Stereo — 2D to 3D on an FPGA

Brian Axelrod, Sheena Nie, Amartya Shankha Biswas

Massachusetts Institute of Technology

baxelrod, xnie, asbiswas

November 10, 2015

Monocular

- Monocular
- Binocular

Monocular

Binocular

• two perspectives

Monocular

Binocular

- two perspectives
- Algorithmic Idea

- Monocular
- Binocular
 - two perspectives
- Algorithmic Idea
- Computationally Difficult

- Monocular
- Binocular
 - two perspectives
- Algorithmic Idea
- Computationally Difficult
 - 2x HD camera

- Monocular
- Binocular
 - two perspectives
- Algorithmic Idea
- Computationally Difficult
 - 2x HD camera
 - 4 million pixels

- Monocular
- Binocular
 - two perspectives
- Algorithmic Idea
- Computationally Difficult
 - 2x HD camera
 - 4 million pixels
 - 4.3 Trillion possible correspondences

- Monocular
- Binocular
 - two perspectives
- Algorithmic Idea
- Computationally Difficult
 - 2x HD camera
 - 4 million pixels
 - 4.3 Trillion possible correspondences
 - Even smart algorithms require a lot of power

Overall System Layout

• Intrinsic optical distortion

- Intrinsic optical distortion
- Improper alignment of the cameras (rotation, translation)

• Calibrate cameras offline (MATLAB)

- Calibrate cameras offline (MATLAB)
- Acquire rotation, translation matrix coefficients

- Calibrate cameras offline (MATLAB)
- Acquire rotation, translation matrix coefficients
- Acquire intrinsic distortion parameters

- Calibrate cameras offline (MATLAB)
- Acquire rotation, translation matrix coefficients
- Acquire intrinsic distortion parameters
- Apply the matrix transformations to streamed images (real-time)

Rectification: Example

Camera Pipeline

Gaussian Filtering

Original image

Gaussian Blur applied

- Reduce noise in the image
- Convolution: weighted sum of surrounding pixels
- Separate horizontal and vertical passes

 $=\frac{1}{16} \begin{pmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{pmatrix}$ S

- A shift to the left of an image feature when viewed in the right image
- Disparity cost: associated matching cost between two pixels

- Used to compute disparity matching costs
- 5x5 window for each pixel to represent the information from the surroundings of the pixel
- produces a bit stream

Left Image

Right Image

Left Image

Right Image

Depth/Disparity Map

 $E(\boldsymbol{D}) = \sum C(\boldsymbol{p}, D_{\boldsymbol{p}})$ \boldsymbol{p} $+ \sum \mathcal{P}_1 \cdot T \left[|D_p - D_q| = 1 \right]$ $q \in N_p$ $+ \sum \mathcal{P}_2 \cdot T \left[|D_{\boldsymbol{p}} - D_{\boldsymbol{q}}| > 1 \right]$

 $q \in N_p$

E(D) D is a disparity image

Minimize Global Energy $E(D) = \sum_{p} C(p, D_{p})$

Similarity Costs for Each Pixel

Minimize Global Energy $E(\mathbf{D}) = \sum C(\mathbf{p}, D_{\mathbf{p}})$ \boldsymbol{p} $+ \sum T [|D_{p} - D_{q}| = 1]$ $q \in N_p$

Small Disparity Change (Smoothness)

$E(\boldsymbol{D}) = \sum_{\boldsymbol{p}} C(\boldsymbol{p}, D_{\boldsymbol{p}}) + \sum_{\boldsymbol{q} \in N_{\boldsymbol{p}}} \mathcal{P}_1 \cdot T[|D_{\boldsymbol{p}} - D_{\boldsymbol{q}}| = 1]$

Small Disparity Change (Smoothness) Small Penalty P₁

Minimize Global Energy $E(\boldsymbol{D}) = \sum C(\boldsymbol{p}, D_{\boldsymbol{p}})$ $+ \sum \mathcal{P}_1 \cdot T \left[|D_p - D_q| = 1 \right]$ $q \in N_p$ $+ \sum T \left[|D_{p} - D_{q}| > 1 \right]$ $q \in N_p$

Object Boundary

 $E(\boldsymbol{D}) = \sum_{\boldsymbol{p}} C(\boldsymbol{p}, D_{\boldsymbol{p}}) + \sum_{\boldsymbol{q} \in N_{\boldsymbol{p}}} \mathcal{P}_{1} \cdot T[|D_{\boldsymbol{p}} - D_{\boldsymbol{q}}| = 1]$

 $+\sum_{\boldsymbol{q}\in N_{\boldsymbol{p}}}\mathcal{P}_{2}\cdot T\left[|D_{\boldsymbol{p}}-D_{\boldsymbol{q}}|>1\right]$

Object Boundary : Large Penalty P₂

2D Global Minimization

 $E(\boldsymbol{D}) = \sum_{\boldsymbol{p}} C(\boldsymbol{p}, D_{\boldsymbol{p}}) + \sum_{\boldsymbol{q} \in N_{\boldsymbol{p}}} \mathcal{P}_1 \cdot T\left[|D_{\boldsymbol{p}} - D_{\boldsymbol{p}}| = 1\right] + \sum_{\boldsymbol{q} \in N_{\boldsymbol{p}}} \mathcal{P}_2 \cdot T\left[|D_{\boldsymbol{p}} - D_{\boldsymbol{p}}| > 1\right]$

2D Global Minimization

 $E(\boldsymbol{D}) = \sum_{\boldsymbol{p}} C(\boldsymbol{p}, D_{\boldsymbol{p}}) + \sum_{\boldsymbol{q} \in N_{\boldsymbol{p}}} \mathcal{P}_1 \cdot T\left[|D_{\boldsymbol{p}} - D_{\boldsymbol{p}}| = 1\right] + \sum_{\boldsymbol{q} \in N_{\boldsymbol{p}}} \mathcal{P}_2 \cdot T\left[|D_{\boldsymbol{p}} - D_{\boldsymbol{p}}| > 1\right]$

NP-Complete Problem

• Dynamic Programming

- Dynamic Programming
- Minimize Cost along Horizontal Lines

- Dynamic Programming
- Minimize Cost along Horizontal Lines

- Dynamic Programming
- Minimize Cost along Horizontal Lines

Streaking Issues

Left Image

Right Image

Streaking Issues

 $L_r(\boldsymbol{p}, d) = C(\boldsymbol{p}, d)$

$$L_r(\boldsymbol{p} - r, d), \\ L_r(\boldsymbol{p} - r, d - 1) + \mathcal{P}_1, \\ L_r(\boldsymbol{p} - r, d + 1) + \mathcal{P}_1, \\ \min_i L_r(\boldsymbol{p} - r, i) + \mathcal{P}_2 \qquad \}$$

 $L_r(\boldsymbol{p}, d) = C(\boldsymbol{p}, d)$

$$L_r(\boldsymbol{p} - r, d), \\ L_r(\boldsymbol{p} - r, d - 1) + \mathcal{P}_1, \\ L_r(\boldsymbol{p} - r, d + 1) + \mathcal{P}_1, \\ \min_i L_r(\boldsymbol{p} - r, i) + \mathcal{P}_2 \qquad \}$$

r varies over 8 directions

 $L_r(\boldsymbol{p}, d) = C(\boldsymbol{p}, d)$

$$L_r(\boldsymbol{p} - r, d), \\ L_r(\boldsymbol{p} - r, d - 1) + \mathcal{P}_1, \\ L_r(\boldsymbol{p} - r, d + 1) + \mathcal{P}_1, \\ \min_i L_r(\boldsymbol{p} - r, i) + \mathcal{P}_2 \qquad \}$$

r varies over 8 directions

Total Cost : $S(p,d) = \sum L_r(p,d)$

Semi Global Matching

Left Image

Right Image

No Streaking!!!

Streaming Design

$$L_r(\boldsymbol{p}, d) = C(\boldsymbol{p}, d) + \min \{ L_r(\boldsymbol{p} - r, d), \\ L_r(\boldsymbol{p} - r, d - 1) + \mathcal{P}_1, \\ L_r(\boldsymbol{p} - r, d + 1) + \mathcal{P}_1, \\ \min_i L_r(\boldsymbol{p} - r, i) + \mathcal{P}_2 \}$$

Total Cost : $S(p,d) = \sum_{r} L_r(p,d)$

Depth Map Rendering

Point Cloud Rendering

Timeline

