@ HeartAware

HeartAware

Final Project Report
6.111 Fall 2015

Michael Holachek and Nalini Singh
Submitted December 9, 2015

Project Abstract

Pulse oximetry is a popular non-invasive method for monitoring a person’s blood oxygen
saturation. The goal of this project was to build a simple pulse oximetry system capable of
calculating and displaying a user’s real time heart rate using a finger pulse oximeter sensor,
analog circuitry, VGA display, speaker, and Artix 7 FPGA on a Nexys 4 DDR board. Using the
pushbuttons and switches on the Nexys 4, the user is able to control the system interface and
filter parameters.

Acknowledgements

We’d like to thank 6.111 lecturer Gim Hom for his excellent instruction and support during
development of our project, as well as Miren Bamforth, our project advisor, for her guidance
related to planning and troubleshooting our project. Additionally, the support of other TAs and
fellow 6.111 students kept us going through the late nights and occasionally frustrating debug
processes. We couldn’t have done it without you!

6.111 Final Project Report HeartAware M. Holachek, N. Singh

Table of Contents

L. Introduction
II. Final System Overview
III. Block Implementation and Design
A. Pulse Oximeter
B. Analog Control & Conversion (Michael)
C. Signal Processing (Nalini)
D. Display (Both)
E. Audio (Michael)
V. Testing and Debugging
VI. Design Decisions
A. Audio: FIFO vs. Dynamic clocks
B. Main FSM: Boot state
C. Display: Transparency vs. Binary hidden/visible states
D. Display: Scanning sprite block
E. Signal processing: Filter and system design

VII. Conclusion

Appendix

A. Circuit Schematics

Page 2/20

6.111 Final Project Report HeartAware M. Holachek, N. Singh

I. Introduction

This final project report describes the final design and implementation of HeartAware. In
addition, it shares our findings related to FPGA development and the process of debugging.

The first section of this report provides a high level system overview. The goal of this
project was to build a simple pulse oximetry system capable of calculating and displaying a
user’s real time heart rate using a finger pulse oximeter sensor, analog circuitry, VGA display,
speaker, and Artix 7 FPGA on a Nexys 4 DDR board. We wanted to improve on the user
interface of typical medical pulse oximeters by providing a verbal announcement of heart rate in
addition to beep sounds. That said, HeartAware is only for information purposes and not for
medical use, as we did not build any special redundancy into our features or conduct the
reliability tests required for a medical device.

The second section of this report details the design, implementation, and status of each
module. We achieved the commitment and goals for all blocks of our project, although time
constraints prevented us from implementing our stretch goals. However, ultimately, the key
features of our project worked well for many users.

The third section of this report describes our testing and debugging process. Although
Verilog modules are hardware-independent, many of the 6.111 Labkit hardware modules were
different from the Nexys 4, and the Nexys 4 and Vivado provided some unique challenges that
were previously solved for us on the Labkit. Thus, the Nexys 4 had a relatively large “startup”
cost and added to the difficulty of this project. This was particularly rewarding, however, since
every small feature had to be discovered, written, debugged, and integrated by us.

The fourth section of this report describes several design decisions we had to make
during the implementation of this project. Functionality was demonstrated at the final checkoff,
although not all features were implemented as modularly or intuitively as originally designed;
some workarounds were required due to hardware limitations. In this section we share the
complications discovered while building the project, which led to sometimes fundamental
changes to our module design.

Finally, our conclusion reviews the goals of the project, its current status, and further
direction.

Please note that all code, Vivado project files, and assets related to HeartAware are
available at http://github.com/holachek/heartaware for reference.

Page 3/20

http://github.com/holachek/heartaware

6.111 Final Project Report HeartAware M. Holachek, N. Singh

II. Final System Overview

At a high level, the final system is comprised of five main blocks, as described in the original
project proposal, shown in Figure 1. An analog signal from the pulse oximeter is amplified in
analog circuitry and converted to a digital signal, which is then input to the signal processing
block. The signal processing block detects peaks in the signal and calculates the current heart
rate. The processed waveform and calculated heart rate are displayed on a VGA monitor, and the
current heart rate is periodically announced over a speaker.

pulse oximeter
display
Y
. signal processing
analog control & -
conversion
audio

Figure 1: A simplified block diagram of the five system modules.

At the top level, our system has four states, determined by the system_status variable.
The system starts in a boot state, where it loads audio assets from the SD card.'! After a few
seconds, the system enters the capturing data state, where the user’s live heart data is displayed.
Should the user desire further analysis of a certain capture of samples, a pause mode can be
entered by pressing the left directional button. While originally we planned for the system will
transition to an error state if the sensor was disconnected, our breadboarded circuit did not have
this automatic functionality. Nevertheless, the user can manually enter the error mode by
pressing the up directional button. Pressing the down directional button clears pause/error state
and reverts back to capturing data mode. See Figure 2 for a visual summary of the system, as

' See section II1.E and VI.B for more information about SD card load times and audio buffering.
Page 4/20

6.111 Final Project Report HeartAware M. Holachek, N. Singh

well as renderings of the final user interface in each mode.

97 97

colecting ot povsed

loaded left btn
— A P

boot capturing paused

-~
down btn

down btn

up btn j

error

Figure 2. The final FSM implemented in our system.

A note about terminology: blocks are defined as complete system features, whereas

modules describe a single Verilog module. In most cases, for organizational reasons, there is not

a one-to-one correspondence between blocks and modules.

Page 5/20

6.111 Final Project Report HeartAware M. Holachek, N. Singh

II1. Block Implementation and Design

We will now describe in detail each block in depth and briefly cover design decisions we took
during the development. In depth discussion over design decisions is left to section VI.

A. Pulse Oximeter

The first block is the pulse oximeter. The pulse oximeter sensor is a finger clip consisting of a
red and infrared Light Emitting Diode (LED) and a photodiode, as shown in Figure 3. With
appropriate driving circuitry, the LEDs will shine light through the user’s finger and measure the
absorbed light with a photodiode. Because oxygenated hemoglobin absorbs less light than pure
hemoglobin, it is possible to convert the absorbed light to a reading of the level of oxygen
saturation in the user’s bloodstream. For HeartAware, we only used the red LED and not the IR
LED, since infrared wavelengths are much less effective than red wavelengths at detecting
differences in oxygenated and deoxygenated hemoglobin.” The pulse oximeter connects to the
system with a D-sub 9 connector. No Verilog modules are associated with this block.

Figure 3. A typical pulse oximeter, with red and infrared LEDs under the left pad, and
photodiode under the right pad

2 http://www.nxp.com/files/32bit/doc/app_note/AN4327.pdf
Page 6/20

6.111 Final Project Report HeartAware M. Holachek, N. Singh

B. Analog Control & Conversion (Michael)

The second block, the analog control and conversion circuitry, drives the pulse oximeter and
converts the analog signal to a digital value for processing on the Nexys 4. The data flow of the
input signal is shown in Figure 4.

The first stage of this block, the analog driving circuit, drives the red LED and receives
light pulses to construct into a rough oxygen saturation signal through a series of JFET op amps.
This design was provided by Gim Hom.

Because the output of this driving circuit was originally meant to be plugged into a
microphone input jack, the signal is relatively low in amplitude and does not have sufficient
offset for proper digitization by the ADC. Thus, the second stage of this block, the conversion
circuitry, processes the initial signal through an op amp to amplify and offset the voltage to an
appropriate 0-5V level. To convert the signal from the analog to the digital domain, we used an
ADCO0804 8-bit parallel output ADC. This integrated circuit converts an input voltage between 0
and 5V into a 8-bit number (thus our signal has 20mV resolution). We then connected the ADC
output to a Nexys 4 Pmod port.

To allow for greater modularity and portability, we attempted to integrate all external
circuitry on a custom Printed Circuit Board (PCB). While we were able to fabricate the PCB,
time constraints made us unable to assemble it, and thus we reverted to the breadboarded circuit
for our demo. However, we are confident that given enough time, we could have built and tested
the PCB with our system. Our circuit schematics are attached to this report in Appendix A.

pulse oximeter

- op amp
user's finger > Lot F:II’CUITFy > (adjust offset + > 8-bit ADC ——>» Nexys 4 Pmod port
(from Gim Hom) amplitude)

Figure 4. Data flow of input signal

Page 7/20

6.111 Final Project Report HeartAware M. Holachek, N. Singh

C. Signal Processing (Nalini)

The signal processing block converts the digital signal input from the analog control and
conversion block to a continuously updating, real time estimate of the current heart rate. Ata
high level, this heart rate computation is done using three filters and a peak detector.

First, the input signal is lowpass-filtered to reduce noise in the signal. Next, a match filter
is used to determine the correlation of the signal with itself; the output of this filter reaches a
maximum whenever the signal mostly closely corresponds to a template waveform recorded by
the user. A local maxima detector finds peaks in the output of the match filter, and a state
machine calculates the number of clock cycles elapsed between successive peaks. This value is
converted to a current heart rate value, and a third FIR filter is used to compute the moving
average of the calculated heart rates, which is output to the user on the VGA display and over a
speaker. A diagram of this block design is shown in Figure 5, and details of the implementation
and design decisions for each of the lower-level blocks are described below.

Signal Processing Block

Digitized Pulse § . Heart Rate Moving Average Average
Oximeter Signal Lowpass Filter — Match Filter — Peak Detector - Calculator - Filter —> Heartrate

Figure 5. Signal processing filter stages

In the first stage of signal processing, a 100 Hz downsampled version of the input signal
is fed through a lowpass filter; the filter implementation and associated coefficients can be found
in the Verilog modules fir31 Ip and coeffs31 Ip x, and the filter is instantiated within the signal
processing section of the main heartaware module. Several sets of filter coefficients were tested
for their ability to remove noise from the digitized input signal while maintaining the
characteristic pulse oximeter signal waveform; in particular, the number of taps and the cutoff
frequencies of the filter were varied and tested in Matlab. Originally, based on the results of
these simulations, a simple 5-tap filter lowpass filter was chosen and implemented. However, the
input pulse oximeter signal to this module varied significantly in shape and amplitude between
different people; the performance of this filter on non-simulated input data was not adequate for
the later peak detection stages. Upon testing additional filter designs using these more varied
input waveforms, the filter coefficients from Lab 5a proved effective on all of these waveforms,
so these coefficients were incorporated into the final design. This lowpass-filtered signal is input
to the display block to be rolled across the VGA display.

Page 8/20

6.111 Final Project Report HeartAware M. Holachek, N. Singh

Next, the output of the lowpass filtered signal was fed to a match filter. A match filter
convolves a signal with a time-reversed version of a template in order to determine the
correlation between the two; this correlation is highest when the template aligns with a given
window of the signal, which occurs at the same period as the heart rate. The coefficients of the
match filter are a time-reversed version of the signal itself. Our system allows the user to
dynamically update these coefficients to reflect their personal pulse oximeter waveform by
turning on switch 13. Upon turning on the switch, the 128 most recent samples from the lowpass
filter are stored in FPGA BRAM in reverse-time order. These coefficients are accessed
individually at 65 MHz and input to the module fir128 match, where they are multiplied by the
corresponding signal sample on the same 65 MHz clock. This allows the entire 128-tap
convolution to be easily completed within each 100 Hz clock cycle, when the result of the
correlation computation is output. The 128 sample size (corresponding to 1.28 seconds at 100
Hz) was chosen to ensure that at least one entire heartbeat waveform would be captured for
standard heart rate values.

Upon obtaining the match filter signal, the remaining steps of the current heart rate
calculation are conducted in the hr calculator module. In particular, the next step of the process
involves detecting peaks in the output from the match filter. This is done by storing the most
recent 50 sample outputs from the match filter in a buffer. As a result of the lowpass filtering
done previously, the output from the match filter is a smooth waveform, typically with clear
maxima. Thus, if the middle element in the buffer is larger than the surrounding 49, it is
considered a maximum, and the output peak signal is pulsed high for one clock cycle. Testing
this design indicated that several peaks were not being detected because the maximum value
would be held stable for several clock cycles; as a result, we implemented additional logic to
allow maximum values that are held stable for a certain number of clock cycles to be detected as
maxima. Ultimately, after making this change, peak detection occurred relatively reliably, as
shown by the logic analyzer output in Figure 6 below.

A N N e A A A A N N

N A MM M Y

Figure 6. Logic analyzer output showing the lowpass filtered signal and corresponding peak
signal calculated using the methods described in this paper. The period of the peak signal
corresponds exactly with that of the initial waveform, indicating successful heart rate calculation

Page 9/20

6.111 Final Project Report HeartAware M. Holachek, N. Singh

Additionally, we realized experimentally that, depending on the shape of an individual’s
pulse oximeter waveform, the peaks in the original lowpass filtered waveform are sometimes
pronounced enough that this peak detection algorithm can be detected without the added
complexity of the match filter. In this case, instead of feeding the match filter output as an input
to the hr_calculator module, the lowpass filtered signal can be fed in directly.

As the peak signal pulses high with each heartbeat, the hr_calculator concurrently
calculates the current heart rate. A counter tracks the number of clock cycles elapsed between
peaks, and 6,000, the number of 100 Hz clock cycles in a minute, is divided by the number of
elapsed clock cycles to obtain the heartrate.

Finally, the most recent 16 heart rate measurements are stored in FPGA BRAM, and
averaged each time a new value is calculated. This averaged value is then output to the display
and audio modules. The averaging is introduced to minimize artificial fluctuations in the output
heart rate in the case that a particular peak is missed by the peak detector. The window size of 16
was determined experimentally as a value that simultaneously minimized artificial fluctuation
while maintaining legitimate variations in heart rate.

D. Display (Both)

The display block is a major component to our user interface for HeartAware. At a high level,
this block allows for multiple shapes and icons to be drawn on a VGA display, at 1024x768
XVGA resolution in 4-bit color. We used this block to display the state of the system, current
heart rate and oxygen saturation waveform, as well as other graphic sprites. The Verilog modules
associated with this block are xvga, main_display, display modules, display sprite_map. A
visual overview of the display block is shown in Figure 7.

waveform
COE file x2
blob - "
s > XVGA > |
. VGA port
pixel_data
BROM d sprite
(1x217514 bits) | pixel_addr[17:0] x10
<
A
number{3:0] addr_location[17:0]
Y
display_sprite_map

Figure 7: The display block diagram
Page 10/20

6.111 Final Project Report HeartAware M. Holachek, N. Singh

The lowest level module is the xvga module, which handles timing and synchronization
as per XVGA specifications.’ In particular, the XVGA display refreshes at 60 Hz, with a pixel
clock of 65 MHz, with indices hcount and vcount incrementing as each pixel refreshes. In the
rest of the display modules, at any given time, the current values of hcount and vcount are used
to determine what 12-bit RGB color is shown on the screen.

The user interface and pixel blending is defined in the main_display module. From our
user interface mockups, we determined that we needed to display three types of elements:
continuous waveforms, rectangles, and pixel sprites from an image. The combination of a
number of these modules would let us build a simple yet intuitive interface. Here, we instantiate
two waveform modules, five blob modules, and a scanning sprite block. The scanning sprite
block checks if the display scan is currently in one of ten unique pre-defined sprite areas, and if
so it will prompt the BROM to output the pixel data corresponding to the selected sprite.* In any
given section of our display, we are capable of displaying one or many waveform, blob, or sprite
modules in any combination; because we did not implement transparency, the pixels will
overlap.

The display _modules module contains the definitions for the waveform and blob
modules. Both modules have consistent interfaces: for example, if we wish to hide some element
from the screen, we set the enable signal to low, thus it will output no pixels. We can also
dynamically change the color by setting the 12-bit RGB color parameter.

The waveform module generates a rolling plot of the lowpass filtered blood oxygen
saturation values. In particular, the 1,024 most recent outputs from the lowpass filter are stored in
a dual-port FPGA BRAM as they are computed on the positive edges of the 100 Hz clock.
Simultaneously, these values are accessed sequentially on the positive edges of the 65 MHz
clock governing pixel display. During any given clock cycle corresponding to a particular pixel,
the value read from the lowpass filter BRAM is mapped to a vertical pixel coordinate such that
the entire range of 8 bit values maps to the middle horizontal half of the VGA display. Then, as
the screen refreshes, if vcount matches this mapped value while hcount corresponds
appropriately to the index at which the memory is accessed, the pixel is illuminated in the color
specified in the waveform module instantiation. In order to achieve a “rolling” effect, instead of
directly accessing the location in memory which corresponds to hcount, the memory access
location, hcount_sliding, is shifted to the right by one pixel every time a new value is read into
memory. As a result, the display appears to shift to the left by one pixel every time a new value
is computed.

The blob module is similar to that of Lab 3: it can draw a rectangle of a certain width and
height on the screen, starting at a certain (X, y) coordinate. We modified it to have a dynamic
visibility/hidden display state, width, and color. This allowed us to implement a loading progress
bar for the booting state, multiple modes for our user interface, and overlapping objects.

3 www-mtl.mit.edu/Courses/6.111/labkit/vga.shtml
4 See section VI for a discussion about the scanning sprite block approach.

Page 11/20

6.111 Final Project Report HeartAware M. Holachek, N. Singh

Figure 8 shows the areas the modules required for a unified display interface.

@ HeartAware sprite o= [l5) 5]
PM

/\\/\W ~

| SR

(@) (b)
Figure 8. Breakdown of the graphical modules displayed during collecting data mode. Image (a)

renders the display as normal, image (b) shows bounding boxes around display elements. There
are a total of nine elements: one waveform module, two blob (b) modules, and six sprite (s)
modules

For storing sprites, we used a Block Memory module from Vivado’s IP core library.
First, we created a sprite map with all the icons, text strings, and numbers we wanted to display
made a monochrome 609 x 356 sprite map image bitmap, and converted it to a COE file with the
6.111 provided MATLAB script. This file was then loaded into the 1 bit wide BROM as an init
file. The pixel data in COE file is 217,514 bits long, thus this is the bit depth of this BROM. The
sprite module then looks up the appropriate start location in BROM, and given a width and
height, can draw the relevant icon or text string. The sprite map was made to be as compact as
possible while still allowing each sprite icon to fit into an unrotated rectangular bounding box.
The sprite map is shown in Figure 9.

'l Ip HeartAware

. collecting data..,

paused. error.

seu booting... v/
1234567890

Figure 9. The icon sprite map

Page 12/20

6.111 Final Project Report HeartAware M. Holachek, N. Singh

We also wanted to generate a number counter readout, for display of the user’s current
heart rate. For this, we made a sprite for each decimal place (hundreds, tens, ones). Given a heart
rate number (0-199) we then had to solve two problems: extracting the digit for each decimal
place, then converting that 0-9 value into an address for BROM lookup. The first task required a
simple binary to binary-coded decimal (BCD) converter, which we had already built for Lecture
Pset 8. We then implemented a display_sprite_map module that mapped a 0-9 number to a start
and stop address on the sprite map.

E. Audio (Michael)

The audio block handles selective playback of audio from the microSD card. This
functionality is used to play a sound upon finishing boot mode, a beep tone upon detection of the
heart rate peak, and periodically announce the heart rate. The final audio block consists of a
pwm_audio module, sd_controller module, FIFO module, as well as a audio_ number_map
lookup module. Figure 10 shows the implemented audio block, with the most important data path
for playing back audio samples.

The pwm_audio module takes an 8-bit data sample and converts it to a square wave at a
certain duty cycle.’ The PWM audio module generates a 100 MHz clocked PWM signal; this
signal is then output to an analog filter which ultimately arrives at the Mono Audio Out jack on
the Nexys 4.

The sd_controller module handles interfacing with the microSD card.® Given a 25 MHz
clock and an address of a multiple of 512, the module reads data samples from the memory in
serial. Sound files are loaded from an unsigned 8 bit, 32 kHz sample rate WAV file written
directly to disk, starting at memory location 0. To get the start and stop address for each sound
region, we took the start and stop times of the audio sample and multiplied it by the sample rate.
An important consideration to note is that all SD reads must start at multiples of 512 bytes, so we
rounded all addresses to the nearest multiple of ‘h200. For example, the word “fifty” in our
WAV file starts at 4.8s and ends at 5.6s, thus the start address would be ‘h25 800 and the end
address would be ‘h2B_CO00.

The FIFO connects the SD card with the PWM output module. It provides an
asynchronous interface for writing and reading 8-bit audio sample data. The 12-bit fifo count
signal is used to control when the SD card should read in a block of new data to the FIFO. We
pre-load the buffer with 512 samples to ensure the buffer is always ready to output the next
sample, regardless of SD access time or residual delays. Then, at every positive edge of the 32
kHz clock, we read from the FIFO into the PWM output module.

® The PWM_ output module was provided by Gim Hom.

6 The sd_controller module was provided by Jonathan Matthews. Note: the sd_controller module
worked best with SD cards with a storage capacity 2GB or less, since smaller capacity cards are
compatible with the simpler Secure Digital protocol version 1.1.

Page 13/20

6.111 Final Project Report HeartAware M. Holachek, N. Singh

fifo_count[11:0]
data[7:0] data[7:0]
| sd_controller FIFO g audio PWM Ly))
- wren (1x4096 bytes) rd_en -
microSD card audio port
load audio samples serially update audio sample
over SPI at 25 MHz every 32 kHz

Figure 10. The implemented audio module

For the verbal announcement of heart rate, we recorded the English numbers from “one”
to “one hundred ninety nine” as well as the phrase “beats per minute.” Figure 11 shows the
structure of our WAYV file. To announce a heart rate such as “eighty three beats per minute” we
use the audio number map module. Given a heart rate number, the module looks up the next
number to announce, then outputs the heart rate number minus the sound just played. For
example, an input of 83 would output the SD card addresses for the “eighty” sound, and a
remaining number of 3. When the number reaches 0, the module plays “beats per minute” then
stops until the next trigger.

It is crucial to ensure that the beep and the verbal heart rate announcements do not
interfere with each other so sounds are not cut off. Thus, our logic within the audio block
establishes a lockout on audio playback until any number announcement has finished.

-5 | 5 10 15 20 25 30 35 40

® Auto Tise *| 1.0

Menn, 320004z

32-bit floa 0.5
Mute Saln. " L

5 + | 0o -

b 0 b |-0.5

numbers 100, 10s, 11-19, 0-9 I I jingles and beep tone
|
"beeps per minute"
"system error"

Figure 11. The mono 32 kHz 8-bit WAV audio file containing all project sounds

Page 14/20

6.111 Final Project Report HeartAware M. Holachek, N. Singh

V. Testing and Debugging

This section will describe our the testing and debugging techniques we used during the
development of our project. We relied on simulation heavily for development of the signal
processing block. However, because our display and audio blocks relied heavily on external
hardware, it was not feasible to simulate the functionality of each module. Thus, we instead
relied on the digital logic analyzer in lab for capturing high speed signals for later analysis.

The most common problems we encountered across the entire project related to clocking
issues, entering the right state at the wrong time, or never entering states conditions because of a
glitchy signal. Another more general problem emerged near the end of our project; because we
integrated a lot of modules, Vivado build times often took 20 minutes or more. This delay made
it much harder to debug.

One specific challenge was building the sprite display logic. It took several days to
troubleshoot the various errors of offset calculations, data flow, and pixel pipelines. An example
of one problem we fixed can be seen in Figure 12.

Figure 12. The first attempts at displaying sprites from BROM. In image (a), the programmed
sprite width offset was one less than the actual image width, thus incorrectly rendering the sprites
in a diagonal pattern. In image (b), the full sprite is displayed correctly, however there is still a
minor problem with pixel noise in the graphic stream.

Apart from the digital design, we did have issues with the pulse oximeter signal on
occasion. While a significant amount of simulation went into testing the signal processing for
robustness against several different user’s oxygen saturation profiles, it was hard to account for
the real-world conditions and variability of heart signals.

Page 15/20

6.111 Final Project Report HeartAware M. Holachek, N. Singh

V1. Design Decisions

This section will describe a few design decisions we had to make during the implementation of
this project. Our system is meant to provide information to casual users, not medical
professionals. As a result, our design is primarily intended to be intuitive to use. Our focus on
user interface, instead of being absolutely precise or reliable, allowed us to implement most
features completely. It also allowed us flexibility in the specific details of implementation.

For example, we were originally planning to check to ensure the pulse oximeter was
connected to the system. This functionality was present on the PCB, however because we could
not implement the PCB in time, we had to forgo this feature. However, we had built in the
system error state, to prepare for the integration of this feature.

A. Audio: FIFO vs. Dynamic clocks

On our first attempt, we tried to slow down the clock speed of the SD card to match the audio
sample rate. However, the SD card would not communicate at these speeds. Additionally, even at
the default 25 MHz, SD card access times were variable, and dynamic clock speed require more
calculation than expected. Thus, we implemented a more asynchronous approach by connecting
the SD card to the audio output through a FIFO buffer. This approach worked quite well.

B. Main FSM: Boot state

Originally, we designed our system to have a nearly instant startup time. However, we found that
initializing the SD card upon reset took several seconds, thus we had to build a boot state to
ensure no access was required before the SD module was initialized. In order to provide
feedback about the status of this stage, we included a loading progress bar.

C. Display: Transparency vs. Binary hidden/visible states

We implemented a hidden/visible enable signal for all display modules and sprites for ability to
switch user interface states. However, a nice feature could have been transparency (as built into
our pong game in 6.111 Lab 3). We considered this feature, however mixing many elements
quickly became complicated and required a new timing system, as adding many multiplies would
not keep up with our 65 MHz pixel clock. Thus, we preferred the simpler binary display enable
option.

Page 16/20

6.111 Final Project Report HeartAware M. Holachek, N. Singh

D. Display: Scanning sprite block

At first we tried to modularize each image sprite into its own instance. This worked well with
only two sprites instances; Vivado was able to route the design and two sprites were indeed
visible on the screen. However, adding more instances greatly increased the design build time.
Thus, the modularized sprite approach was not feasible with a single BROM bank, most likely
due to timing constraints or physical limits of the Artix 7 FPGA. Thus, we implemented a less
sophisticated “scanning approach” which counted through all pixels of the display. If the current
pixel was within a predefined sprite region, it would set the BROM address to the relevant sprite
and set pixel data to the BROM data output. This “scanning block™ approach led to similar
output of the sprite module approach, yet allowed us to add many more sprites on screen.

E. Signal processing: Filter and algorithm design

Each stage of the signal processing block was experimentally adjusted to maximize the accuracy
of peak detection and, thus, of heart rate calculation. The design decisions for each stage of the
signal processing module are described in section III.C, which details these design decisions in
the context of the overall signal processing dataflow.

Page 17/20

6.111 Final Project Report HeartAware M. Holachek, N. Singh

VII. Conclusion

The HeartAware system successfully uses the Nexys 4 process an oxygen saturation signal to
determine the user’s heart rate and to display and announce it to the user. We believe that there
were a number of factors that allowed us to succeed with this project. In particular, we spent
significant time designing the system in detail prior to building it; this allowed implementation to
proceed more smoothly and efficiently than would have been possible otherwise. Further, we
worked well together as a team and effectively communicated all of the issues we ran into as
they arose. This allowed both team members to stay informed of the others’ progress and for
both teammates to assist each other in troubleshooting.

In implementing the system, we overcame a number of obstacles. First, our unfamiliarity
with the Nexys 4 made interfacing the board with other system components, particularly the
VGA display and audio output, difficult and time-intensive. Additionally, the debug process for
the project was challenging. Though the logic analyzer was a useful tool, the restrictions on the
number of Pmod ports available given the number of input and output ports being used for other
components of our system, often only allowed us to analyze 16 bits at any given time.
Additionally, the project grew to have very long compile times, making each debug iteration
very costly. In practice, we observed great variety in the waveform shape and amplitude output
from the analog-to-digital converter and preceding analog circuitry; this made design of robust
peak detection methods and heart rate calculations difficult. However, we were able to overcome
these challenges to implement a functional system that accomplished our initial design goals.

Had we had more time to extend the project, there were several additional features that
we would have liked to implement. In particular, we had hoped to use a PCB instead of a
breadboarded analog circuit for amplifying and digitizing the pulse oximeter signal.
Additionally, several other interesting heart rate metrics, such as heart rate variability, could be
calculated, and a more informative display, such as a histogram of RR intervals, could be
displayed to the user. Further extensions for a pulse oximetry platform project could include
detection of abnormal heartbeats or heart rates or implementation of a wireless system.

In designing and implementing HeartAware, we gained a tremendous amount of
knowledge about FPGA design, and the experience of implementing a standalone, functional
system was extremely rewarding. We look forward to further exploring FPGAs and digital
design in the future.

Page 18/20

HeartAware M. Holachek, N. Singh

6.111 Final Project Report

Appendix A. Circuit Schematics

Power Regalators
o SENSOR QUT
VECav RIS VOUT 8vo [}
0 2 Pololu U3VI2F9 Regulator
!
Header 3
P4
VCCsvo R24 VOUT 5V0 1 5V0 to 3V3 Logic Level Converter
0 2 Pololu U3VI2FS Regulator
VOGS
3
vegava _ 7
I & R3
R39"
mzuA TouF
VeCovo ADC O Al priedi Al
Pulse Oximeter ADC O < B
ADC OU iz @ I8 AT
R1G 2 ADC OU i A4
300R 1% D603(1608) ADC OU % 5 A5
= A5 BS
ADC OU A6 B6 IAS
SENSOR_LED+ R20 ADC OU H | He AT
r2s ADCO i L 5
SNTALVC245A
P9_ANODE R26,
P5 CATHODE __Raq, 5
D Conneetor 9
_ u VECSVO 7
Bf—ts el o
RD > o
T Emg e AD CAP 10uF 10V (603(1608)
IB7 R21, Jumper INTR -1 INTR DBI DC
Power Good LEDs il
VCLava VECSVO VOOV
C3
lﬁ 00nF
- . il 3
Jumper £ 9 o | B o
D81 Ds2 DS3 L 7 i
| KP-IS0SSYOR © KP-1608SYCK| KP-1608SYCK DGND ~ CLKR > GND
ADCOE04 10K 1% 0603(1608) CAP 130pF 25V 0603(1608)
GND
R3S R36 R37
1% 1K6 3K
GND
‘Tek Digital Logic Analyzer Probe Port
ADC Manual Control
GND GND C _ I
C jir) e
C WR 3 1
- [5 6
C. INTR 7 %
C Header 4X2
C

VECSVO

R31
82K

680nF

P
VCCsvo pEl
= UsA
2 OPA23SOUA/ZKS
1 | _apc N A
3
& R33
150K
GND
134
3K

VECSVO

N
GND

il U4B|

6 OPARISOUARZKS B
7

= s

4 Disable 2ad OpAmp Port

GRD GRD

Prmod Ports
P6 1A
JAL JA2
JA3 M w JA4
JAS a0 JAG
VCEIVI JAT 3 4 TAS veLava
1_\ | eo— F— ﬁ
112
1 c
Header 6X2H
G GND
PR
181 1 2 1B2 SENSOR_CONNECT- P3
IB3 H i JB4 1
1B5 S IBG y
VOCava 187 Jai T8 i -
A_w o 10 VCeva |
£ o1 Ll T Header3
Header 6X2H
GRD GND
| D

' HeartAware.PrjPcb

snest Main

1o M. Holachek

- - —
| Doz # HA-101-1 - -

11162015

4

Page 19/20

HeartAware M. Holachek, N. Singh

6.111 Final Project Report

1 2 3 4

RL

M9 1% 0603(1608)

R2

Tomper 0603(1508) Analog cireuit by Prof. Gim P. Hom, Rev 5B

R3

Jumper 0603(1608)

G8K 1% 0603(1608)
Rt
CAP 6.80F 25V 0603(1608)
veoavn I
VCLovD Veoevo
) ula

“ UIB g LF353M/NOPB o u24 Sobket

P9_ANODE 6 [LF35IMNOPB 68K 19 0A03(1608) 63K 1% 0603(1608) RS 3 LF353M/NOPH
1 R RS R kg £ 2K 1% 0603(1608) 1 R? RI0 SENSOR ouT
BS CATHODE , 5], 2K2 1% DEO0(1608) il 2K 1% 0603(1608) Jumper 0603(1608)
CAP 100nF 35V 0603(1608) ¥

2 R11 2 {oz} 3
VeCovh 2K 1% 0603(1608) CAP 100nF 25V 0603(1608)

v GND

GND GND

RI12 GND
RI3

10K 1% 060B(1608)

R15
1K2 1% 0603(1608)

63K 1% 0603(1608)

R14

2M2 1% 0603(1608)
c4
I

GND VCCove CAP TuF 35V 0603(1608)
VCOIVo
R1G
2K 1% 0603(1608) = 2B
5 6, [LF353M/MNOPY
CAP 100nK 25V 0603(1608) s — |
. Sy
GND RI17
2K 1% 0G03{1608)]
o]
CAP 10pnF 25V SS:MN
GND

[2)
z
=

Copyright 2015,

- HeartAware.PriPch 1

sheet Analog Sensor Control

Author M, Holathek

Sheet# 2 of 2

¢ HAID1-2

o 111162015

4

Page 20/20

