
Amanda Ke
Allan Ko

6.111 Project Proposal
November 1, 2016

LASERNET

1. Introduction

Free-space optical (FSO) communication systems transmit wireless data using
visible-frequency electromagnetic waves propagating in free space. FSO systems using
lasers as the communication medium are of particular interest, as they theoretically
enable point-to-point long-range communication links with data rates comparable to (if
not better than) those achievable by radio broadcast or fiber optic cables, without the
infrastructural cost of wired connections. Laser-based communication systems therefore
have a wide range of theoretical applications, such as providing network connectivity in
emergency situations or improving the data rates of deep space transmissions.

Inspired by laser communications research underway at ​NASA​ and ​Facebook’s
Connectivity Lab​, LASERNET is an FSO communication system implemented with
FPGAs and off-the-shelf lasers. In this proposal, we will describe the basic logic
architecture for transmitting messages between two nodes, which communicate via
laser using an Internet-like Transmission Control Protocol (TCP) connection. We also
sketch an approach for extending this platform to multiple nodes and establishing some
basic routing protocols, forming a simple “laser internet.”

1.1. System overview

LASERNET will be implemented on the Digilent Nexys4 platform, which is powered by
the Xilinx Artix-7 FPGA. Each node will consist of one Nexys4 board, a laser transmitter,
and a photodiode receiver. The FPGA software architecture consists broadly of a
controller module which operates a finite state machine (FSM) implementing a TCP-like
connection protocol. The FSM controls eight primary submodules: four submodules for
transmitting data and four submodules for receiving data. These are illustrated in the
block diagram on the next page, and described in more detail in Section 2.

1.2. External components

The only external components necessary will be a laser for data transmission, a
photodiode/amplifier for data reception, and a USB keyboard for user input.

https://www.nasa.gov/mission_pages/tdm/lcrd/overview.html
https://www.facebook.com/notes/mark-zuckerberg/the-technology-behind-aquila/10153916136506634/
https://www.facebook.com/notes/mark-zuckerberg/the-technology-behind-aquila/10153916136506634/

2. Software Architecture

Because all nodes in our simple network transmit and receive data, every node runs on
the same software architecture. We describe this architecture below.

The overarching control module operates a finite state machine (FSM) that establishes
TCP-like connections, tracks which packets have been acknowledged, retransmits
packets when necessary, processes data for user input/output, and closes the TCP
connection when the transmission is complete. The full TCP specification is described
by ​RFC 793​, which sketches the state diagram of a TCP connection on ​page 23​.

The control module directs the submodules detailed in the following sections, which we
have organized into “transmission” submodules (user input, header construction,
channel coding, and laser control) and “reception” submodules (photodiode input,
channel decoding, error checking, and user output).

2.1. Transmission submodules (Allan)

User input

The user input module reads in new data from user input, buffers the data as
necessary, segments it into equally-sized packets, and forwards the next available
packet to the FSM when the FSM signals ready. The user will enter data using a USB
keyboard. This is supported by the Nexys4 board via the Auxiliary Function
microcontroller, which takes USB keyboard input and emulates the PS/2 protocol for the
FPGA.

Header construction

The header construction module reads the next available packet and constructs a
packet header according to the TCP header format. The key segments of the TCP
header are the source and destination port, the sequence number, the
acknowledgement number, which are given by the controlling FSM. The module also
computes and inserts the checksum, which by TCP standards is the bitwise
complement of the one’s complement sum of all 16-bit “words” in the packet and
header.

Channel coding

The channel coding module reads in the next packet to be transmitted (as indicated by
the controller FSM) and encodes it with a forward error correcting code in order to make
the connection more robust to transmission errors. The specific code to be implemented
is yet to be determined, as we don’t know yet how noisy the laser transmission scheme
will be. However, a convolutional code with an interleaver would be a standard coding
scheme to use. Another option would be a linear block code, such as a Hamming code.

https://tools.ietf.org/html/rfc793
https://tools.ietf.org/html/rfc793#page-23

Laser control

The laser control module reads in the next message (as directed by the controller FSM)
and transmits it, bit-by-bit, by flashing the laser diode at the photodiode of the receiving
node.

2.2. Reception submodules (Amanda)

Photodiode input

The photodiode input module reads, synchronizes, and buffers incoming data. Incoming
data is read as a stream of bits from the photodiode as it receives laser flashes from the
transmitting node.

Channel decoding

The channel decoding module reads the incoming data from the photodiode input
module and decodes whatever error-correcting code was implemented. For instance, if
a convolutional code was used in transmission, this module might implement a Viterbi
decoder; or, if a Hamming code was used, this module would implement a syndrome
decoder.

Error detection

The error detection module performs the TCP checksum and verifies that the new
packet is error-free. If so, it reports to the controlling FSM to acknowledge the received
packet and forwards the packet to the user output module. If the packet is found to
contain errors, the packet is discarded.

User output

The user output module buffers all the incoming packets verified by the error detection
module. As sequential packets are received, the user output module reassembles the
original data in the correct order. Once transmission is complete and the TCP
connection is closed, the user output module can be prompted by a button press to
display the received text message as a scrolling marquee on the Nexys4 7-segment
display.

3. Development Plan

3.1. Schedule

Our proposed week-by-week development schedule is detailed in the following table.

 Allan Amanda

Week of Oct 31 Refine software specification:
memory requirements, inputs,
outputs, timing

Begin drafting state diagram
for controlling FSM

Order analog components

Complete analog circuits for (1)
laser control and (2) data
reception via photodiode

Week of Nov 7 Complete user input and laser
control submodules

Complete photodiode input and
user output submodules

Integrate above submodules with basic FSM, demonstrate basic
data transmission without headers, channel coding, packet
acknowledgment, or error correction

Week of Nov 14 Complete header construction
and channel coding
submodules

Complete channel decoding and
error detection submodules

Verify submodules with testbenches in simulation

Project checkoff checklist meeting

Week of Nov 21 Integrate channel coding/decoding and TCP transmission
protocols (headers, checksum, and packet acknowledgements)
into the controlling FSM

Test and verify successful connection, message transmission,
and connection termination. This fulfills baseline requirements.

Week of Nov 28 Buffer week

Work on stretch goals if baseline requirements complete

Week of Dec 5 Buffer week

Work on stretch goals if baseline requirements complete

Begin drafting final project report

Week of Dec 12 12/12 - Final project checkoff
12/13 - Project demos and videotaping
12/14 - Turn in final project report

3.2. Stretch goals and potential upgrades

Because of the modular nature of communications architectures, there are many ways
to expand on our baseline two-node system, if we have time. Once the TCP data link
architecture is complete, we might transmit larger packets by reading and writing data
using an SD card on each node. To handle larger packets, we might implement
compression, perhaps using the ​Lempel-Ziv-Welch​ compression scheme. It should also
be straightforward to implement an encryption layer between the user input and header
construction steps.

Other interesting ways to make LASERNET more Internet-like would be to implement a
User Datagram Protocol (UDP) mode, perhaps building up to a Real-time Transport
Protocol (RTP) implementation. We could use this to demonstrate audio streaming or
Voice over IP (VoIP) by tweaking the user input and output modules.

Of course, the most interesting upgrade of all would be to add more nodes to the
network, constructing an ad-hoc local area network connected entirely via optical lasers
and communicating with a simple implementation of Internet Protocol (IP). This would
require some extra FPGAs (one for each node) as well as extra lasers and photodiodes
(one of each for each edge).

https://en.wikipedia.org/wiki/Lempel%E2%80%93Ziv%E2%80%93Welch

