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LASERNET 
 

1. Introduction 
 
Free-space optical (FSO) communication systems transmit wireless data using 
visible-frequency electromagnetic waves propagating in free space. FSO systems using 
lasers as the communication medium are of particular interest, as they theoretically 
enable point-to-point long-range communication links with data rates comparable to (if 
not better than) those achievable by radio broadcast or fiber optic cables, without the 
infrastructural cost of wired connections. Laser-based communication systems therefore 
have a wide range of theoretical applications, such as providing network connectivity in 
emergency situations or improving the data rates of deep space transmissions.  
 
Inspired by laser communications research underway at ​NASA​ and ​Facebook’s 
Connectivity Lab​, LASERNET is an FSO communication system implemented with 
FPGAs and off-the-shelf lasers. In this proposal, we will describe the basic logic 
architecture for transmitting messages between two nodes, which communicate via 
laser using an Internet-like Transmission Control Protocol (TCP) connection. We also 
sketch an approach for extending this platform to multiple nodes and establishing some 
basic routing protocols, forming a simple “laser internet.” 
 
1.1. System overview 
 
LASERNET will be implemented on the Digilent Nexys4 platform, which is powered by 
the Xilinx Artix-7 FPGA. Each node will consist of one Nexys4 board, a laser transmitter, 
and a photodiode receiver. The FPGA software architecture consists broadly of a 
controller module which operates a finite state machine (FSM) implementing a TCP-like 
connection protocol. The FSM controls eight primary submodules: four submodules for 
transmitting data and four submodules for receiving data. These are illustrated in the 
block diagram on the next page, and described in more detail in Section 2. 
 
1.2. External components 
 
The only external components necessary will be a laser for data transmission, a 
photodiode/amplifier for data reception, and a USB keyboard for user input. 

https://www.nasa.gov/mission_pages/tdm/lcrd/overview.html
https://www.facebook.com/notes/mark-zuckerberg/the-technology-behind-aquila/10153916136506634/
https://www.facebook.com/notes/mark-zuckerberg/the-technology-behind-aquila/10153916136506634/


 



2. Software Architecture 
 
Because all nodes in our simple network transmit and receive data, every node runs on 
the same software architecture. We describe this architecture below.  
 
The overarching control module operates a finite state machine (FSM) that establishes 
TCP-like connections, tracks which packets have been acknowledged, retransmits 
packets when necessary, processes data for user input/output, and closes the TCP 
connection when the transmission is complete. The full TCP specification is described 
by ​RFC 793​, which sketches the state diagram of a TCP connection on ​page 23​.  
 
The control module directs the submodules detailed in the following sections, which we 
have organized into “transmission” submodules (user input, header construction, 
channel coding, and laser control) and “reception” submodules (photodiode input, 
channel decoding, error checking, and user output).  
 
2.1. Transmission submodules (Allan) 
 
User input  
 
The user input module reads in new data from user input, buffers the data as 
necessary, segments it into equally-sized packets, and forwards the next available 
packet to the FSM when the FSM signals ready. The user will enter data using a USB 
keyboard. This is supported by the Nexys4 board via the Auxiliary Function 
microcontroller, which takes USB keyboard input and emulates the PS/2 protocol for the 
FPGA.  
 
Header construction  
 
The header construction module reads the next available packet and constructs a 
packet header according to the TCP header format. The key segments of the TCP 
header are the source and destination port, the sequence number, the 
acknowledgement number, which are given by the controlling FSM. The module also 
computes and inserts the checksum, which by TCP standards is the bitwise 
complement of the one’s complement sum of all 16-bit “words” in the packet and 
header. 
 
Channel coding  
 
The channel coding module reads in the next packet to be transmitted (as indicated by 
the controller FSM) and encodes it with a forward error correcting code in order to make 
the connection more robust to transmission errors. The specific code to be implemented 
is yet to be determined, as we don’t know yet how noisy the laser transmission scheme 
will be. However, a convolutional code with an interleaver would be a standard coding 
scheme to use. Another option would be a linear block code, such as a Hamming code. 

https://tools.ietf.org/html/rfc793
https://tools.ietf.org/html/rfc793#page-23


 
Laser control  
 
The laser control module reads in the next message (as directed by the controller FSM) 
and transmits it, bit-by-bit, by flashing the laser diode at the photodiode of the receiving 
node. 
 
2.2. Reception submodules (Amanda) 
 
Photodiode input  
 
The photodiode input module reads, synchronizes, and buffers incoming data. Incoming 
data is read as a stream of bits from the photodiode as it receives laser flashes from the 
transmitting node. 
 
Channel decoding  
 
The channel decoding module reads the incoming data from the photodiode input 
module and decodes whatever error-correcting code was implemented. For instance, if 
a convolutional code was used in transmission, this module might implement a Viterbi 
decoder; or, if a Hamming code was used, this module would implement a syndrome 
decoder.  
 
Error detection  
 
The error detection module performs the TCP checksum and verifies that the new 
packet is error-free. If so, it reports to the controlling FSM to acknowledge the received 
packet and forwards the packet to the user output module. If the packet is found to 
contain errors, the packet is discarded. 
 
User output  
 
The user output module buffers all the incoming packets verified by the error detection 
module. As sequential packets are received, the user output module reassembles the 
original data in the correct order. Once transmission is complete and the TCP 
connection is closed, the user output module can be prompted by a button press to 
display the received text message as a scrolling marquee on the Nexys4 7-segment 
display. 
 
3. Development Plan 
 
3.1. Schedule 
 
Our proposed week-by-week development schedule is detailed in the following table. 
 



 Allan  Amanda 

Week of Oct 31 Refine software specification: 
memory requirements, inputs, 
outputs, timing 
 
Begin drafting state diagram 
for controlling FSM 

Order analog components 
 
Complete analog circuits for (1) 
laser control and (2) data 
reception via photodiode 

Week of Nov 7 Complete user input and laser 
control submodules 
 

Complete photodiode input and 
user output submodules 

Integrate above submodules with basic FSM, demonstrate basic 
data transmission without headers, channel coding, packet 
acknowledgment, or error correction 

Week of Nov 14 Complete header construction 
and channel coding 
submodules 

Complete channel decoding and 
error detection submodules  

Verify submodules with testbenches in simulation  
 
Project checkoff checklist meeting 

Week of Nov 21 Integrate channel coding/decoding and TCP transmission 
protocols (headers, checksum, and packet acknowledgements) 
into the controlling FSM 
 
Test and verify successful connection, message transmission, 
and connection termination. This fulfills baseline requirements. 

Week of Nov 28 Buffer week 
 
Work on stretch goals if baseline requirements complete 

Week of Dec 5 Buffer week 
 
Work on stretch goals if baseline requirements complete 
 
Begin drafting final project report 

Week of Dec 12 12/12 - Final project checkoff 
12/13 - Project demos and videotaping 
12/14 - Turn in final project report 

 



3.2. Stretch goals and potential upgrades 
 
Because of the modular nature of communications architectures, there are many ways 
to expand on our baseline two-node system, if we have time. Once the TCP data link 
architecture is complete, we might transmit larger packets by reading and writing data 
using an SD card on each node. To handle larger packets, we might implement 
compression, perhaps using the ​Lempel-Ziv-Welch​ compression scheme. It should also 
be straightforward to implement an encryption layer between the user input and header 
construction steps. 
 
Other interesting ways to make LASERNET more Internet-like would be to implement a 
User Datagram Protocol (UDP) mode, perhaps building up to a Real-time Transport 
Protocol (RTP) implementation. We could use this to demonstrate audio streaming or 
Voice over IP (VoIP) by tweaking the user input and output modules.  
 
Of course, the most interesting upgrade of all would be to add more nodes to the 
network, constructing an ad-hoc local area network connected entirely via optical lasers 
and communicating with a simple implementation of Internet Protocol (IP). This would 
require some extra FPGAs (one for each node) as well as extra lasers and photodiodes 
(one of each for each edge). 

https://en.wikipedia.org/wiki/Lempel%E2%80%93Ziv%E2%80%93Welch

