Jhe spafiol Agial equalizer

6.111 Final Project

Alexander Sludds and Priya Kikani

December 2016

Contents

Introduction

High Level Technical Overview
Play-Record FSM
Peak Detection
ADC /DAC.
FIR Filtering
DSP and Sexy Presets L.

Audio Processing
ADC . . o

Transfer Function Generation

Play-Record FSM
Peak Detection

Additional Features

Display Transfer Function
Save Different Transfer Functions
Lab Switch Piano!
Additional DSP Presets

Equipment Testing

Test Multiple Speakers
Test Microphone

Personal Reflections

Alex’s Reflection
Priya’s Reflection

Summary

Source Files

10
12
13

14
14
15
15
15

17
17
17

18
18
18

19

20

Introduction

While the sculpted chambers of Carnegie Hall offer an amazing musical ex-
perience, small rooms muffle and distort the grandeur of any listening experi-
ence. The acoustical properties of the room, such as its size and the material
composition of its walls, directly impact the musical experience. Our goal
is to demonstrate that by using spatial acoustical characterization and dig-
ital signal processing to adaptively equalize recorded music, sound quality
will become independent of the environment’s intrinsic acoustical character-
istics. First, a frequency sweep will be transmitted into the room. Next, the
reflected signal carrying acoustical information about the room will be col-
lected. An FPGA will be utilized to generate a transfer function of the space.
This data will be processed—also using the FPGA-to calibrate audio filters.
These filters will pre-process the music with frequency-dependent compen-
sation for the specific acoustic characteristics of the room. This project will
provide users with concert-hall-quality music within virtually any space they
choose.

High Level Technical Overview

The overall project is divided into two separate stages. The first is room cal-
ibration (done by Priya). This stage characterizes the acoustics of the room
and generates frequency dependent compensation values. The second stage
is Music Adjustment (done by Alex). This stage applies the compensation
values to the music and outputs the audio such that the music is pre-adjusted
for the room.

—

& "9
‘F Play Record | Peak 32 bit weight per tone | DSP!
State State tevitspertone | detection | '

32 bits/frequency bin
Tone Generator FSM

-

16 bits Fixed

Sound!

32 bits/frequency bin 32bitsffrequency bj

Music! .
. ADC | ~ Amplitude

Play-Record FSM

(By Priya). This is a high level description of the Play/Record FSM. A se-
ries of tones are played at increasing frequencies corresponding to the audio
perception abilities of the human ear. Those signals are then recorded and
stored in memory. The relative amplitude of the recorded signals demon-
strates the behavior of the room in the frequency domain—for example, if the
recorded signals have attenuated high frequencies, then the room acts as a
low pass filter. The user then has the option to play the values from memory.
The peak detection module will then access the memory values in order to
create compensation values for each frequency.

Peak Detection

(By Priya). For each tone, the peak detection module picks several memory
values and averages them to generate a compensation value. This compen-
sation value is then sent to the DSP module in order to adjust the filter
weights.

lxpi_’,‘f"}

| b
) 4(%) H(*)%(T ﬁ(%—:)
& 0 i o w

4
1A

——

i3

ADC / DAC

(By Alex) In order to properly process audio we must be able to convert the
analog audio signal that a device outputs into a digital audio signal that an
FPGA can manipulate. This is done using an analog to digital converter
(ADC). The ADC samples the analog waveform and approximates the ana-
log voltage to the closest possible digital voltage, as is described by this sine
wave:

Amplitude

(Volts) |-rr|_l_|_|_|-L JJJ_I_LLLL
‘ LI-LI_I_I-IJ LLLI_FIJJ o

The XADC chip available on the Nexys 4 board is a 12-bit 1IMSPS analog to
digital converter. The ADC is biased using a circuit that we shall describe
later, but roughly we bias the input voltage halfway between the maximum
and minimum input voltages so that we can maximize the maximum voltage
swing. In order to allow the ADC to run at its fastest possible sampling rate
we must supply a 104MHz clock to it which is taken care of by the clock
wizard IP. This ADC signal is then passed onto the FIR.

The digital to analog converter (DAC) is implemented after all forms of dig-
ital signal processing. It converts our modified digital signal into an analog
signal that can be played through a speaker.

FIR Filtering

(By Alex) FIR filtering stands for finite impulse response. When a signal
is convolved with an FIR filter their frequency domain representations are
multiplied. This is useful because an FIR filter’s frequency domain response
is easy enough to manipulate.

DSP and Sexy Presets

The DSP (Digital Signal Processing) module acts as a way for us to change
the way that audio is played. For example, if we want to increase the base
on some music we could change some switches on the nexys 4 board and that
would amplify certain frequencies. The DSP module will be hardcoded with
values that are generated by peak detection module for different frequency
bins.

Audio Processing

(By Alex) As was noted on the high level block diagram there are two tracts
required to implement this project, the creation of a transfer function before
the DSP module and the processing of audio. This section covers audio
processing.

ADC

The ADC is the onboard XADC module. This module samples at IMSPS
with 12 bits of resolution. The ADC requires a biasing circuit as it samples
between OV and 1V. The 0V and 1V supply are located on the nexys4 board.
In order to maximize the range that the input voltage can swing over we
shall bias the input at 0.5V. This is the biasing circuit:

vCC1Vvo
1V
R2
10 kQ
!Input 1 and Outputl INPUT 2
c1 —L R1
100pF — [10 kQ

N

In this circuit we connect the two leads of the 3.5mm jack to input 1 and
2. Input 2’s DC bias is suddenly raised to 0.5V. Now input 1, as a result,
will have a bias of 0.5V and passes an AC signal. We measure our output
from input 1.

This bias circuit was taken from the ”"looper” demo available on the re-

source center for the nexys 4 board.

It must be noted that early on there were several issues with the bias to
the ADC as it created a large amount of noise. Later this problem would be
solved in verilog using oversampling.

The ADC takes this 12 bit signal and pads it with four zeros on the right
side so that it is now 16 bits.

FIR

The FIR filter that we are using are 4000 tap filters. The reason that we use
4000 tap filers is because of a tradeoff, 500 filters was experimentally deter-
mined to be the best amount for meeting timing requirements and something
larger than 4000 would provide high quality filtering (this was not tested be-
cause of the timing constraints on the FPGA). In the end I settled on 4000
taps as it provides very high quality filtering while still coming close to meet-
ing the timing specifications.

Since the transfer function of the room is characterized at the following
frequencies: 80Hz, 100Hz, 200Hz, 300Hz, 500Hz, 800Hz, 1000Hz, 1500Hz,
2000Hz, 3000Hz, 5000Hz, 8000Hz. We are going to choose the cutoff fre-
quencies that we shall be using as the geometric mean between two frequen-
cies. This is true except for the lower and upper frequencies where we shall
use a low pass and high pass filter respectively.

The following frequencies are our cutoff frequencies: 90Hz , 140Hz, 245Hz,
390Hz, 630Hz, 900Hz, 1225Hz, 1730Hz, 2450Hz, 3875Hz, 6325Hz

When measured experimentally all frequencies bin cutoffs were within 5
percent of there expected value.

The FIR IP Core module takes the padded 16 bit signal from the ADC and
then runs each of these FIR filters in parallel. Since they are run in parallel
the different frequencies can all give their outputs in the time domain at the
same time. This means that after filtering for specific frequency bands we
recombine them together in order to obtain our final signal.

The fir filters themselves are generated in matlab according to the follow-
ing lines of code:

For the lowest frequency we need only consider a low pass filter
b = firl(4000, &=);
final = round(b x 2%2);
For mid-range frequencies we shall consider bandpass filters:
b= firl(4000, [%2%2]);
2 2
final = round(b x 2%2);
For the highest frequency we will also be using a bandpass filter up to an
inaudible range:
b= firl(4000, [=-=2]);
2 2
final = round(b x 2%2);
Please note that the value 222 was experimentally determined.

I used the following python code to convert matlab vectors into a usable
format.

binl= "matlab_vectors.go_here”

bin2= "more_numbers_here”

bin3= "there_were_.12_bins”

def FIRtolist (matlabstring):
matlabstring = matlabstring.replace(’\t’,”,”)
matlablist = matlabstring.split(’,")
matlablist = [int(x) for x in matlablist |
return matlablist

print FIRtolist (binl)

print ”\n”

print "above_is_binl”

raw_input (” Press_Enter_to._continue...”)
print FIRtolist (bin2)

print ”\n”

print "above_is_bin2”

raw_input (” Press _Enter_to_continue ...”)
print FIRtolist (bin3)

print 7\n”

print ”"above_is._bin3”
print " This_pattern_continues_.until_binl2”

DSP

The DSP module is a case statement over the different filter options (EDM,
bass, treble) which changes the output value by choosing which bits we select.
For example, if the EDM button is being pressed we wish to increase the am-
plitude of low and high frequencies. Thus, we shift the midrange frequencies
down (right shift by 1). The reason why we don’t shift the low and high
frequencies up is because if we do this then we can corrupt the audio(this
was verified experimentally).

During testing this section was not functioning because the large amount of
FIR taps meant that the timing specification was not being met. However,
on the 500 tap, when the timing spec was a lot closer to being met, the
DSP module worked well, with a small amount of noise being added. The
problem was that the edges of the filter dropped off very slowly so different
frequencies bins would interfer with each other.

It is also within this module that the transfer function’s values are imple-
mented. They are stored as constants and can be changed, but the project
must be recompiled. By default the values are 6 bits and we choose to ”bias”
the transfer function value around % = 32. At the time of checkoff these val-
ues were slightly altered (increased or decreased by 1) based upon a transfer
function that Priya gave me.

At one point I spent about two hours changing the different clocking frequen-
cies of various FIR and DSP components in order to see if it would increase
the performance of the overall system (meet timing spec better or improve
the FIR filter). However, changing the clock frequency does not change the
performance.

DAC

The DAC that we are using outputs directly into the mono audio output. It
uses a PWM signal with an 11 bit output. The reason that the output has
so few bits is because we are clocking the module at 104mHz so the highest
possible signal that we can represent is 1.04 x 108/2" = 51k H z.

The code that I used to power this module was originally written by Mitchell
and I did not change it.

Transfer Function Generation

(By Priya). The specific details of transfer function generation are given
here.

First, various tones are generated via a method similar to that introduced
in labb. An AC97 Audio Codec chip is used to interface between the analog
speakers and digital tone generation. The AC97 chip can both accept audio
input from a microphone as well as output audio data to a speaker. Both
functions were used for this project.

The human ear can perceive audio from 20 Hz-20,000Hz. However, the
human ear can perceive and differentiate between lower frequencies much
better than higher frequencies. The figure below demonstrates perceived

human hearing as a function of frequency:
80 Perceived Human Hearing

70 =
60 =
50 =
40
30
20

10 =

Sound Pressure Level (dB)

0 =

=10 -

-20 T T T T T T T T T 1
156 312 625 125 250 500 1000 2000 4000 8000 16000
Frequency (Hz)

As a result, the following frequencies were used in the final setup: 80Hz,
100Hz, 200Hz, 300Hz, 500Hz, 800Hz, 1000Hz, 1500Hz, 2000Hz, 3000Hz,
5000Hz, 8000Hz. The microphone used had a frequency range from S80Hz
to 12,000Hz. Various tones with frequencies up to 15,000Hz were tested,
though it was found that it was difficult to perceive sound above 8,000Hz.

In order to generate these tones, the AC97 will take pulse-code modu-
lated (PCM) data and send it to two DACs, which will then output two
48kHz analog waveforms, one for each stereo speaker. Because the AC97

10

chip expects data at a rate of 48kHz, PCM data is driven with coefficients
that correspond to a sine wave at each frequency. For example, a 80 Hz tone
is generated with 48khz/80hz=600 coefficients per 48khz clock cycle. The
coefficients have a width of 12 bits in order to allow for enough resolution
but also not consume too much space in memory. The specific coefficients
for each frequency were generated with the following MATLAB code (in this
case for an 80 hz tone) :

% Make 480000 samples in the range 0 to 1 second
t = linspace (0, 1, 48000);

% Assign signal charachteristics (period, amplitude, and phase shift)
period = 1/80; % z hertz = period of 1/x of a second.

A=4095; %Amplitude for 12 bits
phaseShift = 0 = pi/180; % In radians.

x= sin(2xpixt/period — phaseShift);
%Test signal (expects signal to be between —1 and 1)
sound(x, 48000);

%Define signal for Verilog
y = Axsin (2% pixt/period — phaseShift);

Y=y '

out=round (y);

Y%cycle length

T=round (48000/(1/period));

for k=1:T/2
Y=["10""d’ ,num2str(k—1), : .pcm_data.<=_12""sd ’ ;num2str(out(k)), ;"]
disp (Y);

end

for m=1:T/2
X=["10""d’" ,num2str(T/2+m—1), " : _pcm_data.<=_—12""sd ",

11

num?2str(abs(out (T/24+m)))), ;" |;
disp (X);
end
plot(t,y, 'b’);

This MATLAB code also formats the generated coefficients for translation
to Verilog. The Verilog operates by first creating an ”"index” register that
increments at a rate of 48 khz, though the overall clock for this module
operates at a 27 mhz rate. ”Index” then functions as the case of a case
statement, with new coefficients from the MATLAB code driven to PCM data
each time index increments. This Verilog module ensures that the coefficients
of each tone is appropriately mapped to the 48Khz clock necessitated by the
AC97 chip. Each tone had a separate verilog module which contained the
specific coefficients. An example module is given in the Source Files.

One issue with this approach is that the AC97 chip introduced a lot of
noise into the low frequency tones. Using the coefficients to generate and
play a tone via MATLAB produced the expected sine wave and pure tone;
however, the output of the AC97 with those same coefficients did not look
like a pure sine wave when measured with an oscilloscope. This effect was
not at all evident at frequencies above 200 Hz.

Each tone was played for one second each (this was dictated by the
Play/Record FSM). The next step to generate a transfer function of the
room is to record the tones in memory. The purpose behind this step is
that the played tones will travel through the room and reflect off its walls;
therefore, the recorded signals will carry information about the room.

The AC97 chip also takes incoming data from the microphone. It is
passed through an ADC, which samples the analog waveform at a 48 kHz
rate and digitizes the waveform to an 18-bit value. To save memory, only the
higher order 12 bits are used (In contrast, Lab 5 only used the higher order
8 bits; this projected aimed to record with higher resolution). The signals
are recorded in memory with a mybram module for each of the twelve tones.
Rather than storing every value from the AC97 in memory (and thereby
sampling at 48khz), specific low frequencies were down sampled to 6 khz.
Intermediate frequencies were sampled at a 12 khz rate, and the highest
frequency was sampled at a 48 khz rate.

The third step in the room characterization process is to read those sam-
ples from memory and generate a single value describing the magnitude of
the record signal. Lastly, those values must be displayed for use later.

12

Play-Record FSM

The Play/Record FSM is the mastermind behind the room characterization.
It has a default state of PAUSE, which allows the user to employ the different
functionalities of the project via the labkit buttons and switches, as shown
in the below diagram. Because each tone had a separate state for each
functionality (Play, Record, etc) the final FSM had 32 states. In retrospect,
the complexity of the FSM could have been reduced by combining states and
perform computations in parallel, though this approach allowed for an easily
modifiable design.

In order to play the different tones, a counter based off the underlying 27
mhz clock dictates that each tone is played for 1 second, as each state will
send a different audio output to the AC97. The record tone states write to
memory with specific down sampling rates for each frequency.

Before the peak detection step, the FSM transitions to the PAUSE state.
This allows the user to play piano with the labkit switches and buttons before
undergoing peak detection.

BUTTON RIGHT/UP
BUTTON

RECORD
TONES

READ AND

PEAK WRITE TO
DETECTION MEMORY

J

13

Peak Detection

The peak detection section is essential for converting the recorded signal to
a single magnitude value. Two approached were explored as potential peak
detection methods. The first approach summed over each tone in memory
and scaled to prevent overflow.

The second approach is to use the prior information of each frequency
and memory size. Because those two numbers are well known, it is possible
to calculate the expected locations in memory where the peak of the recorded
signal should be located.

After experimentation, it was evident that the first approach yielded more
accurate results; this also allows the peaks to be computed during the record-
ing process rather than in a separate state.

Additional Features

This section describes the various stretch goals implemented in this project.

Display Transfer Function

(By Priya). Two different techniques were employed to display the transfer
function. First, the exact values of each peak were displayed on the LEDs.
The 12 bit number was expressed as 3 hex values, and the value correspond-
ing to each tone could be accessed via flipping the labkit switch or button
corresponding to each tone.

The second display technique was to display color bars on the monitor
which expressed the comparative peaks. Each tone has an individual color
bar where the length corresponds to the calculated magnitude of that tone.

One challenge in this stage arose from dealing with multiple clock do-
mains. In order to interface with the VGA display, the display code required
a 65 mhz clock. However, the audio processing was done at a 27 mhz clock.
As a result, the values dictating the length of each color bar were given to
the display code too slowly, which meant that the direct output from the
peak detection couldn’t be displayed in real time.

To fix this problem, the display code was modified such that the display
module expected a new value from the Play/Record FSM at a rate of once

14

per frame, rather than once per 65 mhz clock cycle. This allowed the color
bars to display, and it also resulted in the interesting side effect of allowing
the user to witness the peak detection calculation in real time.

Save Different Transfer Functions

(By Priya) After the transfer function is displayed on the monitor, it was
relatively straightforward to allow the user to save different coefficients in
memory and display them at will. For example, to save one set of coefficients
in memory, 12 12-bit registers were instantiated within the display tones
module. When the user depresses the ”UP” button, the current values are
loaded into the registers. In order to save multiple coefficients, different
sets of registers were instantiated, and the user is able to write to each one
based on the lab switches. Reading from memory works similarly, with the
"RIGHT” button corresponding to reading from memory, with prior saved
coefficients being displayed on the monitor. The user has the options to save
three different sets of coefficients. Due to this implementation, the coefficients
are not saved if the labkit is reprogrammed or turned off.

Lab Switch Piano!

(By Priya) The 12 different tones were wired to the labkit switches and
buttons, with switch 0 corresponding to 80 hz, switch 1 corresponding to
100 hz, etc. In the PAUSE state the user is able to flip those switches to
play piano. Furthermore, specific chords can be played by enabling multiple
switches. In this scenario, the output of the multiple tone generators is added
and shifted right to prevent overflow. The resulting sound is very distinct
from the individual switches. This feature was fun to implement as well as
useful for debugging.

Additional DSP Presets

(By Alex) A goal of the project was to add additional presets such as bass,
EDM, and treble. This was accomplished using bit shifts. When we are
summing together the fir filtered audio was are dealing with large-bit signals
(40 bits) and as a result just take the top 32 bits. When we sum together
the 12 frequency bins we then shift the sum right 4 bits. In order to do DSP
for the presets we have our DSP case statement choose different bit values

15

for certain frequency bins. For example, originally the sum was calculated
using this line of verilog:

superaudio <=(((fbinl[36:5]>>5)*transferl+(fbin2[37:6]>>5)xtransfer2
+ (fbin3[37:6]>>5)xtransfer3 + (fbin4[37:6]>>5)xtransfer4

+ (fbin5[37:6]>>5)xtransferb + (fbin6[37:6]>>5)xtransfer6 +
(fbin7[37:6]>>5)xtransfer7 + (fbin8[37:6]>>5)xtransfer8 +
(fbin9[37:6] >>5)xtransfer9 + (fbinl0[37:6]>>5)xtransferl0 +
(fbinl11[38:7]>>5)*transferll + (fbinl12[38:7]>>5)xtransferl2)>>4);

However, for EDM we output this line of verilog:

superaudio <=(((fbinl[36:5]>>5)*transferl+(fbin2[37:6]>>5)xtransfer2
+ (fbin3[37:6] >>5)xtransfer3 + (fbin4d[37:6]>>5)xtransferd +
(fbinb[37:6]>>6)* transfer5 + (fbin6[37:6]>>6)xtransfer6 +
(fbin7[37:6]>>6)«transfer7 + (fbin8[37:6]>>5)xtransfer8 +
(fbin9[37:6] > >5)*transfer9 + (fbinl0[37:6]>>5)xtransferl0 +
(fbin11[38:7]>>5)*transferll + (fbinl12[38:7]>>5)xtransfer12)>>4);

Note that for EDM we increased the amount that we right shifted the
central frequencies and left the bass and treble frequencies alone.

16

Equipment Testing

Test Multiple Speakers

(By Priya and Alex). Initially, for the sake of debugging, a pair of standard
(non-wireless) apple headphones were used to debug the sound of the project.
When we were ready to test in larger areas we used a ”"good” speaker and a
"bad” speaker. Here "good” means a speaker which we believe to be better
because of the quality of the manufacturing and also the size of the speaker
(smaller speakers preform worse at lower frequencies because they have a
smaller resonant cavity). It was shown in the project that different speakers
produced different transfer functions.

Test Microphone

(By Priya and Alex) We used a single microphone for the project. The
microphone did a reasonable job, though the measured frequency response
of the microphone was limiting (the lower bound for measuring was 80Hz
and upper bound was 12,000 Hz).

17

Personal Reflections

Alex’s Reflection

Though all aspects of the project that we wanted to implemented were im-
plemented some of them were poor as a result either hardware limitations
or experimentally determining values. Some things were unavoidable (sexy
presets not working as expected) but some worked substantially better than
I expected (summing all FIR filters together to recreate the audio).

In terms of time put into the project I wasted several days trying to figure
out how to best transform Mitchell’s FF'T code into an ”audio pipeline” that
takes audio into, takes an FFT, passes that into an IFFT, and then puts the
original audio on the output. As of right now I am still unclear as to why
my original approach did not work for the IFFT, it could have possibly been
an issue with buffering the output data of the IFFT.

I spent a very long amount of time grappling with the analog audio input into
the FPGA. Not that this was a difficult part, but some of the connections
would occasionally come loose. I fixed the issue by soldering the 3.5mm jack’s
leads to some leads coming out of the breadboard. However, this added a
noticeable amount of noise to the signal. I spent several hours trying some
different techniques in order to remove the noise, but none of them were suc-
cessful. What did work was oversampling the audio 16 samples at a time.
Other than small gripes with my approach to the project I think this was
an incredibly rewarding experience. My advice to future students who are
starting their project would be that starting early and picking the brains of
engineers are incredibly valuable things to do. I had some of my best break-
through moments because I talked to people working on similar projects and
that gave advice on what did and didn’t work for them.

On the last two days of the project, after all of the infrastructure had been
put in place, all of my time went into creating FIR filter coefficients and
putting them in the correct formatting.

Priya’s Reflection

I enjoyed working on this project, and it was amazing to see everything come
together. I think that with a few more days I could have implemented real

18

time transfer function generation. A lot of time went into generating the
specific tones and trying to make them sound good.

Because 12 tones were used, there was a lot of repeated tasks. As in,
the code for playing the tones, recording the tones, calculating the peaks,
and displaying and saving that information had to be replicated 12 times. If
I was to redo this project, I would spend more time coming up with more
elegant means of performing these computations.

Summary

In conclusion, this project was able to meet stated expectations. Further
work includes electronic transfer of room data to audio processing as well as
real time implementation of transfer function generation. We would like to
extend our thanks to Gim Hom for his guidance and teaching throughout the
semester. Also, Joe Steinmeyer was instrumental in debugging critical parts
of the project. Mitchell, Alex S. and Valerie were also amazingly helpful.

19

Source Files

Example Verilog Module for Tone Generation

module tone500hz (
input clock ,
input ready,
output reg signed [11:0] pcm_data
);
reg [6:0] index;

initial begin
index <= 7’d0;
// synthesis attribute init of index is "007;
pcm_data <= 12°d0;
// synthesis attribute init of pcm_data is 7000007;
end

always Q(posedge clock) begin
if (ready) begin
if (index <7’d95) begin
index <= index+1;

end

else if(index >=7'd95) begin
index <=0;

end

end
end

// one cycle of a sinewave in 64 20—bit samples
always Q(index) begin
case (index[6:0])
7’d0: pcm_data <= 127sd0;
7’dl: pcm_data <= 127sd134;
7’d2: pcm_data <= 127sd267;
7’d3: pcm_data <= 127sd399;

20

pcm_data <= 127sd529;
pcm_data <= 127'sd657;
pcm_data <= 12’sd783;
pcm_data <= 12’sd904;
pcm_data <= 127sd1023;
pecm_data <= 12’sd1136;
pcm_data <= 127sd1245;
pcm_data <= 127sd1348;
pcm_data <= 127sd1446;
pcm_data <= 127sd1538;
pcm_data <= 127'sd1622;
pcm_data <= 127sd1700;
pcm_data <= 127sd1771;
pcm_data <= 127sd1834;
pcm_data <= 127sd1889;
pcm_data <= 127'sd1936;
pcm_data <= 127sd1975;
pcm_data <= 127sd2006;
pcm_data <= 127sd2028;
pcm_data <= 127sd2041;
pcm_data <= 127sd2045;
pcm_data <= 127sd2041;
pcm_data <= 127sd2027;
pcm_data <= 127sd2006;
pcm_data <= 127sd1975;
pcm_data <= 127sd1936;
pcm_data <= 127’sd1889;
pcm_data <= 12’sd1834;
pcm_data <= 127sd1771;
pcm_data <= 127sd1700;
pcm_data <= 127sd1622;
pcm_data <= 12’sd1537;
pcm_data <= 127sd1446;
pcm_data <= 127sd1348;
pcm_data <= 127'sd1245;
pcm_data <= 127sd1136;
pcm_data <= 127'sd1022;
pcm_data <= 127sd904;

21

77d42:
7°d43:
7°d44 :
77d45:
77d46 :
77d47:
77d48:
7°d49:
77d50:
7’d51:
77d52:
77d53:
7°d54:
77d55:
77d56:
77d57:
77d58:
77d59:
77d60:
77d61:
77d62:
77d63:
7°d64:
77d65:
77d66 :
77d67
77d68:
77d69:
77d70:
77d71:
7°d72:
77d73:
7°d74:
7°d75:
7°d76:
77477
77d78:
7°d79:

pcm_data
pcm_data
pcm_data
pcm_data
pcm_data
pcm_data
pcm_data
pcm_data
pcm_data
pcm_data
pcm_data
pcm_data
pcm_data
pcm_data
pcm_data
pcm_data
pcm_data
pcm_data
pcm_data
pcm_data
pcm_data
pcm_data
pcm_data
pcm_data
pcm_data
pcm_data
pcm_data
pcm_data
pcm_data
pcm_data
pcm_data
pcm_data
pcm_data
pcm_data
pcm_data
pcm_data
pcm_data
pcm_data

<= 127sd782;
<= 127sd657;
<= 127sd529;
<= 127sd399;
<= 127s8d267;
<= 12’sd134;
<= —12’sd0;

<= —12’sd134;

<= —127sd267;
<= —12’sd399;
<= —12’sdb529;
<= —12’sd657;
<= —12’sd783;
<= —127sd905;
<= —127sd1023;
<= —12’sd1136;
<= —12’sd1245;
<= —12’sd1348;
<= —12’sd1446;

<

—12’sd1538;

<= —12’sd1623;
<= —12’sd1700;
<= —127sd1771;
<= —12’sd1834;
<= —12’sd1889;
<= —127sd1937;
<= —12’sd1975;
<= —12’sd2006;
<= —12’sd2028;
<= —12’sd2041;
<= —127sd2045;
<= —127sd2041;
<= —127sd2027;
<= —12’sd2006;

<
<

—12’sd1975;
—12’sd1936;

<= —12'sd1889;

<

—12’sd1834 ;

22

7°d80: pcm_data <= —12’sd1771;
7’d81: pcm_data <= —12’sd1700;
7’d82: pcm_data <= —12'sd1622;
7’d83: pcm_data <= —12’sd1537;
7’d84: pcm_data <= —12’sd1446;
7’d85: pcm_data <= —12’sd1348;
7’d86: pcm_data <= —12’sd1245;
7°d87: pcm_data <= —12’sd1136;
7°d88: pcm_data <= —12’sd1022;
7'd89: pcm_data <= —12'sd904;
7°d90: pcm_data <= —12'sd782;
7°d91: pcm_data <= —12’sd657;
7°d92: pcm_data <= —12'sdb29;
7'd93: pcm_data <= —12'sd399;
7'd94: pcm_data <= —12'sd267;
7°d95: pcm_data <= —12’sd133;

endcase // case(index[5:0])
end // always @ (index)

endmodule

23

