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What is Stereo

Monocular

Binocular

two perspectives

Algorithmic Idea

Computationally Difficult

2x HD camera
4 million pixels
4.3 Trillion possible correspondences
Even smart algorithms require a lot of power
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Overall System Layout

cam1

cam2

preprocessing 1

preprocessing 2 ddr buffer sgm ddr buffer rendering
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Camera Pipeline
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Camera Pipeline
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Why Rectification?

Intrinsic optical distortion

Improper alignment of the cameras (rotation, translation)
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Rectification

Calibrate cameras offline (MATLAB)

Acquire rotation, translation matrix coefficients

Acquire intrinsic distortion parameters

Apply the matrix transformations to streamed images (real-time)
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Rectification: Example
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Camera Pipeline
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Gaussian Filtering
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Gaussian Filtering

Reduce noise in the image

Convolution: weighted sum of
surrounding pixels

Separate horizontal and vertical
passes
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Camera Pipeline
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Disparity

A shift to the left of an image
feature when viewed in the right
image

Disparity cost: associated
matching cost between two
pixels
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Census Transform

Used to compute disparity matching costs

5x5 window for each pixel to represent the information from the
surroundings of the pixel

produces a bit stream
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Left Image Right Image



  

Left Image Right Image

Depth/Disparity Map



  

Minimize Global Energy



  

Minimize Global Energy



  

Minimize Global Energy

D is a disparity image



  

Minimize Global Energy

Similarity Costs for 
Each Pixel



  

Minimize Global Energy

Small Disparity Change 
(Smoothness)



  

Minimize Global Energy

Small Disparity Change 
(Smoothness)

Small Penalty P
1



  

Minimize Global Energy

Object Boundary



  

Minimize Global Energy

Object Boundary : Large Penalty P
2



  

2D Global Minimization



  

2D Global Minimization

NPComplete Problem



  

1D Optimization
● Dynamic Programming



  

1D Optimization
● Dynamic Programming
● Minimize Cost along Horizontal Lines
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● Dynamic Programming
● Minimize Cost along Horizontal Lines



  

Streaking Issues

Left Image Right Image



  

Streaking Issues



  

Use Multiple Directions



  

Use Multiple Directions



  

Use Multiple Directions

r varies over 8 directions



  

Use Multiple Directions

r varies over 8 directions

Total Cost :



  

Semi Global Matching

Left Image Right Image



  

No Streaking!!!



  

Streaming Design



  

Total Cost :



Depth Map Rendering
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Point Cloud Rendering
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Timeline

WEEKS: 0 1 2 3 4

Pre-Processing

Camera Capture

Rectification Parameters

Rectification

Census Transform

Gaussian Filtering

Pre-Processing Complete

Semi-Global Matching

CPU Testing

Streaming CPU Test

HLS First Pass

HLS Second Pass

HLS Testing

Memory Architecture

DMA

Reverse DMA

Integration

Integration/Testing

Post-Processing

Project Complete
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