READ12B = 7'd69;
 localparam ACKNACK15A = 7'd70; //Master (FPGA) assets acknowledgement to
Slave
 localparam ACKNACK15B = 7'd71;
 localparam READ13A = 7'd72; //GYRO_ZOUT_H
 localparam READ13B = 7'd73;
 localparam ACKNACK16A = 7'd74; //Master (FPGA) assets acknowledgement to
Slave
 localparam ACKNACK16B = 7'd75;
 localparam READ14A = 7'd76; //GYRO_ZOUT_L
 localparam READ14B = 7'd77;
 localparam NACK = 7'd78; //Fail to acknowledge Slave this time (way to say
"I'm done so slave doesn't send more data)
 localparam STOP1A = 7'd79; //Stop/Release line
 localparam STOP1B = 7'd80; //FPGA master does this by pulling SCL HI while
SDA LOW
 localparam STOP1C = 7'd81; //Then pulling SDA HI while SCL remains HI

19

 reg [6:0] device_address = 7'h68;
 reg [7:0] register_address = 8'h3b;
 reg [7:0] count = 0;

 reg [6:0] state = IDLE;
 assign state_out = state;

 reg [15:0] accel_x = 16'h0000;
 reg [15:0] accel_y = 16'h0000;
 reg [15:0] accel_z = 16'h0000;
 reg [15:0] temp = 16'h0000;
 reg [15:0] gyro_x = 16'h0000;
 reg [15:0] gyro_y = 16'h0000;
 reg [15:0] gyro_z = 16'h0000;

 reg sda_val=1; //from the fsm perspective, where SDA output data is placed.
 assign sda = sda_val ? 1'bz: 1'b0; //if sda_data = 1, make hiZ, else
0...rely on external pullup resistors

 reg scl_val=1;
 assign scl = scl_val ? 1'bz : 1'b0; //if scl_val = 1, make hiZ, else 0...do
this for clock stretching.

 reg read_write =1;

 assign sys_clock = state==IDLE?1'b1:1'b0;

 reg clock_reset = 0;
 wire clock_for_sys;
 //assign sys_clock = clock_for_sys? 1'bz : 0;
 clock_200khz local_clock(.reset(clock_reset), .clock(clock),
.slow_clock(clock_for_sys));

 always @(posedge clock_for_sys)begin //update only on rising/fall edges of
i2c clock
 if (reset &&(state !=IDLE))begin
 state <= IDLE;
 count <=0;
 end else begin
 case (state)
 IDLE: begin
 if (reset) state <= IDLE;
 else if (count == 60)begin
 state <= START1;
 count <=0;

20

 end
 count <= count +1;
 sda_val <=1;
 scl_val <=1;

 end
 START1: begin
 sda_val <= 0; //pull SDA low
 scl_val <=1;
 state <=ADDRESS1A;
 count <= 6;
 end
 ADDRESS1A: begin
 scl_val<=0;
 sda_val <= device_address[count];
 state <= ADDRESS1B;
 end
 ADDRESS1B: begin
 scl_val <=1;
 if (count >= 1) begin
 count <= count -1;
 state <= ADDRESS1A;
 end else begin
 state <= READWRITE1A;
 end
 end
 READWRITE1A: begin
 scl_val <=0;
 sda_val <=0;//write address
 state <= READWRITE1B;
 end
 READWRITE1B: begin
 scl_val <=1;
 state <= ACKNACK1A;
 end
 ACKNACK1A: begin
 scl_val <=0;
 sda_val <=1; //float sda for listening next time
 state <= ACKNACK1B;
 end
 ACKNACK1B: begin
 scl_val <=1;
 state <=ACKNACK1C;
 count <=7;
 end
 ACKNACK1C: begin
 scl_val <=0;
 //acknowledge <= sda; //what do we have?

21

 if (sda ==1'b1)begin //no acknowledgement
 count <=0;
 state <= IDLE;
 end else begin
 state <= REGISTER1B;
 sda_val <= register_address[count];
 end
 end
 REGISTER1A: begin
 scl_val <=0;
 sda_val <= register_address[count];
 state <= REGISTER1B;
 end
 REGISTER1B: begin
 scl_val <=1;
 if (count>0) begin
 count <= count -1;
 state <= REGISTER1A;
 end else begin
 state <= ACKNACK2A;
 end
 end
 ACKNACK2A: begin
 scl_val <=0;
 sda_val <=1; //float sda for listening next time
 state <= ACKNACK2B;
 end
 ACKNACK2B: begin
 scl_val <=1;
 state <=ACKNACK2C;
 end
 ACKNACK2C: begin
 scl_val <=0;
 //acknowledge <= sda; //what do we have?
 if (sda ==1'b1)begin //no acknowledgement
 state <= IDLE;
 count <=0;
 end else begin
 state <= START2A;
 sda_val<=0;
 count <=15;
 end
 end
 START2A: begin
 scl_val <=1;
 state <= START2B;
 end
 START2B: begin

22

 sda_val <= 1;
 state <= START2C;
 end
 START2C: begin
 sda_val <= 0; //pull down while SCL is high
 state <= ADDRESS2A;
 count <=6;
 end
 ADDRESS2A: begin
 scl_val<=0;
 sda_val <= device_address[count];
 state <= ADDRESS2B;
 end
 ADDRESS2B: begin
 scl_val <=1;
 if (count >= 1) begin
 count <= count -1;
 state <= ADDRESS2A;
 end else begin
 state <= READWRITE2A;
 end
 end
 READWRITE2A: begin
 scl_val <=0;
 sda_val <=1;//read address
 state <= READWRITE2B;
 end
 READWRITE2B: begin
 scl_val <=1;
 state <= ACKNACK3A;
 end
 ACKNACK3A: begin
 scl_val <=0;
 sda_val <=1; //float sda for listening next time
 state <= ACKNACK3B;
 end
 ACKNACK3B: begin
 scl_val <=1;
 state <=ACKNACK3C;
 count <=7;
 end
 ACKNACK3C: begin
 scl_val <=0;
 //acknowledge <= sda; //what do we have?
 if (sda ==1'b1)begin //no acknowledgement
 count <=0;
 state <= IDLE;
 end else begin

23

 state <= READ1A;
 sda_val <= 1;
 end
 end
 READ1A: begin
 scl_val <=1;
 state <= READ1B;
 end
 READ1B: begin //ACCEL_XOUT_H
 scl_val <=0;
 accel_x[count+8] <= sda;
 if (count >=1)begin
 count <= count -1;
 state<=READ1A;
 end else begin
 state<=ACKNACK4A;
 sda_val <=0;
 end
 end
 ACKNACK4A: begin
 scl_val <=1;
 state <=ACKNACK4B;
 count <=7;
 end
 ACKNACK4B: begin
 scl_val <=0;
 state <=READ2A;
 count <=7;
 sda_val <=1;
 end
 READ2A: begin
 scl_val <=1;
 state <= READ2B;
 end
 READ2B: begin //ACCEL_XOUT_L
 scl_val <=0;
 accel_x[count] <= sda;
 if (count >= 1)begin
 count <= count -1;
 state<=READ2A;
 end else begin
 state<=ACKNACK5A;
 sda_val<=0;
 end
 end
 ACKNACK5A: begin
 scl_val <=1;
 state <=ACKNACK5B;

24

 count <=7;
 end
 ACKNACK5B: begin
 scl_val <=0;
 state <=READ3A;
 count <=7;
 sda_val <=1;
 end
 READ3A: begin
 scl_val <=1;
 state <= READ3B;
 end
 READ3B: begin //ACCEL_YOUT_H
 scl_val <=0;
 accel_y[count+8] <= sda;
 if (count >= 1)begin
 count <= count -1;
 state<=READ3A;
 end else begin
 state<=ACKNACK6A;
 sda_val<=0;
 end
 end
 ACKNACK6A: begin
 scl_val <=1;
 state <=ACKNACK6B;
 count <=7;
 end
 ACKNACK6B: begin
 scl_val <=0;
 state <=READ4A;
 count <=7;
 sda_val <=1;
 end
 READ4A: begin
 scl_val <=1;
 state <= READ4B;
 end
 READ4B: begin //ACCEL_YOUT_L
 scl_val <=0;
 accel_y[count] <= sda;
 if (count >= 1)begin
 count <= count -1;
 state<=READ4A;
 end else begin
 state<=ACKNACK7A;
 sda_val<=0;
 end

25

 end
 ACKNACK7A: begin
 scl_val <=1;
 state <=ACKNACK7B;
 count <=7;
 end
 ACKNACK7B: begin
 scl_val <=0;
 state <=READ5A;
 count <=7;
 sda_val <=1;
 end
 READ5A: begin
 scl_val <=1;
 state <= READ5B;
 end
 READ5B: begin //ACCEL_ZOUT_H
 scl_val <=0;
 accel_z[count+8] <= sda;
 if (count >= 1)begin
 count <= count -1;
 state<=READ5A;
 end else begin
 state<=ACKNACK8A;
 sda_val<=0;
 end
 end
 ACKNACK8A: begin
 scl_val <=1;
 state <=ACKNACK8B;
 count <=7;
 end
 ACKNACK8B: begin
 scl_val <=0;
 state <=READ6A;
 count <=7;
 sda_val <=1;
 end
 READ6A: begin
 scl_val <=1;
 state <= READ6B;
 end
 READ6B: begin //ACCEL_ZOUT_L
 scl_val <=0;
 accel_z[count] <= sda;
 if (count >= 1)begin
 count <= count -1;
 state<=READ6A;

26

 end else begin
 state<=ACKNACK9A;
 sda_val<=0;
 end
 end
 ACKNACK9A: begin
 scl_val <=1;
 state <=ACKNACK9B;
 count <=7;
 end
 ACKNACK9B: begin
 scl_val <=0;
 state <=READ7A;
 count <=7;
 sda_val <=1;
 end
 READ7A: begin
 scl_val <=1;
 state <= READ7B;
 end
 READ7B: begin //TEMP_OUT_H
 scl_val <=0;
 temp[count+8] <= sda;
 if (count >= 1)begin
 count <= count -1;
 state<=READ7A;
 end else begin
 state<=ACKNACK10A;
 sda_val<=0;
 end
 end
 ACKNACK10A: begin
 scl_val <=1;
 state <=ACKNACK10B;
 count <=7;
 end
 ACKNACK10B: begin
 scl_val <=0;
 state <=READ8A;
 count <=7;
 sda_val <=1;
 end
 READ8A: begin
 scl_val <=1;
 state <= READ8B;
 end
 READ8B: begin //TEMP_OUT_L
 scl_val <=0;

27

 temp[count] <= sda;
 if (count >= 1)begin
 count <= count -1;
 state<=READ8A;
 end else begin
 state<=ACKNACK11A;
 sda_val<=0;
 end
 end
 ACKNACK11A: begin
 scl_val <=1;
 state <=ACKNACK11B;
 count <=7;
 end
 ACKNACK11B: begin
 scl_val <=0;
 state <=READ9A;
 count <=7;
 sda_val <=1;
 end
 READ9A: begin
 scl_val <=1;
 state <= READ9B;
 end
 READ9B: begin //GYRO_XOUT_H
 scl_val <=0;
 gyro_x[count+8] <= sda;
 if (count >=1)begin
 count <= count -1;
 state<=READ9A;
 end else begin
 state<=ACKNACK12A;
 sda_val <=0;
 end
 end
 ACKNACK12A: begin
 scl_val <=1;
 state <=ACKNACK12B;
 count <=7;
 end
 ACKNACK12B: begin
 scl_val <=0;
 state <=READ10A;
 count <=7;
 sda_val <=1;
 end
 READ10A: begin
 scl_val <=1;

28

 state <= READ10B;
 end
 READ10B: begin //GYRO_XOUT_L
 scl_val <=0;
 gyro_x[count] <= sda;
 if (count >= 1)begin
 count <= count -1;
 state<=READ10A;
 end else begin
 state<=ACKNACK13A;
 sda_val<=0;
 end
 end
 ACKNACK13A: begin
 scl_val <=1;
 state <=ACKNACK13B;
 count <=7;
 end
 ACKNACK13B: begin
 scl_val <=0;
 state <=READ11A;
 count <=7;
 sda_val <=1;
 end
 READ11A: begin
 scl_val <=1;
 state <= READ11B;
 end
 READ11B: begin //GYRO_YOUT_H
 scl_val <=0;
 gyro_y[count+8] <= sda;
 if (count >= 1)begin
 count <= count -1;
 state<=READ11A;
 end else begin
 state<=ACKNACK14A;
 sda_val<=0;
 end
 end
 ACKNACK14A: begin
 scl_val <=1;
 state <=ACKNACK14B;
 count <=7;
 end
 ACKNACK14B: begin
 scl_val <=0;
 state <=READ12A;
 count <=7;

29

 sda_val <=1;
 end
 READ12A: begin
 scl_val <=1;
 state <= READ12B;
 end
 READ12B: begin //GYRO_YOUT_L
 scl_val <=0;
 gyro_y[count] <= sda;
 if (count >= 1)begin
 count <= count -1;
 state<=READ12A;
 end else begin
 state<=ACKNACK15A;
 sda_val<=0;
 end
 end
 ACKNACK15A: begin
 scl_val <=1;
 state <=ACKNACK15B;
 count <=7;
 end
 ACKNACK15B: begin
 scl_val <=0;
 state <=READ13A;
 count <=7;
 sda_val <=1;
 end
 READ13A: begin
 scl_val <=1;
 state <= READ13B;
 end
 READ13B: begin //GYRO_ZOUT_H
 scl_val <=0;
 gyro_z[count+8] <= sda;
 if (count >= 1)begin
 count <= count -1;
 state<=READ13A;
 end else begin
 state<=ACKNACK16A;
 sda_val<=0;
 end
 end
 ACKNACK16A: begin
 scl_val <=1;
 state <=ACKNACK16B;
 count <=7;
 end

30

 ACKNACK16B: begin
 scl_val <=0;
 state <=READ14A;
 count <=7;
 sda_val <=1;
 end
 READ14A: begin
 scl_val <=1;
 state <= READ14B;
 end
 READ14B: begin //GYRO_ZOUT_L
 scl_val <=0;
 gyro_z[count] <= sda;
 if (count >= 1)begin
 count <= count -1;
 state<=READ14A;
 end else begin
 state<=NACK;
 sda_val<=1;
 end
 end
 NACK: begin
 scl_val <=1;
 count <=0;
 x_accel[15:0] <= accel_x[15:0];
 y_accel[15:0] <= accel_y[15:0];
 z_accel[15:0] <= accel_z[15:0];
 x_gyro[15:0] <= gyro_x[15:0];
 y_gyro[15:0] <= gyro_y[15:0];
 z_gyro[15:0] <= gyro_z[15:0];
 state <= STOP1A;
 end
 STOP1A: begin
 scl_val <=0;
 sda_val <=0;
 state <= STOP1B;
 end
 STOP1B: begin
 scl_val <= 1;
 sda_val <=0;
 state <=STOP1C;
 end
 STOP1C: begin
 sda_val <=1;
 state <= IDLE;
 end

 endcase

31

 end
 end

endmodule

//clock for the i2c module
module clock_200khz (input reset, input clock, output reg slow_clock);
 reg [7:0] count=0;
 always @(posedge clock)begin
 if (reset) begin
 count <=0;
 slow_clock <=1;
 end else begin
 if (count ==125)begin
 count <=0;
 slow_clock <= !slow_clock;
 end else begin
 count <= count +1;
 end
 end
 end
endmodule

//converts the raw data into reasonable numbers

module converter(

input signed [15:0] x_accel,
input signed [15:0] y_accel,
input signed [15:0] z_accel,
input signed [15:0] x_gyro,
input signed [15:0] y_gyro,
input signed [15:0] z_gyro,
output reg signed [7:0] x_accel_new,
output reg signed [7:0] y_accel_new,
output reg signed [7:0] z_accel_new,
output reg signed [7:0] x_gyro_new,
output reg signed [7:0] y_gyro_new,
output reg signed [7:0] z_gyro_new
);
reg signed [15:0] gyro_mult = 250;
reg signed [15:0] accel_mult = 2;
always@ (*)
begin

x_accel_new = ((x_accel*accel_mult) >>> 14)*5;
y_accel_new = ((y_accel*accel_mult) >>> 14)*5;
z_accel_new = ((z_accel*accel_mult) >>>14)*5;

32

x_gyro_new = ((x_gyro*gyro_mult) >>> 14)*2;
y_gyro_new = (~(((y_gyro*gyro_mult) >>> 14))+1)/2;
z_gyro_new = (~(~((z_gyro*gyro_mult) >>> 14)+1)+1)/2; //I found

that for some reason inverting the value twice made it work right
end

endmodule

//this module will take a signed 8-bit binary number
//and output a 3 character long ascii representation
//for example it would take "-30" and output "45" (ascii code for '-')
//"51" (ascii code for '3') "48" (ascii code for '0')

module ascii (

input signed [7:0] toConvert,
output [23:0] message
);

reg sign;

 reg [7:0] reg_message = 8'd48;
reg [7:0] absToConvert = 8'd0;
wire [1:0] Hundreds;
wire [7:0] Tens;
wire [7:0] Ones;

always@(toConvert)
begin

sign = toConvert[7];
if (sign) begin

reg_message = 8'd45;
absToConvert = (~toConvert + 1);

end
else begin

reg_message = 8'd48;
absToConvert = toConvert;

end
end

 binary_to_BCD b1(.A(absToConvert), .ONES(Ones), .TENS(Tens),
.HUNDREDS(Hundreds));
 assign message[23:16] = reg_message;
 assign message[15:8] = (Tens + 8'd48);
 assign message[7:0] = (Ones + 8'd48);
endmodule

module binary_to_BCD(A,ONES,TENS,HUNDREDS);
input [7:0] A;
output [7:0] ONES, TENS;

33

output [1:0] HUNDREDS;
wire [3:0] c1,c2,c3,c4,c5,c6,c7;
wire [3:0] d1,d2,d3,d4,d5,d6,d7;

assign d1 = {1'b0,A[7:5]};
assign d2 = {c1[2:0],A[4]};
assign d3 = {c2[2:0],A[3]};
assign d4 = {c3[2:0],A[2]};
assign d5 = {c4[2:0],A[1]};
assign d6 = {1'b0,c1[3],c2[3],c3[3]};
assign d7 = {c6[2:0],c4[3]};
add3 m1(d1,c1);
add3 m2(d2,c2);
add3 m3(d3,c3);
add3 m4(d4,c4);
add3 m5(d5,c5);
add3 m6(d6,c6);
add3 m7(d7,c7);
assign ONES = {4'b0,c5[2:0],A[0]};
assign TENS = {4'b0,c7[2:0],c5[3]};
assign HUNDREDS = {c6[3],c7[3]};

endmodule

module add3(in,out);
input [3:0] in;
output [3:0] out;
reg [3:0] out;

always @ (in)

case (in)
4'b0000: out <= 4'b0000;
4'b0001: out <= 4'b0001;
4'b0010: out <= 4'b0010;
4'b0011: out <= 4'b0011;
4'b0100: out <= 4'b0100;
4'b0101: out <= 4'b1000;
4'b0110: out <= 4'b1001;
4'b0111: out <= 4'b1010;
4'b1000: out <= 4'b1011;
4'b1001: out <= 4'b1100;
default: out <= 4'b0000;
endcase

endmodule

//this module constructs a 31 byte message of ASCII characters to send via
serial

34

module builder (input clock,
 input [23:0] mouse_x,
 input [23:0] mouse_y,
 input [23:0] wheel,
 input left_click,
 input right_click,
 input middle_click,
 input enable,
 input shifter_done,
 output reg shifter_start,
 output [247:0] word);

 reg state = 0, next_state = 0, reg_shifter_start = 1;
 parameter [1:0] SEND = 0, SEND2 = 1, WAIT = 2, WAIT2 = 3;

 wire clock_start;
 wire expired;
 clock_100hz timer(.reset(~clock_start), .clock(clock),
.slow_clock(expired));

 always @(*) begin
 case (state)
 SEND: begin
 reg_shifter_start = 1;
 next_state = SEND2;
 end

 SEND2: begin
 reg_shifter_start = 1;
 next_state = WAIT;
 end

 WAIT: begin
 reg_shifter_start = 0;
 next_state = WAIT2;
 end

 WAIT2: begin
 reg_shifter_start = 0;
 next_state = expired ? SEND : WAIT2;
 end
 endcase
 end

 always @(posedge clock) begin
 state <= next_state;
 shifter_start <= reg_shifter_start;
 end

35

 assign clock_start = shifter_done; //when shifter is done, start the timer

 wire [39:0] xvel = (enable) ? {8'h58, 8'h30, 8'h30, 8'h30, 8'h5f} : {8'h58,
mouse_x, 8'h5f};
 wire [39:0] yvel = (enable) ? {8'h59, 8'h30, 8'h30, 8'h30, 8'h5f} : {8'h59,
mouse_y, 8'h5f};
 wire [39:0] wvel = (middle_click) ? {8'h57, wheel, 8'h5f} : {8'h57, 8'h30,
8'h30, 8'h30, 8'h5f};
 wire [39:0] kpress = {8'h4b, 8'h30, 8'h30, 8'h30, 8'h5f};

 wire [23:0] lclick = (left_click) ? {8'h4c, 8'h32, 8'h5f} : {8'h4c, 8'h30,
8'h5f};
 wire [23:0] rclick = (right_click) ? {8'h52, 8'h31, 8'h5f} : {8'h52, 8'h30,
8'h5f};
 wire [23:0] mclick = {8'h4d, 8'h30, 8'h5f};

 assign word = {xvel,yvel,wvel,lclick,rclick,mclick,kpress,8'h5a,8'h5a};
endmodule

//this module isn't really a clock, I'm just using it like a timer for the
builder module
module clock_100hz (input reset, input clock, output reg slow_clock);
 reg [7:0] count=0;
 always @(posedge clock)begin
 if (reset) begin
 count <=0;
 slow_clock <= 0;
 end else begin
 if (count == 369792) begin
 count <=0;
 slow_clock <= !slow_clock;
 end else begin
 count <= count +1;
 end
 end
 end
endmodule

//this module splits the 31 byte message into byte sized chunks for the serial
module to send

module shifter (input clock,
 input [247:0] word,
 input serial_done,
 input start,
 output reg serial_start,

36

 output reg done,
 output reg [7:0] serial); //baud = 115200

 reg [7:0] count = 8'd247, next_count = 8'd247;
 reg [1:0] state = 2'b00, next_state = 2'b00;
 reg next_serial_start = 0;

 parameter WAIT = 2'b00;
 parameter SHIFT = 2'b01;
 parameter TRANSMITTING = 2'b10;

 always @(posedge clock) begin
 case (state)
 WAIT: begin
 next_state <= start ? SHIFT : WAIT;
 next_serial_start <= 0;
 done <= 1;
 end

 SHIFT: begin
 if (count > 7) begin
 next_serial_start <= 1;
 next_count <= count-8;
 next_state <= TRANSMITTING;
 done <= 0;
 end
 else if (count == 8'd7) begin
 next_serial_start <= 1;
 next_count <= count;
 next_state <= TRANSMITTING;
 done <= 0;
 end
 end
 TRANSMITTING: begin
 if ((count == 8'd7) && (~serial_done)) begin
 next_state <= WAIT;
 next_count <= 8'd247;
 next_serial_start <= 0;
 done <= 0;
 end
 else if (~serial_done) begin
 next_state <= SHIFT;
 next_count <= count;
 next_serial_start <= 0;
 done <= 0;
 end

 else begin

37

 next_state <= TRANSMITTING;
 next_count <= count;
 next_serial_start <= 0;
 done <= 0;
 end
 end
 endcase

 count <= next_count;
 state <= next_state;
 serial_start <= next_serial_start;
 serial[7] <= word[count];
 serial[6] <= word[count-1];
 serial[5] <= word[count-2];
 serial[4] <= word[count-3];
 serial[3] <= word[count-4];
 serial[2] <= word[count-5];
 serial[1] <= word[count-6];
 serial[0] <= word[count-7];
 end

endmodule

//serializes byte data

module serial_tx #(
 parameter CLK_PER_BIT = 434
)(
 input clk,
 input rst,
 output tx,
 input block,
 output busy,
 input [7:0] data,
 input new_data
);

 // clog2 is 'ceiling of log base 2' which gives you the number of bits needed
to store a value
 parameter CTR_SIZE = $clog2(CLK_PER_BIT);

 localparam STATE_SIZE = 2;
 localparam IDLE = 2'd0,
 START_BIT = 2'd1,
 DATA = 2'd2,
 STOP_BIT = 2'd3;

 reg [CTR_SIZE-1:0] ctr_d, ctr_q;

38

 reg [2:0] bit_ctr_d, bit_ctr_q;
 reg [7:0] data_d, data_q;
 reg [STATE_SIZE-1:0] state_d, state_q = IDLE;
 reg tx_d, tx_q;
 reg busy_d, busy_q;
 reg block_d, block_q;

 assign tx = tx_q;
 assign busy = busy_q;

 always @(*) begin
 block_d = block;
 ctr_d = ctr_q;
 bit_ctr_d = bit_ctr_q;
 data_d = data_q;
 state_d = state_q;
 busy_d = busy_q;

 case (state_q)
 IDLE: begin
 if (block_q) begin
 busy_d = 1'b1;
 tx_d = 1'b1;
 end else begin
 busy_d = 1'b0;
 tx_d = 1'b1;
 bit_ctr_d = 3'b0;
 ctr_d = 1'b0;
 if (new_data) begin
 data_d = data;
 state_d = START_BIT;
 busy_d = 1'b1;
 end
 end
 end
 START_BIT: begin
 busy_d = 1'b1;
 ctr_d = ctr_q + 1'b1;
 tx_d = 1'b0;
 if (ctr_q == CLK_PER_BIT - 1) begin
 ctr_d = 1'b0;
 state_d = DATA;
 end
 end
 DATA: begin
 busy_d = 1'b1;
 tx_d = data_q[bit_ctr_q];
 ctr_d = ctr_q + 1'b1;

39

 if (ctr_q == CLK_PER_BIT - 1) begin
 ctr_d = 1'b0;
 bit_ctr_d = bit_ctr_q + 1'b1;
 if (bit_ctr_q == 7) begin
 state_d = STOP_BIT;
 end
 end
 end
 STOP_BIT: begin
 busy_d = 1'b1;
 tx_d = 1'b1;
 ctr_d = ctr_q + 1'b1;
 if (ctr_q == CLK_PER_BIT - 1) begin
 state_d = IDLE;
 end
 end
 default: begin
 state_d = IDLE;
 end
 endcase
 end

 always @(posedge clk) begin
 if (rst) begin
 state_q <= IDLE;
 tx_q <= 1'b1;
 end else begin
 state_q <= state_d;
 tx_q <= tx_d;
 end

 block_q <= block_d;
 data_q <= data_d;
 bit_ctr_q <= bit_ctr_d;
 ctr_q <= ctr_d;
 busy_q <= busy_d;
 end

endmodule

40

Appendix B: Mojo Constraints
NET "clk" TNM_NET = clk;
TIMESPEC TS_clk = PERIOD "clk" 50 MHz HIGH 50%;

NET "clk" LOC = P56 | IOSTANDARD = LVTTL;
NET "rst_n" LOC = P38 | IOSTANDARD = LVTTL;

NET "cclk" LOC = P70 | IOSTANDARD = LVTTL;

NET "led<0>" LOC = P134 | IOSTANDARD = LVTTL;
NET "led<1>" LOC = P133 | IOSTANDARD = LVTTL;
NET "led<2>" LOC = P132 | IOSTANDARD = LVTTL;
NET "led<3>" LOC = P131 | IOSTANDARD = LVTTL;
NET "led<4>" LOC = P127 | IOSTANDARD = LVTTL;
NET "led<5>" LOC = P126 | IOSTANDARD = LVTTL;
NET "led<6>" LOC = P124 | IOSTANDARD = LVTTL;
NET "led<7>" LOC = P123 | IOSTANDARD = LVTTL;

NET "spi_mosi" LOC = P44 | IOSTANDARD = LVTTL;
NET "spi_miso" LOC = P45 | IOSTANDARD = LVTTL;
NET "spi_ss" LOC = P48 | IOSTANDARD = LVTTL;
NET "spi_sck" LOC = P43 | IOSTANDARD = LVTTL;
NET "spi_channel<0>" LOC = P46 | IOSTANDARD = LVTTL;
NET "spi_channel<1>" LOC = P61 | IOSTANDARD = LVTTL;
NET "spi_channel<2>" LOC = P62 | IOSTANDARD = LVTTL;
NET "spi_channel<3>" LOC = P65 | IOSTANDARD = LVTTL;

NET "avr_tx" LOC = P55 | IOSTANDARD = LVTTL;
NET "avr_rx" LOC = P59 | IOSTANDARD = LVTTL;
NET "avr_rx_busy" LOC = P39 | IOSTANDARD = LVTTL;

NET "p33" LOC = P33 | IOSTANDARD = LVTTL;
NET "p35" LOC = P35 | IOSTANDARD = LVTTL;
NET "p67" LOC = P67 | IOSTANDARD = LVTTL;

NET "p29" LOC = P29 | IOSTANDARD = LVTTL;
NET "p26" LOC = P26 | IOSTANDARD = LVTTL;
NET "p23" LOC = P23 | IOSTANDARD = LVTTL;
NET "p21" LOC = P21 | IOSTANDARD = LVTTL;

41

42

Appendix C: Teensy Code
void setup() {
 // put your setup code here, to run once:

Serial1.begin(115200);
//Serial.begin(115200);
pinMode(13,OUTPUT);
Mouse.begin();
Keyboard.begin();
}

void loop() {
//int messageLength = 30;
int xmove = 0;
int ymove = 0;
int wmove = 0;
//int wmove_new = 0;
int lclick = 0;
int rclick = 0;
int mclick = 0;
int Kpress = 0;
char currentChar;
String Message = String("");
//Serial2.println('q');

while (Serial1.available()) {
 currentChar = Serial1.read();
 //Serial.print(currentChar);
 digitalWrite(13,HIGH);

 if (currentChar == 'Z') {
 //Serial1.println("here");
 break;
 }

 //else if (currentChar == '9'){
 //break;
 //}
 else if (Message.length() < 29 && currentChar != 'X'){
 Message += currentChar;
 //Serial2.println(Message);
 //break;
 }
 //else {
 // Message += currentChar;

43

 // Serial1.println(Message);
 // break;
 //}
 //Message += currentChar;
 //Serial1.println(Message);
}
//Serial2.println("made");
digitalWrite(13,LOW);

//if (Message.length() != 0){
//Serial2.println(Message.length());
//}
//message should be of the form "x###_y###_w###_l#_r#_m#_k###_z"
if (Message.length() == 28){
xmove = ((Message.substring(0,3).toInt())/-2);
ymove = ((Message.substring(5,8).toInt())/2);
//wmove = ((Message.substring(10,13).toInt())/-20);
wmove = ((Message.substring(10,13).toInt())/-20);
//wmove = map(wmove, 0, 100, 0, 10);
lclick = Message.substring(15,16).toInt();
rclick = Message.substring(18,19).toInt();
mclick = Message.substring(21,22).toInt();
Kpress = Message.substring(24,27).toInt();
Serial1.println("hi");
//digitalWrite(13,HIGH);
//delay(500);
}
if ((xmove != 0) || (ymove != 0) || (wmove != 0)){
 Mouse.move(xmove,ymove,wmove);
 //digitalWrite(13,HIGH);
 //delay(250);
}
if (Kpress != 0){
 Keyboard.write(Kpress);
}
 if (lclick > 0){
 Mouse.press(MOUSE_LEFT);
}
 if (lclick == 0){
 Mouse.release(MOUSE_LEFT);
 }
if (rclick > 0){
 Mouse.click(MOUSE_RIGHT);
}
if (mclick > 0){
 Mouse.click(MOUSE_MIDDLE);
}
delay(6);

44

}

45

