Delta-Sigma Heart Rate Monitor

Joe Griffin

Hugo Malpica

Motivation

- Use pulse oximetry and a FPGA to display heart rate visually.
- Implement 6.341 methods to process signals.
- Use 6.111 material to do cool things.

Block Diagram

Analog Circuitry

- Anti-aliasing filter
- Comparator
- TTL level shifter

b. Practical Anti-alias Filter

Delta Sigma Analog to Digital Converter (ADC)

- Take Nyquist frequency
- Oversample by factor M
- Apply sharp cutoff digital filter
- Decimate by factor M

Digital Signal Processing (DSP)

- Implement built in FFT
- Identify primary frequency component
- Pass waveform and heartrate data to graphics module

Graphics

- Plot waveform data points
- Use interpolation to connect pixel data
- Manage memory calls to memory buffer for heartrate printing
- Generate control signals for VGA module

Character Storage

- ROM storing transparency bits for pixels in character space
- Indexed by pixel location

Use Matlab to generate characters FPGA can use

Video Graphics Array (VGA)

- Similar to Lab 3
- Use ADV7125 control module
- Control signals for lab 3 module generated by graphics module

Timeline

Week of November 2	Design finalized, parts ordered, begin building and Testing Blocks.
Week of November 9	Continue Building and Testing Blocks
Week of November 16	Continue Building and Testing Blocks, Start integrating blocks
Week of November 23	Debugging Block interconnect
Week of November 30	Add finishing touches
Week of December 7	Demonstrate Completed Project

If time permits...

- Implement noise shaping for Delta Sigma ADC.
- Implement better interpolation method for data point plotting.

Anti Aliasing Filter

- Restricts the bandwidth of a signal.
- Implemented with a bandpass filter, low pass filter.

• Our idea: 2nd order low pass filter.

Delta Sigma Analog to Digital Converter

- System assumes signal is bandlimited.
- Sample at low precision well above target frequency.
- Pass through high precision digital filter
- Down sample to low frequency. (Decimator)
- High precision coefficients allow trading
- Sampling frequency for high precision
- Generation of bits depend on oversampling rate.

Noise Shaping

• Increase the signal to noise ratio of a signal.

- No noise shaping means quadrupling sampling frequency adds 1 bit of precision
- 1st order noise shaping means quadrupling sampling frequency adds 3 bits of precision.
- There is a limit: Don't go over 3rd order noise shaping.

Interpolation

- Method of constructing new data points within range of discrete data points.
- Activate pixels needed in graphics module

- Method here: Manhattan style
- Eventually: Linear

