
6.111 Project Report

Brian Axelrod, Amartya Shankha Biswas, Xinkun Nie ˚

Contents

1 Introduction 3

2 Systems Design 4

2.1 Filtering . 5

2.2 Rectification . 5

2.3 Census Transform . 5

2.4 SGM Cost Calculator . 5

3 Design Methodologies 6

3.1 Standard Interfaces . 6

3.1.1 AXI4 interfaces . 6

3.1.2 AXI4-Stream Video . 7

3.1.3 IP CONTROL . 8

3.1.4 AXI4 Master . 9

3.2 Block Diagrams . 9

3.3 Verilog IPs . 9

˚MIT, Cambridge MA 02139. E-mail: baxelrod, asbiswas, xnie@mit.edu.

1

3.4 Vivado HLS . 10

4 Memory Subsystem 11

4.1 Simple DMA . 12

4.2 Axi Crossbar . 13

4.3 Triple Buffer Controller . 14

5 Camera Capture 14

5.1 Rectification . 15

5.1.1 Getting the calibration parameters 15

5.1.2 Rectification in real-time . 16

6 Pre-Processing and Feature Extraction 17

6.1 Gray-scale conversion . 17

6.2 Windowed Operators . 18

6.2.1 Line Buffer . 18

6.2.2 Rolling Window . 18

6.3 Census Transform . 19

6.4 Gaussian Blur . 20

7 Semi-Global Matching 20

7.1 Algorithm . 21

7.2 Main Formula . 21

7.3 Performance Analysis . 23

7.3.1 Area Utilization . 23

7.3.2 Latency and Throughput . 23

2

7.4 Testing . 24

8 Axi Compliant Modules and utilities 24

8.1 AxiVideo2VGA . 25

8.2 Cam2AxiVideo . 26

9 Conclusion 26

1 Introduction

Stereo vision is the process of extracting 3D depth information from multiple 2D images.
This 3D information is important to many robotics applications ranging from autonomous
cars to drones. Conventionally, two horizontally separated cameras are used to obtain two
different perspectives on a scene. Because the cameras are separated, each feature in the scene
appears at a different coordinate in both images. This difference between these coordinates
is called the disparity and the depth of each point in the scene can be computed from its
disparity. Computing the disparity at each point accurately and efficiently is quite difficult.

Algorithms for computing features between images are generally complex, memory inefficient
and require random access to large portions of memory. The state of the art stereo matching
algorithm is based on Semi Global Matching (SGM). This algorithm performs very well in
in practice but is extremely memory and processing inefficient. This makes it difficult to
process it on small computers that can fit on small robots like drones. Since FGPAs are
fairly low power, an FPGA implementation of SGM would allow us to use SGM on small
platforms such as drones.

SGM is not a natural streaming algorithm making it quite difficult to implement on an
FPGA. Our goal was to develop and demonstrate an efficient implementation of SGM on an
FPGA. This will require carefully redesigning the algorithm to fit an FPGA architecture.
Finally we want to demonstrate our SGM implementation as part of a full stereo pipeline
that can render 3d images.

Writing a complete stereo pipeline requires many diverse components ranging from filtering
to a complicated memory architecture. Our goal was to demonstrate an entire working
Stereo Vision system built around SGM.

Sections of this document were written according to which part of the system we worked on:
Brian Axelrod was responsible for Sections 1, 2, 3, 4 and 9.

3

Amartya Shankha Biswas was responsible for sections 6 and 7.
Xinkun Nie was responsible for Sections 5 and 8

2 Systems Design

In order to be able to compute high quality disparity maps we must combine many compli-
cated modules to compute SGM and pre and post processes our images. Our design decisions
are primarily driven by the need to manage this complexity without sacrificing performance.
Thus we establish a design pattern based on good software engineering patterns that have
been adapted to the Vivado workflow. The main idea is that our design should be split into
small manageable pieces that can be tested individually. We will leverage Vivado HLS and
C++ test benches to quickly create thorough testbenches based on real data. We will also
use standard streaming interfaces which will make it easy to replace modules and design
tests. This will make it easy for us to understand exactly what we want to get out of a mod-
ule and verify that it is correct. We will also use a softcore for running tests on the FPGA
and running the state machine. This will allow us to use code that has been auto-generated
by the Xilinx tools and avoid having to write and test more code.

Our design revolves around a pipeline for processing stereo images shown in Figure 1.

cam1

cam2

preprocessing 1

preprocessing 2 ddr buffer sgm ddr buffer rendering

Figure 1: A high level overview of the design

The first part of the pipeline grabs frames from the cameras. It handles synchronization
and passes on the results over an AXI stream that feeds into the preprocessing module.
The preprocessing module applies the rectifications transformation, the Gaussian blur that
mitigates the effect of noise, and applies a census transform to compute a value that describes
the neighborhood of each pixel. The result is streamed into ddr memory through a Direct
Memory Access (DMA). We then take the results and pass it through the SGM module
twice, first in the forward direction and then in the reverse direction. Then the second part
of the SGM module combines the information from these two runs to compute the disparity
values and stores the results in ddr memory using a DMA. Then a rendering module reads

4

the disparity values and renders them.

See the detailed block diagram in figure 2 for more information. Here’s a list of modules in
the detailed flowchart and a brief description of their purpose:

2.1 Filtering

In order to make our system more robust to noise we apply a standard technique in computer
vision—applying a Gaussian blur. We apply a gaussian kernel to the image, essentially
blurring it by making each pixel a weighted average of it’s neighbors.

2.2 Rectification

To handle a camera’s intrinsic optical distortions and extrinsic rotation and translation shifts,
we plan to rectify the incoming images. The basic premise of most stereo algorithms is to
find corresponding patches along epipolar lines. In a perfect world, these epipolar lines would
simply be horizontal lines. Optical distortion bend the epipolar lines, which will be made to
align with the horizontal axis after rectification.

We rectify the images by first calibrating the cameras off-line to get a rectification matrix.
The streamed frames would then be multiplied by this matrix to get a rectified image.

2.3 Census Transform

We use the Census Transform to compute the matching cost over all pixels, which is a term
in the SGM cost function that needs to be globally optimized. We use a 5x5 window to get
information around each pixel to perform the Census transform.

2.4 SGM Cost Calculator

The SGM algorithm finds the optimal disparity value for each pixel by minimizing over a
global cost function. The algorithm iterates through the pixels in two passes.

In the first pass, the iterator moves from left to right, and top to bottom in the frame. Only
the line above the current line and the current line need to be stored in the DDR memory.
For each pixel, we look at the pixel above it, right left to it, above and left to it, and above
and right to it.

5

In the second pass, the iterator moves from right to left, and bottom to top in the frame.
Only the line below the current line and the current line need to be stored in the DDR
memory. For each pixel, we look at the pixel below it, right to it, right below to it and left
below to it.

We compute the cost associated with each disparity value for the current pixel.

3 Design Methodologies

Since our design is very complex and involved many components we needed to adopt practices
which allowed to manage complexity and contain risk. It become very important that we
were able to design our components individually and plug them in and expect that they
work. We adopted several design methodologies to help us achieve these goals. We used
standard interfaces and a mix of block diagrams, verilog and Vivado HLS.

3.1 Standard Interfaces

In order to ensure the various modules in our design worked together we decided that all our
modules would use standard interfaces. The inputs and outputs would be clearly defined
according to industry standards which would resolve any ambiguity as to the specifications
of the inputs and outputs of the modules. We decided that all our modules would conform
to the following rules (defined in greater detail below):

• All video inputs and outputs must be AXI4-Stream video compliant

• They must use the standard IP CONTROL control interface

• Modules that interact with memory must be compliant AXI4 masters

• All other inputs must correspond to configuration and must remain constant

3.1.1 AXI4 interfaces

ARM defines a set of standards known as AXI4. These are standards for on-chip communi-
cation meant to make it easy for various modules in an FPGA or chip design to share data.
These standards are very frequently used in FPGA designs because it allows modules to be
reusable from design to design, and greatly reduces integration time.

6

Figure 2: Detailed Block Diagram

3.1.2 AXI4-Stream Video

The AXI4-Stream Video interface is a slightly modified version of the AXI4 streaming in-
terface. The AXI4 streaming interface is used for transmitting streams of data. The AXI4

7

streaming interface assumes that there is a master that is outputting data and a slave that
is reading data. The master must provide a data bus, a valid signal and a last signal. The
slave must provide a ready signal. When the master is ready to transfer a piece of the stream
it pulls the valid signal high and sets the data register accordingly. If this is the last piece
of the stream it also sets last to high. When the slave is ready to read the next piece of the
stream it raises the ready signal. When both the ready and the valid signals are high the
piece of the stream is consumed, i.e. the slave reads it, and the master moves on to prepare
the next element in the stream. The timing diagram of AXI4-streams is shown in figure 3.
Streaming interfaces are a very logical fit for FPGAs because they correspond to the inputs
and outputs of streaming algorithms—algorithms which port very well to FPGAs.

Figure 3: AXI4-Stream timing diagram. Image courtesy of http://www.beyond-circuits.
com/wordpress/wp-content/uploads/2015/04/tutorial18_axi4_timing4.png

The AXI4-Stream Video interface is almost identical to the AXI4-streaming interface. In
addition to the AXI4-Stream interface, the AXI4-Stream Video interface uses a user signal
to indicate the start of the frame, and raises the line last value at the end of every line.

3.1.3 IP CONTROL

Many of our modules need to know when to start and be able to signal when they are done
or able to accept new inputs. In order to standardize this we adopted the standard control
interface used in Vivado HLS modules. Each modules would have a start input telling it
when it should be active, and would have outputs corresponding to signal when the module
finished processing the current set of inputs, when the module is ready to accept new inputs,
and when the module is idle and waiting for new inputs. The modules must conform to the
timing diagram given in figure ??.

8

http://www.beyond-circuits.com/wordpress/wp-content/uploads/2015/04/tutorial18_axi4_timing4.png
http://www.beyond-circuits.com/wordpress/wp-content/uploads/2015/04/tutorial18_axi4_timing4.png

Figure 4: IP CONTROL timing diagram. Image courtesy of Xilinx UG902, figure 2-34

3.1.4 AXI4 Master

The most complicated interface used in our design was the full AXI4 interface. The AXI4
interface was used to communicate to the MIG and contains over forty signals, putting
outside of the scope of the writeup. The full specification can be found on the ARM website.

3.2 Block Diagrams

Our design involved using many interfaces with a lot of inputs and outputs. If we consider
just our 6 DMAs we already have more than 240 lines to connect. Connecting each of these
inputs and outputs in human-written verilog is extremely time consuming and error prone.
In order to avoid this source of error and make our design easy to ready we decided to use
Xilinx block diagrams whenever connecting modules with complicated interfaces. In a block
diagram each module shows up as a block connected to other blocks with wires. The key
feature of block diagrams is that wires can be grouped together. In figure 5 all 42 wires
corresponding to the S00 AXI port are all grouped together and displayed as one line. Block
diagrams generate verilog which is later synthesized by Vivado and can be used in normal
verilog designs.

3.3 Verilog IPs

Block diagrams do not always make sense. While it is easier to connect modules in block
diagrams it is much more difficult to express complicated logic. As a result, we decided that

9

Figure 5: A simple block diagram in Vivado. Image courtesy of https://reference.

digilentinc.com/_media/vivado:mig_37.jpg

most of our individual modules would be written in Verilog and we would use the Vivado
tools to generate ”blocks” based on our verilog. This allowed us to use the best of both
worlds—the expressiveness of verilog and the maintainability of block diagrams. Examples
of modules generated this way include the axi2vga module and the camera2axi module.

3.4 Vivado HLS

While verilog is quite capable capturing basic logic it lacks advanced features for generat-
ing complicated hardware programmatically—it relays on the programmer to build all the
hardware. This makes seemingly straightforward hardware such as adder trees that compute
the sum of many variables very time intensive to construct. Since SGM is a complicated
algorithm we decided to use Vivado High Level Synthesis (HLS) to generate verilog for our
most complicated modules.

In general we implemented streaming algorithms in Vivado HLS. In order to generate one
of these complicated modules we would first design a streaming algorithm. We would then
write a C++ implementation of this algorithm that closely mirrors how we would write it
in verilog. We then annotate our C++ code with special keywords that instruct the Vivado
HLS tools how to convert our C++ code to verilog. We then write testbenches and run RTL

10

https://reference.digilentinc.com/_media/vivado:mig_37.jpg
https://reference.digilentinc.com/_media/vivado:mig_37.jpg

simulation to verify that the generated code behaves as expected.

4 Memory Subsystem

Figure 6: The block diagram of our memory subsystem using primarily Xilinx IPs. This
didn’t work due to issues with the MIG.

Our original design (shown in figure ?? relied on using Xilinx IPs to process much of the
memory subsystem. This IPs rely on using a microblaze to configure the settings of the IP,
and thus can only realistically be used in a block diagram setting. However, we were not able
to generate a working memory interface generator (MIG) within our Xilinx block diagram,
even when copying over all the settings from Weston’s sample MIG. We were surprised that
this was an issue, since in the past Brian Axelrod had always used a vendor configured MIG
and never had any issues. Unfortunately there is no project file for a vendor configured MIG
for the Nexys 4 DDR board. Furthermore the Digilinc board files do not work with the
provided constraint file. Our development was greatly complicated by the fact that some
resources provided by digilinc did not work as it became unclear as to which resources we
could rely upon.

Our project failed primarily because we dedicated too much time and resources to getting
the block diagram MIG. We spent a very large amount of time debugging the generated
MIGs with integrated logic analyzers, testbenches, Xilinx memory tests, and our own custom
memory test. The friday before the project was due we decided to use a Nexys4 Board with
cellular RAM instead of DDR ram since cellular RAM is easier to interface with. We quickly
discovered that the Digilinc provided board files and constraints file were again inconsistent.
While we did attempt to make the two consistent, we decided that this was not likely to
lead to a working configuration in a short period of time. At that point we decided to do

11

everything ourselves and use a modified version of the MIG in Weston’s non-block diagram
project.

A diagram of our custom memory subsystem can be found in figure ??. The memory
subsystem consists of a direct memory access (DMA) which reads and writes streams to
and from memory, an AXI crossbar which serves as an arbitrator allowing many DMAs to
read/write from a single MIG, a controller which coordinates the various DMAs and the
MIG itself which provides an interface to the DDR memory.

Figure 7: The block diagram of our custom memory subsystem with a three triple buffer

4.1 Simple DMA

Our direct memory access module (shown in in figures 8, 9) was designed to be simple
to debug and thus provides significantly less functionality than the Xilinx DMAs. It is
designed only to read frames or write frames from a configurable address in memory. They
are controlled with a start port, and provided status information in terms of an an idle,
done and ready signal. They speak to memory as an AXI4 master and comply to the AXI4
specifications provided by ARM. They read and write compliant AXI4 video streams which
are used by the remaining modules in our design.

12

Figure 8: The block diagram of our custom memory subsystem

Figure 9: The block diagram of our custom memory subsystem

4.2 Axi Crossbar

Since our design necessitated using many DMAs which share a single MIG we needed a
module which ”shares” access to the MIG in a safe manner. This module was responsible for
arbitration, i.e. sharing the single MIG between the many DMAs. This modules allows us
to use as many DMAs as we want—a significant advantage over Weston’s reference design.

Figure 10: AXI4 Crossbar

13

4.3 Triple Buffer Controller

Rendering often requires a memory structure known as a triple buffer. A VGA display must
be rendered at a fixed rate, whereas the input image often becomes available at a different
rate. This can lead to a phenomena known as tearing where the image displayed on the
screen does not correspond to a single frame. The standard solution for this problem is the
use of a triple buffer, which contains three ”slots” for frames. One of these frames is always
being written to, one is always being read from and on frame is kept as a reserve to allow
the the input channel to store its results in memory without overwriting the previous frame.
As input the triple buffer module takes the addresses of the three frames, the status signals
of a write and a read DMA. A triple buffer has outputs corresponding to the control lines of
a read and write DMA. It also tells the DMAs which addresses in memory they should be
reading and writing. A rendering of our triple buffer is shown in figure 11.

Figure 11: Triple Buffer Controller attached to read and write DMAs

5 Camera Capture

The camera capture module is based off Lab Assistant Weston’s module to output the camera
data. The difference between his module and our need is that we need to have two cameras,

14

both of which need to be captured. The first camera is connected to the JA and JB ports
on the Nexys4 board, and the second camera is connected to the JC and JD ports on the
board. Both cameras share the same clock output, because there is only one input port on
the FPGA that can handle clock signals. Both cameras are driven by the same input clock.

We have successfully been able to switch between the two camera captures using a switch
on the Nexys4 board.

5.1 Rectification

5.1.1 Getting the calibration parameters

In order to perform rectification of the image in real-time, calibration parameters are needed
for the rectification task. We achieve this by running a Matlab script

(http://www.vision.caltech.edu)

to generate the calibration parameters.

In order to get an image, we decided to store one frame of the image in a microSD card for
off-line computation. I spent approximately two weeks on this part of the project. After
much help from Lab Assistant Jono, I was able to read and write to a microSD card. I had
some trouble reading the microSD card information on a computer, because the microSD
card is not formatted, and only has raw data. Eventually, I was able to display the microSD
card information in a hex editor on my computer.

I also had trouble writing different values to neighboring bytes to the microSD card. The
microSD card can be written to 512 bytes at a time (after asserting the write signal high
for one clock cycle). To be able to write each individual byte, the ”ready for next byte”
signal out of the microSD card controller needs to go high before the writing happens. I
did not realize that there is no specification on how long the ”ready for next byte” signal
keeps HIGH. It turned out I needed to catch its rising clock edge and update the din register
(which keeps the data to write to the microSD card).

The other issue I encountered is that I couldn’t seem to be able to write to the first block of
512 bytes to the microSD card. When I tried to write an entire camera frame worth of data
(640 x 480 x 2 bytes), the first block of 512 bytes couldn’t be written to. The issue turned
out to have to do with the non-blocking assignment. In clock cycle 1, wr signal is low, ready
signal is high, and then we do write HIGH to wr, and change the state register to a writing
state, which is a state in which we write to the microSD card. The wr signal doesn’t go high
until the end of current cycle, so the ready signal doesn’t see wr has been turned HIGH until
the next clock cycle. The ready signal can only go low after a clock cycle’s delay. Since I

15

increment the address to the next block of 512 bytes for the microSD card by checking to
see if the ready signal is HIGH or LOW. Having such a delay had the effect of skipping an
entire block of memory.

I wrote a script in Python to generate an image from the raw byte data in the microSD card.
The image we had captured looks like a corrupted image, for reasons I haven’t found. After
spending so much time to get the microSD card to work, we eventually ran out of time to
capture a proper frame.

In retrospect, to capture a frame, I could have only used a grayscale of the image and
capture that in BRAM. If we did it that way, we could needed to export the image to a
serial connection or a microSD card, because the Matlab code needs to run offline on a
computer to process the captured frame.

5.1.2 Rectification in real-time

I wrote a script in C++ that given the parameters, projects each pixel from the original
image to a new pixel location in the rectified image. More accurately, it finds the matching
pixel (which is usually a pixel location in fractions) and its surrounding neighbors, with its
respective weight. The code involved a lot of arithmetic, understanding of the Matlab script,
and translating it into C++. See appendix for the code used in this section. This code was
used in Vivado High Level Synthesis (HLS) to perform rectification in real time.

16

6 Pre-Processing and Feature Extraction

We now use the rectified images to perform SGM (Section 7). The two incoming streams
of rectified images are converted to gray-scale, low-pass filtered (Gaussian Blur) and Census
transformed before being streamed into SGM (Figure 12).

Figure 12: Data Flow

We get a stream of RGB pixels from the rectified images as input. First we convert both
the images to gray-scale. This is because our feature descriptor only depends on intensity
values.

Our first step before computing features is to low pass filter the image to reduce noise
(Section 6.4). We can then compute features for each pixel and stream the features into the
SGM module.

We use a Rolling Window to facilitate the convolution and feature transformations. This
allows us to get good throughput by processing one pixel per clock cycle.

6.1 Gray-scale conversion

Our first step is to convert the incoming pixels to intensity values (gray-scale). The intensity
value for a pixel is calculated from the RGB values as follows –

I “ 0.2126 ¨R ` 0.7152 ¨G` 0.0722 ¨B

The intensity values are then streamed into the next module to be low-pass filtered (Sec-
tion 6.4).

17

Figure 13: Line Buffer. The next pixel is ˚

6.2 Windowed Operators

We need to compute feature descriptors for our images. A feature descriptor of a pixel is
just a description of its neighbourhood. We will use this description to match pixels between
the left and right images. This is because two pixels are likely to be matched correctly if and
only if they have similar neighborhoods. Since our module receive the pixels in a stream,
we need to be able to maintain a neighbourhood for each pixel which is updated every clock
cycle (as a new pixel streams in). Our feature descriptor uses a 5ˆ 5 window.

We also want to be able to compute one descriptor every clock cycle to maintain throughput.
We achieve this by pipelining our computation.

A similar rolling window is used to perform a Gaussian Blur on the image.

6.2.1 Line Buffer

Our required window spans five columns. So, as the image streams in row by row, we always
need to maintain a buffer of the last five rows of the image (Figure 13). We store these rows
in five separate blocks of BRAM. These blocks are separate because we want to be able to
read from all five rows concurrently.

When a new pixel on the current row streams in, we write it to the ”last” block of BRAM.
When we reach the end of a row, we start overwriting the oldest (lowest index) row still
stored in BRAM. This way, we always maintain a buffer of the last five rows in BRAM.

6.2.2 Rolling Window

Now that we have buffer of the last five lines of the image, we want to have a rolling window
that stores a 5 ˆ 5 patch of the image. By rolling, we mean that every time a new pixel
streams in, the window shifts to the right (Figure 14). This is performed by setting each

18

Figure 14: Window moves right. The next pixel is ˚

value in the window (except the rightmost column) equal to the value element to its right.
The values in the rightmost column are simultaneously assigned values from the four blocks
of BRAM (line buffer) and the incoming pixel.

After a row ends, the window shifts down and moves to the beginning of the next row. This
is done by clearing the window and shifting the line buffer down

Since, these shifts happen every clock cycle, the window is implemented as a register array.

6.3 Census Transform

The Census Transform creates a feature descriptor for each pixel in the image. We use a
5ˆ 5 Census Transform. This creates a descriptor of the 5ˆ 5 pixel neighborhood of a pixel.
Specifically, each pixel in the neighborhood is assigned a binary value which is 0 or 1 is the
intensity of the pixel is greater or less than the intensity of the center pixel (Figure 15).

Figure 15: Census Transform Window. Pixels with intensity less than the center pixel get a
value of 1 and pixels with intensity greater than the center pixel get a value of 0.

This set of 24 bits forms the census transform for the center pixel. So, each pixel produces
a 24-bit descriptor.

So, we can now use the rolling window from Section 6.2.2 to calculate these 24-bit census
features and them stream them into the SGM module.

19

6.4 Gaussian Blur

Before we compute the census features however, we want to minimize the amount of noise in
the image. So, the first step is to low pass filter the images. We do this by using a Gaussian
Filter which simply ”blurs” the image.

Our Gaussian Filter works by convolving the image with a 5ˆ 5 kernel (Figure 16).

1

273

»

—

—

—

—

–

1 4 7 4 1
4 16 26 16 4
7 26 41 26 7
4 16 26 16 4
1 4 7 4 1

fi

ffi

ffi

ffi

ffi

fl

Figure 16: 5ˆ 5 Gaussian Kernel

Again, we can use the rolling window from Section 6.2.2 to convolve with the kernel, and
stream the blurred image into the Census Transform module.

7 Semi-Global Matching

We want to reconstruct a 3D depth image from two stereo camera inputs using Semi-Global
Matching. This involves matching corresponding pixels between the two images.

This gives us a disparity value Dp for each pixel p, where Dp is the difference in the position
of the pixel across the two images. The 3D depth of each pixel can then be computed from
it’s disparity. Figure 17 shows a pair of stereo images and the depth map computed during
RTL simulation.

Figure 17: Left image, Right image and computed Depth Map

20

7.1 Algorithm

Semi-Global Matching uses dynamic programming to minimize a global cost function along
the epipolar lines. Unlike other dynamic programming methods, it does not re-curse only
along the epipolar lines. Instead we perform the minimization along four directions (Fig-
ure 18).

Figure 18: Dynamic Programming from four directions

7.2 Main Formula

We use the 5 ˆ 5 Census Transform as a metric to assign cost values Cpp, dq “ }ILppq ‘
IRpp´dq} to each pixel p and disparity value d. Here IL and IR are the values of the Census
Transform and the cost is calculated as the Hamming Distance i.e. we define how similar
two pixels are as the number of positions at which their feature descriptors differ. Then we
define the cost of each path ending at a pixel as Lrpp, dq. where d is the disparity value at
pixel p, and r is one of the eight directions. Lrpp, dq is computed according to the recurrence
–

Lrpp, dq “ Cpp, dq `mintLrpp´ r, dq,

Lrpp´ r, d´ 1q ` P1,

Lrpp´ r, d` 1q ` P1,

min
i
tLrpp´ r, iq ` P2uu ´min

k
tLrpp´ r, kqu

In our design, we are using disparity values from 0..63 i.e. our disparity range is 64. We
need to calculate the current pixel’s value of Lr for each disparity value using the previous
Lr values

The third term (minitLrpp´r, iq`P2uu´minktLrpp´r, kqu) is the most resource/computation
intensive, but it is independent of the value of the value of d. We use a minimizer tree to

21

calculate this value. Figure 19 shows a minimizer tree (with depth 3) which minimizes eight
values. In the actual implementation, we are minimizing over all disparity values (64), and
our minimizer tree has depth 6.

Figure 19: Minimizer Tree for eight values. Depth “ 3.

We use a minimizer tree because it’s easy to pipeline. The tree uses a large number of
registers, but it can be pipelined at each level. So, the same minimizer tree can be used
to minimize different sets of values every clock cycle. This also allows us to reduce our
throughput by pushing through a different set of values for the next pixel every cycle.

The other terms in the expression are small minimizations which depend on the disparity
values being computed. these are all computed in parallel and pipelined to improve through-
put.

Finally, we perform the overall minimization over the four calculated values which gives us
Lrpp, dq for all disparity values and all directions for the current pixel.

After the Lr values are calculated, they are aggregated to find the overall cost, Spp, dq value
for the corresponding pixel.

Spp, dq “
ÿ

r

Lrpp, dq

Then we use a final minimizer tree to find the disparity d for which the cost Spp, dq is
minimized. The disparity value gives us the calculated depth of the pixel. This is then
streamed out to be rendered on the display.

The complete minimization has a latency of 14 cycles.

22

7.3 Performance Analysis

7.3.1 Area Utilization

We need to store the Lrpp, dq for each pixel in the preceding line. The design uses a significant
amount of BRAM to store all the Lrpp, dq values. For a certain pixel, we need to access the L
values for each disparity and each direction simultaneously. So, these are stored in separate
blocks of BRAM.

We need to partition the Lr values to make efficient use of the BRAM. Since our computation
has a latency of 15 cycles and one pxel s computed every cycle, we would be accessing two
Lrpp1, dq and Lrpp2, dq from the previous row only when pixels p1 and p2 are in the same
block of 14 columns (computation latency is 14 cycles).

So, we partition the Lr values for the previous row into 20 blocks this number needs to
be a factor of the number of columns to prevent wraparound errors) in a cyclic manner
(Figure 20).

Figure 20: Partitioning Lr cyclically into BRAM. The arrows represent blocks that are never
accessed simultaneously

This allows us to save overall BRAM usage. The overall design uses « 50% of the available
BRAM on the Nexys 4 board.

7.3.2 Latency and Throughput

The following modules process the incoming image streams (Figure 12) –

• Gray-scale Conversion

• Gaussian Blur

• Census Transform

23

• SGM

Each module generates a stream, that is used by the the next module. The modules are con-
nected by AXI (streaming) interfaces which allows different modules with different amounts
of latency to work synchronously. The overall latency is the sum of all the individual laten-
cies. This is however insignificant because we are processing « 105 pixels.

Each module processes one pixel every clock cycle. This is also the overall throughput.
Assuming a conservative 10 nanosecond clock, this gives us a frame-rate greater than 100Hz
which is faster than the VGA refresh rate (60Hz).

7.4 Testing

The sequence of modules was thoroughly tested using RTL Simulation. C code was used to
generate the rectified input AXI streams.

All the separate modules (gray-scale, Gaussian filter, Census Transform, SGM) were tested
by running RTL simulation. The output image stream was rendered using opencv.

After integration, the entire system was tested with five sets of rectified images and RTL
simulation produced valid depth maps (Figure 17 and Figure 21).

Figure 21: Left image, Right image and computed Depth Map

8 Axi Compliant Modules and utilities

Our design called for every module using our standard interfaces. For several modules this
meant doing something that we had done previously, except for making it AXI compliant
this time. This includes the AxiVideo2VGA module and the Cam2AxiVideo module. We
also write conversion modules that allowed standard AXI4-Stream modules to interface with

24

AXI4-Stream Video modules. This would have allowed us to use Xilinx DMAs with our
modules.

8.1 AxiVideo2VGA

This is a rendering module that reads from an AXIS4Video Stream and displays the stream
to the VGA. The AXIS4Video Stream includes several data lines, including tuser (pulse
signal of the start of a frame), tlast (pulse signal of the end of each line in a video), tdata(a
data bus with configurable width), and tvalid (whether tdata is valid).

One complication we have encountered is using the AXIS4 Video Stream interface. The
slave module that reads from the AXIS stream and writes to the VGA must be robust to
the master module that produces the AXIS stream. The master module might have hiccups,
such that the data will be misaligned when read from the slave module. Thus, the slave
module must assert TREADY = LOW when TLAST from the master module is asserted
HIGH. Basically, the slave module must wait until an entire line of a frame is read can it
stop receiving. Otherwise, it is possible that the slave module stops reading, and the master
module hasn’t finish transmitting a line, which can make reading the next line corrupted by
the previous line. This took several iterations and test benches for me to get it right. The
module is therefore robust to input hiccups on the per line level of the video stream.

Another complication we have encountered is the robustness issue with regards to the per-
frame hiccups. It is possible that the tuser signal is asserted HIGH in the AXI Master module
when the Slave module is in the middle of rendering a frame. If we let the slave module keep
rendering, the current frame would be reading the next frame, and the next frame would
also get corrupted. This is a similar issue to the per-line robustness issue. I addressed it by
keep TREADY=LOW when tuser is asserted high in the middle of a reading a frame.

This module took a long time to write and test, mostly because I was not aware of the
importance of compiling to the standard AXI interface. Our initial spec did not compile to
the standard interface. My teammates and I changed the spec for this module at least 4-5
times because we encountered new issues when we moved onto other parts of the project
and needed to use this module to render. This module is also particularly difficult to test.
Despite the fact that I have made testbenches for this module and the testbenches show that
my code meets the spec and solve the two issues above, it is difficult to test it on hardware. I
wrote a test pattern image generator that is AXI compliant and used it to test this module,
which works fine. The success of this particular test, however, does not necessarily mean the
module is flawless, because the test pattern is a static image and the test pattern generator
behaves consistently (with no hiccups, etc.). It turns out that this module failed to render
images properly when connected to Brian’s module that reads an image from memory.

25

8.2 Cam2AxiVideo

This is the module that uses the camera output as the input, and outputs an AXI compliant
output stream. I used Lab Assistant Weston’s camera reader, which outputs a valid pixel
value every other clock cycle, because a pixel value is 16-bit, and the camera output is 8-bit
– which means it takes two clock cycles for each pixel to stream out valid data. Besides the
camera data, the AXI outputs several AXI-specific data lines, including TUSER, TLAST,
TVALID, which are asserted HIGH for one clock cycle at which each pixel’s value has become
valid and when the specific points in frames are reached (TUSER: start of frame, TLAST:
end of line, TVALID: data is valid).

This module has also been tested with a testbench.

9 Conclusion

While our project failed it failed in a way that was surprising to me. The highest risk
component, the memory subsystem was demonstrated working in hardware. The second
highest risk component, SGM, was tested very rigorously in simulation. In fact our SGM
implementation exceeded expectations and has performance comparable to the state of the
art. The main factor behind our failure to deliver a complete working system is the failure
of the AxiVideo2VGA module—a very simple module. It was not tested rigorously and was
clearly not up to specification. Unfortunately this was discovered during integration and we
did not have enough time to rewrite or fix the module before the deadline. However, if the
MIG had been working as advertised we would have had sufficient time to address this issue.

Even though things did not work out as expected many things went surprisingly well. The
systems design allowed each individual to work on his/her own with very clear specifications
and goals. Integration time was also negligible (incredibly rare for an FPGA design of this
complexity), and we were able to very quickly discover the failure point. We were able to
build our own, working, highly performant, memory subsystem that is simple and easy to
use. We were able to prevent a lot of issues by using good design practices.

A fair argument could be made that our failures had nontechnical causes. We failed to
enforce discipline in testing the modules we wrote. While many modules were incredibly
well tested and worked as expected, our design ended up failing because of an untested
module. This of course could have been prevented if we had more time. We allocated too
much time towards trying to get a MIG working in a block diagram. In hindsight these
could have both been fixed with better project management. Our project was better suited
for a four person team with three technical members and one manager that made sure that
the team was disciplined in their testing and could push for a change of direction when a
component did not seem likely to work.

26

	Introduction
	Systems Design
	Filtering
	Rectification
	Census Transform
	SGM Cost Calculator

	Design Methodologies
	Standard Interfaces
	AXI4 interfaces
	AXI4-Stream Video
	IP CONTROL
	AXI4 Master

	Block Diagrams
	Verilog IPs
	Vivado HLS

	Memory Subsystem
	Simple DMA
	Axi Crossbar
	Triple Buffer Controller

	Camera Capture
	Rectification
	Getting the calibration parameters
	Rectification in real-time

	Pre-Processing and Feature Extraction
	Gray-scale conversion
	Windowed Operators
	Line Buffer
	Rolling Window

	Census Transform
	Gaussian Blur

	Semi-Global Matching
	Algorithm
	Main Formula
	Performance Analysis
	Area Utilization
	Latency and Throughput

	Testing

	Axi Compliant Modules and utilities
	AxiVideo2VGA
	Cam2AxiVideo

	Conclusion

