3D Reconstruction by Stereo Imaging

Brian Axelrod Amartya Shankha Biswas Xinkun Nie

November 13, 2015

1 Overview

Stereo vision is the process of extracting 3D depth information from multiple
2D images. This 3D information is important to many robotics applications
ranging from autonomous cars to drones. Conventionally, two horizontally
separated cameras are used to obtain two different perspectives on a scene.
Because the cameras are separated, each feature in the scene appears at a dif-
ferent coordinate in both images. This difference between these coordinates
is called the disparity and the depth of each point in the scene can be com-
puted from its disparity. Computing the disparity at each point accurately
and efficiently is quite difficult.

Algorithms for computing features between images are generally complex,
memory inefficient and require random access to large portions of memory.
The state of the art stereo matching algorithm is based on Semi Global
Matching (SGM). This algorithm performs very well in in practice but is ex-
tremely memory and processing inefficient. This makes it difficult to process
it on small computers that can fit on small robots like drones. Since FGPAs
are fairly low power, an FPGA implementation of SGM would allow us to
use SGM on small platforms such as drones.

However, SGM can be modified with some heuristics such that the amount of
temporary memory it uses is proportional to the number of pixels in the im-
age. This improved memory complexity makes efficient-SGM (eSGM) ideal
for implementation on FPGAs.

Writing a complete stereo pipeline requires many diverse components. A
full stereo pipeline based on eSGM requires rectified camera images, and
rendering the output in point clouds and depth maps. Furthermore we will
need to design a memory architecture that can maintain a high throughput
and utilize our computation resources effectively.

2 Design

In order to be able to compute high quality disparity maps we must combine
many complicated modules to compute SGM and pre and post processes our
images. Our design decisions are primarily driven by the need to manage
this complexity without sacrificing performance. Thus we establish a design
pattern based on good software engineering patterns that have been adapted
to the Vivado workflow. The main idea is that our design should be split
into small manageable pieces that can be tested individually. We will leverage
Vivado HLS and C++4 test benches to quickly create thorough testbenches
based on real data. We will also use standard streaming interfaces which will
make it easy to replace modules and design tests. This will make it easy for
us to understand exactly what we want to get out of a module and verify
that it is correct. We will also use a softcore for running tests on the FPGA
and running the state machine. This will allow us to use code that has been
auto-generated by the Xilinx tools and avoid having to write and test more
code.

Our design revolves around a pipeline for processing stereo images shown in
Figure 1.

The first part of the pipeline grabs frames from the cameras. It handles syn-
chronization and passes on the results over an AXI stream that feeds into
the preprocessing module. The preprocessing module applies the rectifica-
tions transformation, the gaussian blur that mitigates the effect of noise, and
applies a census transform to compute a value that describes the neighbor-
hood of each pixel. The result is streamed into ddr memory through a Direct
Memory Access (DMA). We then take the results and pass it through the
SGM module twice, first in the forward direction and then in the reverse di-

cam1——preprocessing 1|

(SE11L; ddr buffer rendering

cam2——preprocessing 2——{ddr buffer

Figure 1: A high level overview of the design

rection. Then the second part of the SGM module combines the information
from these two runs to compute the disparity values and stores the results
in ddr memory using a DMA. Then a rendering module reads the disparity
values and renders them.

See the detailed block diagram in figure 2 for more information. Here’s
a list of modules in the detailed flowchart and a brief descrition of their
purpose:

2.1 Filtering

In order to make our system more robust to noise we apply a standard
technique in computer vision—applying a guassian blur. We apply a gaussian
kernel to the image, essentially blurring it by making each pixel a weighted
average of it’s neighbors.

2.2 Rectification

To handle a camera’s intrinsic optical distortions and extrinsic rotation and
translation shifts, we plan to rectify the incoming images. The basic premise
of most stereo algorithms is to find corresponding patches along epipolar
lines. In a perfect world, these epipolar lines would simply be horizontal
lines. Optical distortion bend the epipolar lines, which will be made to align
with the horizontal axis after rectification.

We rectify the images by first calibrating the cameras off-line to get a rectifi-
cation matrix. The streamed frames would then be multiplied by this matrix

to get a rectified image.

2.3 Census Transform

We use the Census Transform to compute the matching cost over all pixels,
which is a term in the SGM cost function that needs to be globally optimized.
We use a 5x5 window to get information around each pixel to perform the
Census transform.

2.4 SGM Cost Calculator

The SGM algorithm finds the optimal disparity value for each pixel by mini-
mizing over a global cost function. The algorithm iterates through the pixels
in two passes.

In the first pass, the iterator moves from left to right, and top to bottom in
the frame. Only the line above the current line and the current line need to
be stored in the DDR memory. For each pixel, we look at the pixel above it,
right left to it, above and left to it, and above and right to it.

In the second pass, the iterator moves from right to left, and bottom to top
in the frame. Only the line below the current line and the current line need
to be stored in the DDR memory. For each pixel, we look at the pixel below
it, right to it, right below to it and left below to it.

We compute the cost associated with each disparity value for the current
pixel.

3 Block Diagram

Camera Capture 1 4>{ Rectification 4.| Census Transform | DMA (Buffer 1)

Interlacing H DMA (SGM Buffer)

Camera Capture 2 —.‘ Rectification H Census Transform —.‘ DMA (Buffer 2)

AX| Interconnect

(Each module is Microblaze
connected 1o this Softcore (Control
FSM, config)

module via AXI)

DMA (forward DMA (reverse
pass) pass)

Line Cost
Evaluation (for
each disparity)

200x —/
Line Cost

Evaluation (for
each disparity) 2000 Adder

{

Line Cost 200x
Evaluation (for
each disparity)

Line Cost
Evaluation (for
each disparity)

SGM First Pass

Figure 2: Detailed Block Diagram

memaory
interconnect

DMA

SGM Final Pass

Disparity
Rendering

4 Implementation

In order to manage the large complexity of our project we are enforcing a
modular design with lots unit testing. On a high level our project consists
of five parts.

1. Camera Capture and preprocessing
2. Semiglobal Matching Algorithm

3. Output Rendering

4. Memory subsystem

Each of these systems can be tested individually. We describe our testing
and development procedure for each one of the subsystems below.

4.1 Camera Capture and preprocessing

The camera capture and preprocessing part of the system includes several
modules that form a larger module with a single AXI ouput. These modules
are listed below.

e AXI Camera Capture
AXT buffering

Camera Rectification

Image Filtering

Census Transform

4.1.1 AXI Camera Capture

This module will be based on Weston’s reference code for camera capture. It
will be extended to support the AXI interface. This will be tested individually
by just showing a camera feed on a VGA display.

4.1.2 AXI Buffering

Properly conforming to the AXI specification requires only transmitting data
when the receiver asserts a ready signal. In order to be able to do so with
Weston’s camera code we have to add a FIFO buffer module that reads from
Weston’s code’s output, and buffers it to an output using the AXI interface.
This will be tested with a testbench and a live test with a display.

4.1.3 Camera Rectification

Camera rectification requires remapping and interpolating pixels to compen-
sate for optical distortion and improper alignment of the cameras. This will
require off-line calibration of the camera to get the rectification matrix, which
represents the internal distortion of the cameras. The rectification process
multiplies this matrix with the pixel location for each pixel from the frame.
The newly transformed image is then cropped to contain only the locations
that have pixel information

4.1.4 Image Filtering

We use the Gaussian smoothing operator to blur the input frames in order
to reduce noisy input. We plan to use a 3x3 discretized Gaussian filter to
convolve with the input frames.

4.1.5 Census Transform

The Census transform is used as the matching cost for each pixel. This
matching cost is part of the global cost function that we maximize in the
Semi Global Matching algorithm. We have chosen to use the Census Trans-
form because this matching cost appears to have the highest radiometric
robustness [?].

The details of the census transform can be found from [?]. In short, we
convert the RGB values of each pixel into the Gaussian color model (GCM)
by having a matrix transform. We plan to use a 5x5 window to compute the
census transform, which produces a bit string of 1’s and 0’s. We compute

the matching cost by calculating the sum of the Hamming Distance between
the census transform of the two given pixels.

4.2 Memory Efficient Semi-Global Matching
4.2.1 Semi-Global Matching

We want to reconstruct a 3D depth image from two stereo camera inputs.
This involves matching corresponding pixels between the two images.

This gives us a disparity value D, for each pixel p, where D, is the difference
in the position of the pixel across the two images. The 3D depth of each pixel
can then be computed from it’s disparity. Figure 3 shows a pair of stereo
images and the depth map we computed during CPU testing.

Figure 3: Left image, Right image and computed Depth Map

The state of the art algorithm for matching pixels is Semi-Global Match-
ing (SGM) [?]. SGM uses dynamic programming to minimize a global cost
function along the epipolar lines. Unlike other dynamic programming meth-
ods, it does not recurse only along the epipolar lines. Instead, the mini-
mization is done along eight directions. This prevents streaking artifacts
(Figure 4).

We use the 5x 5 Census Transform as a metric to assign cost values C(p, d) =
IIL(p) ® Ir(p — d)|| to each pixel p and disparity value d. Here I, and Ig
are the values of the Census Transform and the cost is calculated as the
Hamming Distance. Then we define the cost of each path ending at a pixel
as L.(p,d). where d is the disparity value at pixel p, and r is one of the eight
directions. L, (p,d) is computed according to the recurrence —

Figure 4: Simple Dynamic programming leads to Streaking Artifacts

Ly(p,d) = C(p,d) + min{L.(p — r,d),
L.(p—r,d—1)+ P,
L.(p—r,d+1)+ P,
miin{L,,(p —ri)+ P}} — mkin{Lr(p —rk)}

Then we compute the cost of each disparity value d at pixel p as the sum of
costs of each of the eight paths (Figure 5).

S(p,d) = L(p,d)

Finally, the true disparity of each pixel corresponds to the minimum cost.

D, = arg min{S(p,d)}
d

To perform this recursion, we use the Census cost values (read from DDR
memory) and compute the overall cost (aggregate of path costs), which is
then written to DDR. Because it is difficult and inefficient to perform ran-
dom access on DDR, we implement this algorithm in a streaming fashion
(Figure 6). This means that at every clock cycle, one pixel is processed. So,
the throughput of this block is one pixel per clock cycle whereas the latency
is the time taken to compute cost values for a single pixel.

Figure 5: Dynamic Programming from eight directions

The block diagram shown (Figure 6) is used to compute the 1D optimized
cost along a single direction at a time. This greatly reduces the amount of re-
sources (registers and BRAM) used by this module. The algorithm performs
eight streaming passes through this block, to compute the L, (p, d) values for
each r direction (Figure 5). At each pass, these values are aggregated with
the total cost stream (read from DDR), and written back to the same loca-
tion in DDR. After all eight passes are complete, the final total cost S(p, d)
is stored in DDR.

In the detailed block diagram (Figure 6), the Census cost values from the two
images are read in from an input stream and buffered in order to be able to
compute the matching costs (C(p,d)). The L, values for the previous prow
of pixels and the current row of pixels is stored in BRAM. This is to allow
fast random access to the L, values. These matching costs and previous L,
values are used to compute the L, value for the current pixel. This operation
is pipelined to ensure that the pixels are processed in a stream (thoughput
= 1 pixel per clock cycle).

To implement this algorithm, we also have to stream the image in two dif-
ferent ways. In the first case, we start at the top left and scan line by line
and compute the L,(p,d) values for four directions (left, top-left, top and
top-right). In the second case, we start at the bottom right and scan in
reverse line by line and compute the L,(p,d) values for the remaining direc-
tions (right, bottom-right, bottom and bottom-left). After the two sets of
four passes, we have aggregated all the L, (p, d) values to obtain S(p, d).

10

Total Cost Stream In Cost
Calculation

Minimizer Tree

(All Disparities) Minimize

—

Small/Zero

Censusl Buffer \) Penalty

Disparities

Census Transform Stream \
-b(Census2 Buffer)

[Previous line Lr Values (BRAM)

| <

[Current line Lr Values (BRAM)]

Figure 6: SGM Block Diagram
5 Timeline

Figure 7 shows a Gantt Chart with our planned schedule. Initially, all three
of us will work in parallel on separate parts of the project.

e Pre-Processing This includes Camera Capture, Rectification, Census
Transform and Gaussian Filtering. This part of the project is assigned
to Xinkun Nie.

e SGM Algorithm This is the module that implements the SGM Al-
gorithm. This part of the project is assigned to Amartya Shankha
Biswas.

e Memory Architecture This allows us to write to and read from DDR
memory. This part of the project is assigned to Brian Axelrod.

We will be spending the remaining time together on Integration of the dif-
ferent modules and testing

11

Total Cost Stream Out

WEEKS

Pre-Processing
Camera Capture
Rectification Parameters
Rectification

Census Transform
Gaussian Filtering
Pre-Processing Complete
Semi-Global Matching
CPU Testing

Streaming CPU Test
HLS First Pass

HLS Second Pass

HLS Testing

Memory Architecture
DMA

Reverse DMA
Integration
Integration/Testing
Post-Processing

Project Complete

A
_
.
w

Py

P

Figure 7: Timeline for Project

6 Testing

The basic testing for each HLS module consists of writing C++4 test benches
that verify the module. The C++ test benches are very important in terms of
verifying the correctness of our logic. Furthermore they are very easy to run
and very fast allowing us to catch errors very quickly in development. Once
we are passing the C++4 testbench we will use the vivado HLS cosimulation
tools to test the generated verilog with the C++ testbench. We will perform
integration testing once the unit testing is finished. We will have a couple of
different vivado projects based on shared IPs for integration tests that will
test various parts of the pipeline. Again we intend to make it very easy to
run a large number of tests and quickly identify and isolate issues.

For the camera portion of the project, we want to test displaying a test image
with VGA, rendering camera stream by writing it to DDR and displaying it
with VGA, rendering camera stream by using AXI to stream out the data to
VGA, verify rectification and filtering work fine.

For the SGM portion of the project, we want to compute the correct disparity
value for each pixel. We will have a reference ground truth computed from
our C++ implementation of SGM. Our C++ testbench will compare the
accuracy of our FPGA implementation to the original known working C++
implementation. We will also test individual parts of the SGM algorithm in
this manner since it is easy to obtain known good results using our C++
reference implementation and the vivado HLS testing framework.

The memory infrastructure will be tested with simple, fake test pattern mod-
ules that will spit out fake AXI streams. We will use the microblaze softcore
to make sure that the memory contents are correct.

Finally the rendering pipeline will be tested with fake modules that spit out
memorized SGM outputs.

Once we've tested all the individual parts we will run larger integration tests
and use on chip debugging and test code running on the microblaze to make
sure that the hardware we generate is behaving as expected at every stage.
This will also test the overall control and finite state machine that coordinates
the work of the various modules.

12

7 Resources

This project requires two 6.111 lab cameras in addition to the Nexys 4 FPGA.
The output is sent to a monitor through VGA.

The two cameras will be rigidly mounted next to each other and separated
by 60mm. This is roughly the gap between human eyes and will be used to
obtain a pair of stereo images.

References

[1] Heiko Hirschmuller. Semi-global matching-motivation, developments and
applications. 2011.

2] Heiko Hirschmiiller and Daniel Scharstein. Evaluation of stereo match-
ing costs on images with radiometric differences. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, 31(9):1582-1599, 2009.

[3] Soo-Chang Pei and Yu-Ying Wang. Color invariant census transform for
stereo matching algorithm. In Consumer Electronics (ISCE), 2013 IEEE
17th International Symposium on, pages 209-210. IEEE, 2013.

13

