

INVISIMAZE
A 6.111 Final Project

Stephanie Pavlick ’17 and Elizabeth Zhang ‘16

Fall 2015

INVISMAZE
A 6.111 Final Project

Stephanie Pavlick ’17 and Elizabeth Zhang ‘16

Fall 2015

Table of Contents
1 | Introduction ... 2

2 | Project Overview ... 2

System Overview .. 2

Physical Setup ... 3

3 | Modules ... 4

3.1 A Word on Relative and Absolute Coordinates, and the Maze Grid .. 4

3/2 Game Logic Libby ... 5

Finite State Machine .. 6

Countdowns and Timers .. 7

Maze Map Selection .. 8

Virtual versus Live-Action Play .. 8

3.3 Hex Display and Binary-Code Decimal Converter Libby .. 9

3.4 VGA Display Libby .. 9

3.5 Object-Recognition and Tracking Stephanie .. 10

NTSC Camera Feed to ZBT Memory .. 10

Color Detection and Center of Mass Calculator ... 10

Implementation and Testing ... 11

3.6 Serial Transmitter and Receiver Steph .. 14

Testing ... 15

4 | Improvements and Insights ... 17

NTSC camera and Color Recognition .. 17

COM to Maze .. 17

Transmitter/Receiver .. 17

Finite State Machine ... 18

5 | Conclusion ... 19

| 2

1 | Introduction

Invisimaze is an interactive, virtual-reality maze game. The game is developed for a single player who
tries to navigate through an open space that is virtually overlaid with an invisible maze. In our specific
implementation, Invisimaze is played an indoor location that 5 by 8 feet in dimension.

The player wears two different color gloves to allow the game to track his/her location. Two NTSC
cameras are placed above the open maze space and they transfer color data back to the system for
analysis. Audio output provides feedback to the player during game play, and timer is automatically
started to record how long it took the player to complete the maze.

In addition to the main player’s experience, Invisimaze is also well-suited for spectators who can observe
and support the player during the game. When the player presses ‘Enter’ and walks to the designated
start area, the maze, which was previously not displayed, appears on the VGA monitor for the spectators
to watch the player’s progress. Depending on whether the player walks into a wall, or wins/loses the
game, the monitor flashes differently to alert the spectators.

Finally, Invisimaze also has a purely virtual playing mode, so that players can also experience the game
using the arrow buttons to navigate through the maze because there are space constraints. This way,
everyone can have fun playing Invisimaze, no matter where they are!

2 | Project Overview

2.1 System Overview

Figure 1 System Overview of the VHDL Implementation

| 3

2.2 Physical Setup

To create the game play space, we used two NTSC cameras mounted to the ceiling looking down at the
ground. We attempted to set up these cameras such that their fields of view were not overlapping, but
they aligned such that the bottom edge of the view of one camera matched as close as possible with the
top edge of the view of the second camera. This would give us the maximum game play space available
using two cameras, about an 8 foot by 5 foot grid. Each camera would correspond to about half of the
maze grid. We also delineated the outline of the play space on the ground in the lab.

Figure 2 Two NTSC Camera Setup. The two cameras were installed in the ceiling using electrical tape,
and they were connected to the power sources and Labkits using very long cables.

With such a setup, this introduced discontinuities in the center of mass tracking at the edge between
the two cameras. When the object to be tracked was located along the edge common to the two
camera’s fields of view, the logic had difficulties deciding which camera data to use and where the
object was located, as each camera had access to fewer object pixels along this line. Furthermore, it was
difficult to get the camera views to align exactly, and we found that some overlap was inevitable.

| 4

3 | Modules

3.1 A Word on Relative and Absolute Coordinates, and the Maze Grid

Before delving into the game implementation, a few notes should be made on terminology regarding
coordinates and grids. All references to ‘relative’ and ‘raw’ coordinates and locations are defined to be
the coordinates received from the NTSC cameras – this is because these coordinates are relative to the
device performing the tracking in the physical world. Before they can be utilized in the maze game, they
must be translated into ‘absolute’ or ‘scaled’ coordinates and locations that are universal to the game
system.

The absolute coordinates of the game system are determined by the desired size of the maze. In our
implementation, we used a predetermined 5 x 8 grid, which maps squarely to the 5 x 8 square foot
playing space that we were limited to by the NTSC camera’s field of view. Each element within this maze
grid has certain associated characteristics, i.e. start area, finish area, path, or wall. Start areas and finish
areas are also considered valid locations. Figure 1 provides a graphical description of the maze grid.

The design of the maze grid allows the game to be highly compatible and flexible in terms of
“projecting” onto the available physical space. A single grid size can be played in a variety of areas, and
alternatively a single area can be host to a variety of grid sizes.

The Maze Map Selection section explains in more depth how coordinates and maze grid indices are
calculated, and how the two are used to compute player validity.

 Legend Start Area Finish Area Path Wall
 0 1 2 3 . . . C-3 C-2 C-1
 0 … x-1 x … 2x-1 (c-1)x … cx-1

0
0
…

y-1

1
y

…
2y-1

…

R-2

R-1
(r-1)y

 …
ry-1

Figure 3 Graphical Description of the Maze Grid. The large numbers are on the outside of the grid (0….C-1) and (0…R-1) are
the grid’s indices. The element at each index has a specific associated characteristic, as depicted by their color fill. The smaller
numbers on the outside of the grid (0…x-1, …, (x-1)x … cx -1) are the absolute coordinates that map to the specified index. For
example, the maze logic module will use each hand CoM’s absolute coordinates to determine which element of the grid it is in,
and whether that element is a valid or invalid location.

| 5

3.2 Game Logic Libby

The main module controlling the Invisimaze game play is mapFsm.v. This module contains a Moore
finite state machine with six different states (Figure 2) keeping track of the player’s state of play.

Figure 4 FSM State Diagram. The game’s governing finite state machine has six
distinct states that are triggered by the associated events shown above.

Each state has a number of associated outputs, including visual and audio feedback. All of these outputs
(Table 1) are handled externally by connecting their associated modules, which will be described
separately, to the current state of the FSM. The latest implementation has three main types of feedback,
namely via the 16-character hex display onboard the Labkit, the analog input of the VGA monitor, and
audio, but this design of the system allows the number and types of outputs to be easily extendable.

Table 1 System Outputs Associated with FSM State

 Hex Display VGA Monitor Audio

NEWGAME ‘ENTER’ to Start Black screen, only hand CoM
locations displayed

No audio

STANDBY Go to start area Black screen, only hand CoM
locations displayed

“It is your destiny”
soundclip played once

PLAYING Get goin! %%%

%%% is current time (s)
since the start of game

Maze and current hand CoM
locations displayed

 No audio

WARNING Get out! %s left
% is time remaining in
warning countdown

Maze and CoMs visible, red
overlay flashing at a 4 Hz rate

“Don’t do dat” soundclip
played repeatedly

JUSTWON You Won! %%%
%%% is total time (sec)

Maze and CoMs visible,
alternating green and blue

“Hasta la vista” soundclip
played once

YOULOST YOU LOST :(Maze and CoMs visible, steady
red overlay

“You are terminated”
soundclip played once

| 6

Finite State Machine 1

NEWGAME State
In this state, the system is idling and waiting to press the ENTER button on the Labkit to begin.

STANDBY State
The system waits until the player is detected to be in the start area before starting the game. This
ensures that the player may proceed to the start area at their own pace after pressing ENTER, and that
the player actually starts the game in the start area to avoid any unsportsmanlike playing. The system
compares the player’s two absolute hand CoM coordinates to the maze grid (see A Word on Relative
and Absolute Coordinates, and the Maze Grid). When both hands appear in the first column, or some
other start area designation, the game begins – the game timer begins, the maze appears on the VGA
screen, and the player can proceed to stumble their way through the maze.

PLAYING and WARNING States
These two states are the primary states of play that the player will be in. After the game has started and
before it has finished, the player is in the PLAYING state when he/she is in a valid location and in the
WARNING state when in an invalid location.

The player’s location is taken by averaging the absolute coordinates of his/her two hand CoMs, and then
translating those absolute coordinates into a grid index. The validity of location is then primarily
determined by comparing this absolute indexed location to the associated element in the maze grid, as
described briefly in the STANDBY state. If that element is a path, the current location is valid; if that
element is a wall, the current location is invalid and the player enters the WARNING state. Each time the
player walks into a valid location, this location index is saved in the lastValidLoc register.

The FSM checks the validity of a player’s location by comparing the indexing into the maze map register
with the player’s absolute location. Recall that the player’s location is averaged between the two hand
CoM coordinates. The player’s location is calculated and compared to the maze map by the following:

Table 2 Verilog Equations for Location Indexing and Validation. sqSize is the binary logarithm of the number of pixels of
each grid element. This allows for absolute indexing of each coordinate. Under ‘Averaged Location,’ the additional right shift is
for averaging the two X- and Y-coordinates.

Single Hand CoM Averaged Location
wire [2:0] nrx = rx >> sqSize;
wire [2:0] nry = ry >> sqSize;
assign isRValid = mapArr[nrx+nry*8];

wire [2:0] nmx = (rx+lx)>>(sqSize+1);
wire [10:0] ysum = ry+ly;
wire [2:0] nmy = ysum>>(sqSize+1);

When the game enters the WARNING state, the warning countdown is started. This value is hardcoded
to a five second delay, although in future implementations, it could be reprogrammed to increase or
decrease the grace time and thus the difficulty of the game. The user has this amount of time to get out
of the invalid location.

1 mapFsm.v

| 7

Once the player walks into a wall, the distinction between valid and invalid location is further refined.
One major concern that people voiced during the Project Design Presentation was how to prevent
players from “walking through” walls, since there are obviously no physical barriers to prevent them
from doing so. This concern is addressed by only defining a valid location as one that was directly
adjacent to the player’s last valid location, provided that said valid location is also a path element
(Figure 3). If the player walks out of bounds or out of the field of view of the cameras, he/she is also
considered in an invalid zone.

Legend

 Invalid path

elements

 V X

Wall elements

 Wall elements

adjacent to V

 Valid path

elements

Figure 5 Localization of Valid Locations when in WARNING state. This is an arbitrarily selected section of the maze grid. X
denotes current position, V denotes last valid location. The cross outlined in white contains all of the elements directly adjacent
to the last valid location. Only the path elements within this cross, otherwise directly adjacent to the last valid location or the
last valid location itself, may return the user to the PLAYING state. All other path elements are invalid to prevent user from
walking through any number of walls.

If the player is able to return to a valid location before the warning countdown expires, they continue
playing the game until they reach the finish. Otherwise, the player loses the game.

JUSTWON and YOULOSE States
These two states are the two mutually-exclusive game endings. As mentioned previously, if the player
reaches the designated finish area without walking through any walls, then they “win the game.” Their
total time is held on the hex display so that they can record their time. If the player is unable to return to
a valid location after through a wall before the timer expires, he/she enters the YOULOSE state and lose
the game. Their time is not saved. To return to the idling NEWGAME state, the player must press the
ENTER button.

Countdowns and Timers 2
There are three different time modules implemented within the game logic subsystem: the 1 Hz clock,
the total game timer, and the warning countdown.

The 1 Hz clock is by default generated by a 65 Mhz clock, but it is parameterized so it can be generated
from any supplied clock (>1 Hz). In the display module, the parameters are manipulated such that it

2 clock_1hz.v, countdown.v, timer.v

| 8

generates 2 Hz and 4 Hz clocks. This clock is also synchronizable so that it starts generating a 1 Hz rate at
the same time that its associated timing module starts timing.

The total game timer and the warning countdown each of their own associated 1 Hz clock so that they
can count time independently of each other. The total game timer counts up from 0, and it requires a
start signal, which is supplied at the transition from STANDBY to PLAYING, and a stop signal. It will
count up to 999, overflow and begin counting again from 0.

The warning countdown module counts down from the supplied time, in this case five seconds. The
countdown begins counting anew each time a new start_timer signal is supplied. It pulses the
expired signal high for one clock signal if it finishes counting without being interrupted.

Maze Map Selection3
The player can choose which maze he/she would like to play by switching switch[7:6]. There are
currently four mazes to choose from, but more can be added. Originally, I thought I would need to
create a COE file to import the maze, but the size of the maze is small enough that it is more efficient to
store in a 40-bit register. The register size is determined by the number of elements in the maze, i.e. the
product of the maze width and height.

Each maze map was generate manually by plotting a reasonable maze in Excel, similar to the graphical
description of the maze grid in Figure 1, and translating path and wall elements to 1’s and 0’s,
respectively. The most significant bit is element (8, 5), or the lower-right most element; the second most
significant bit is element (7, 5); and so on, down to element (0,0), which is the least significant bit.

The maze map can only be changed during the NEWGAME state, before the player gets to see the maze
map, so that they cannot get a sneak peak and so that spectators cannot alter the maze course during
play.

Virtual versus Live-Action Play4
This module allows the flip of a single switch, switch[3], to determine whether the player would like
to play virtually (using arrow buttons) or physically (using hands). There is a separate
handController module for the right and the left hands, each providing a 21-bit value containing the
absolute X- and Y-coordinates of the specified hand, irrespective of the manner of playing.

If the switch is high, this module passes through the supplied scaled coordinates calculated from the
NTSC camera. Otherwise, it updates and outputs the X- and Y- register values based on debounced
arrow button signals. It outputs a 21-bit value which contains the absolute X- and Y-coordinates of the
specified hand.

3 mapSelect.v
4 handController.v

| 9

3.3 Hex Display and Binary-Code Decimal Converter5 Libby

The 16-character hex display available on the Labkit provided a digital interface for providing feedback
to the player and the spectators. I used the display_string.v LED driver module supplied by the
staff to display in messages associated with the current FSM state (see Table 1 for a comprehensive list).

For the PLAYING and WARNING states, I additionally provided the timer and countdown values. This
required a binary to binary-converted decimal (BCD) module. I implemented the double-dabble
algorithm to convert the values as quickly possible. I additionally allowed the input size of the binary
value to be parameterized to allow for fast computation of smaller values. This is because the
implemented BCD converter only outputs the converted value when all of the shifts have been
completed. The number of shifts required is based on the size of the binary input, so for smaller
numbers that are not 10 bits large, they can computed in O(log2) time.

3.4 VGA Display6 Libby

I integrated all of the visual elements that would output onto the VGA monitor into a single module, and
it is additionally controlled by the current state of the FSM. Circle sprites are created for each hand CoM.
Due to the computationally intense nature of computing circles (i.e. two multiplications), these
calculations are only performed when the hcount and vcount of the VGA scan are within the
bounding box of the circle.

// Circle: x^2 + y^2 <= r^2
if (dx > RADIUS || dy > RADIUS) pixel = 0;
else if (dx*dx + dy*dy <= RADIUS * RADIUS) pixel = COLOR;
else pixel = 0;

If the player is in the WARNING, YOULOST, or JUSTWON states, then the entire monitor is overlaid with
an alpha-blending color layer. The below equation provides an example of alpha-overlaying pure red
(255, 0, 0) over the screen.

blended <= {(unblended[23:16])*M/N+(RED[23:16])*(N-M)/N,
unblended[15:8]*M/N, unblended[7:0]*M/N};

In the top-level module, I also allowed different NTSC camera feeds to be outputted instead of the
game-portion of the VGA output, depending on the switch settings. These feeds included the live
tracking of the red and green center of masses on top of an unfiltered NTSC feed, and the individual red
and green HSV filtered feeds.

5 ledDisplay.v, bcd2.v
6 mapDisplay.v

| 10

3.5 Object-Recognition and Tracking Stephanie

This subsystem has 2 main goals:

1. Perform color detection to analyze which pixels match the colors we would like to track
2. Perform center of mass calculations to determine the location of an object based on the pixels

that match its color

It will use the feed from the NTSC camera to determine the object locations and ultimately send these
locations to the maze FSM logic to display a person’s location within the maze on the screen.

Figure 6 Detailed Block Diagram of Object-Recognition and Tracking Subsystem

NTSC Camera Feed to ZBT Memory

adv7185 and ntsc_decode
These submodules are used together to extract the raw data received by the Labkit from the NTSC
camera via the RCA phono jack. As inputs, the ntsc_decode module takes a 27 MHz clock and the
tv_in_ycrcb line. It outputs the pixel data in the ycrcb space received from the NTSC camera as well as
the field, vertical sync, and horizontal sync lines from the camera. A data_valid line output when the
ycrcb data has been fully extracted.

ntsc_to_zbt
This submodule prepares data addresses for writing into the ZBT memory. As inputs, it takes the field,
vertical sync, and horizontal synz (fvh) data from the ntsc_decode submodule as well as a data valid line,
data to be written to the ZBT memory, system clock, and video clock from the camera. It outputs the
address where the data will be written, the data to be written, and a write enable line for the data.

zbt_6111
This submodule writes the NTSC data to the ZBT memory.

vram_display
This submodule generates the pixel to be displayed on the screen by reading from the ZBT memory.

Color Detection and Center of Mass Calculator

YCrCb2RGB
This submodule converts the YCrCb data from the NTSC camera into the RBG color space.

| 11

rgb2hsv and divider
The rgb2hsv submodule converts the data in the RGB color space into the HSV color space to enable
color detection using HSV values. The HSV converter must use dividing to calculate the values, so it also
requires create a divider using an IP core in ISE.

color_detector
This submodule analyzes the hue, saturation, and value of a pixel to determine if it matches the color
that is being tracked. It is parameterized, so a user can alter values the low and high thresholds of hue,
saturation, and value. If the pixel HSV values are within the parameterized ranges, match will be a logic
1. Otherwise, match will output low.

center_calculator and divider_pipeline
This submodule calculates the location of the center of mass of an object each frame. The module has
internal variables to sum hcount and vcount. When the match input is high (corresponding to a pixel
match), the module adds the hcount and vcount to the sum_x and sum_y variables, then adds one to
the total count of matching pixels. When a new frame is reached, the calculation begins again. The
center of mass calculator must use dividing to calculate the values, so it also requires create a divider
using an IP core in ISE. The sel output is high if the count of pixels is above a certain threshold, which we
decided to be 500. If the sel line is high, we considered the center of mass to be in the frame of view of
the master Labkit. Otherwise, the maze game would instead use the center of mass data transmitted
form the slave Labkit.

average_center
This submodule averages the center of mass data over the most recent eight frames. When the valid line
goes high, the submodule performs the averaging and outputs this new average until it must calculate
the next average.

com_to_maze
This module takes in the x and y coordinates of the center of mass in the camera view and outputs its
coordinates projected onto the maze. As two NTSC cameras were used for this project, each camera
tracks the data in one half of the maze grid. The offset_select input decides whether to offset the pixels
such that they can display in either half of the maze grid.

Implementation and Testing
The implementation process of this module involved 4 steps:

1. Modifying code provided by the 6.111 staff to display NTSC feed in color and store color data in
ZBT memory

2. Converting RGB data after being read from ZBT memory into the HSV color space and
determining ranges of HSV values to represent the colors we wished to track

3. Calculating the center of mass of an object based on its color
4. Averaging center of masses from numerous frames to reduce noise

Most testing and debugging of these modules involved programming the FPGA directly and viewing the
camera feed via VGA output.

| 12

Many modules used here, namely zbt_6111, vram_display, ntsc_to_zbt, ntsc_decode, YCrCb2RGB, and
rgb2hsv, were provided by staff. The code initially displayed the camera feed only in black and white,
and the data stored for each pixel was only 8 bits wide. I first modified the staff code to store 18 bits of
data for each pixel, using double as much memory, store the data in ZBT memory after being converted
to RGB, and display the camera feed in color.

After converting the pixel data to RGB and displaying it, the next objective was to convert to HSV and
determine proper values of H, S, and V to represent the colors being tracked. When debugging this
portion, I colored each pixel white if it was a match, and black otherwise.

Color Detection in HSV Space
When debugging, I found that edges of objects presented a large amount of noise in the data. Also, the
color we initially wished to use, a bright lime green, was too close to white in the HSV space, picking up
a large amount of noise from light.

Figure 7 Low SNR Ratio When Tracking Lime Green Glove

After picking values to represent the color in the HSV space, the next step was center of mass
calculation. When debugging, I displayed the center of mass overlaid on the camera feed in RGB to
determine if it was tracking properly. I also made use of the LED hex display to display the current values
of variables such as sum_x and sum_y to ensure they were being calculated. To debug the averaging
module, I also displayed the averaged center of mass overlaid in much the same way. I found that after
averaging, there was significantly less noise in the calculated center of mass.

HSV Threshold Calibration Tool Libby
During the process of implementation and testing, we struggled often with having too much noise in the
background when trying to detect a certain color. Since much of the success of our project depended on
accurate and precise detection of the colored gloves, and since we were using two different NTSC

| 13

(which can vary vastly in terms of their sensitivity), I decided it was valuable to have a tool which would
allow us to exactly optimize the HSV threshold ranges for color detection for each NTSC camera.

This tool, camera_test.bit, uses the NTSC to ZBT to VRAM pipeline that Steph had assembled. I then
allowed the user to manually optimize the feed by adjusting the value and the range of the H, S, and V
parameters, exactly as one would set the threshold ranges for color detection in the code.

1. Guestimate a rough hue value for the color of choice (e.g. green is 80 – 90)
2. Flip only switch[7] (hue) high. Adjust range value to 5
3. Use up or down arrows to move towards that value. When in the range, pay attention to

whether the amount of signal and noise are increasing or decreasing. Settle on a hue value that
has the highest signal-to-noise ratio.

4. Flip switch[4] to adjust range. Increase range until you have maximized the signal to noise ratio.
5. Repeat steps 1-4 for the saturation and value/brightness parameters.
6. Flip switch[2] to AND all the signals together and evaluate the quality of your color detection

threshold.
7. Record the H, S, V values (displayed on the hex display). Note that the range values associated

with each parameter is parameter ± range, so your low threshold would be
parameter – range, and your high threshold would be parameter + range.

Note that all parameter values can range from 0 to 255 (as outputted by the rgb2hsv.v module)

Table 3 Manually Optimized HSV Values for Individual NTSC Cameras. Note that on Camera B, the V parameter spans the
whole range. For some still unknown reason, that specific camera would not recognize an object within any range.

Camera A
(Receiver) Low High

 Camera B
(Transmitter) Low High

Gr
ee

n H 43 123

Gr
ee

n H 70 110
S 105 255 S 70 135
V 75 225 V 0 255

Re
d

H 232 252

Re
d

H 232 252
S 170 190 S 140 210
V 95 175 V 0 255

| 14

Center of Mass Calculation

Figure 8 Center of mass (white square) overlaid with the NTSC live feed

The final step in the testing of the center of mass modules was the testing of the com_to_maze
submodule. For the testing of this module, I primarily debugged by displaying the converted center of
mass locations in the actual maze game. This submodule required finding offset and scaling factors to
accurately project the center of masses onto the maze logic. The testing of this submodule occurred
simultaneously with integration of the center of mass tracking with the game logic.

3.6 Serial Transmitter and Receiver Steph

This serial modules have 2 main goals:

1. Send center of mass data serially from slave Labkit to master once per frame
2. Receive the center of mass data by the master Labkit

The serial modules are used to communicate between the two Labkits. Both Labkits perform center of
mass calculations simultaneously on the data from their respective NTSC cameras. Once per frame, the
slave Labkit sends the center of mass calculated in that frame to the master Labkit. When the
calculations cycle to the next frame, the transmitter Labkit sends a start signal, which notifies the
receiver Labkit that it should expect to receive new data. The master Labkit continually waits to begin
receiving data, then begins receiving after getting the start signal. The transmitter Labkit uses a timer to
determine how long it should send a certain signal.

Similar protocol to that used in lab 5b were utilized for the implementation of the receiver and
transmitter modules.

| 15

Transmitter
The transmitter takes as its inputs a transmitter clock, a ready signal, and data to be transmitted. It
outputs a data line with a one-bit width, when can be assigned to an output port on the labkit to allow
for transmission of data via a wire to the second labkit. Internally, the transmitter works as a finite state
machine to transmit. The signal is transmitted one bit at a time, with the length of a high transmitted
determining the value of the bit being transmitted; for example, the start signal is a voltage high for 32
clock cycles, a one is high for 16 clock cycles, and a zero is high for 8 clock cycles, with each high being
separated by a low voltage output for 8 clock cycles. The number of clock cycles for each state is
parameterized and used as the input to a timer. The timer begins counting down at each transition
between states. The state machine remains in the WAIT state until the start signal goes high, then it
transitions to the START state. After transmitting the start signal, the code latches the data input at that
time into an intermediate variable and begins transmitting the data one bit at a time. The data line is
high when the state machine is in either the TRANSMIT_HIGH or START state, and low when it is in the
TRANSMIT_LOW or WAIT state.

Receiver
The receiver module takes in a one-bit data line and a sampling clock as input and outputs the received
data. There are only two states: WAIT and RECEIVE. The receiver samples the data line once every clock
cycle of the input clk. Once the Labkit receives the start signal, which corresponds to data high for about
32 clock cycles, it transitions to the RECEIVE state. In this state, the receiver continues to sample the
data. A high signal for 16 clock cycles corresponds to a received one, and a high signal for 8 clock cycles
corresponds to a received zero. The receiver has an internal bit counter to determine how many bits
have been received and the significance of the most recently received bit. The receiver tracks the
received data in the received_data variable, then after it has finished receiving all 42 bits (holding data
for the x and y coordinates for two separate colors), it updates the green_x, green_y, red_x, and red_y
output variables. These outputs are the locations of the center of masses of the two colors in the NTSC
camera before scaling to fit the maze.

Testing
I began by testing the transmitter with predetermined data. I began by running in ModelSim with
dummy data, and examining the outputs.

I began testing of the transmitter in hardware first. I did this mostly by assigning the transmitter clock
and transmitted data line to ports on the I/O banks and probing them with a scope probe. Initially, I
attempted to transmit data using the 65MHz clock used for the VGA and NTSC camera. However, I found
this clock was too fast and caused large amounts of noise in the data.

Next, I attempted to run the same code, but transmit using a slower clock. I found that dividing the
65MHz clock by a factor of 4 was sufficient to transmit the data with significantly reduce noise.

| 16

Figure 9 Transmission with a (left) 65 MHz clock and (right) ~16 MHz clock

To test the receiver, I also began by running simulations in ModelSim. To find whether the data was
being correctly received in hardware, I displayed the received data using the LED hex display. I
simultaneously displayed the data that was being transmitted on the LED hex display of the transmitter
labkit, then I could view if these values were matching.

Figure 10 Examples of Glitching NTSC Feed

| 17

4 | Improvements and Insights

NTSC camera and Color Recognition
One of the biggest insights we learned about the NTSC camera was the importance of power cycling.
Often when repeatedly changing code, even after making changes to the code unrelated to the NTSC
camera, the camera feed would unexpectedly glitch. This included problems such as overlaying the
entire feed with a purple hue, discontinuity in the frame, only half of the pixels updating, etc. After
much trial and error, we found the only way to correct many of these errors was to power cycle the
labkit and reprogram the FPGA. This problem caused much frustration throughout the course of our
work.

Additionally, we found that each NTSC camera was unique. This meant that we would need to calibrate
the HSV values corresponding to a color separately for each NTSC camera used. Initially, we assumed
that the HSV values that were sufficient to track a color for one camera would be the same for all NTSC
cameras. However, this is not the case.

Finally, we found that there was noise around the edges of the NTSC camera view. Near the center of
the frame, the center of mass could be calculated fairly accurately. However, near the edges of the
camera view, noise caused a greater amount of pixels to register as a match that were not actually
matches to the color we were tracking. Also, we found that the color tracking using HSV values were
sensitive to shadows, and the color tracking worked best when the colored object was completely flat,
allowing for no wrinkles in fabric or any similar disturbances to disrupt the color tracking.

COM to Maze
After integrating the transmitted data into the game logic, I found that the noise in the transmitted data
caused glitches that would affect the maze FSM logic. The data often would glitch and appear in the
finish area for a fraction of a second. However, this fraction of a second would cause the game to
recognize the player as having won the game. I believe this could have been fixed by averaging the
transmitted data, but this was unfortunately not implemented in the final version of the project.

Transmitter/Receiver
Due to noise in the transmitted data, the receiver requires allowance for a large error margin. For
example, transmission of a 1 corresponds to the data line being high for 16 clock cycles. However, at the
receiver end, it recognizes a signal as a 1 if it samples the data line being high for anywhere between 13
and 19 clock cycles. Originally, I tested the code with a 1 being received if the receiver samples between
15 and 17 high signals at the data line. Through trial and error, I found this range was too small.

Originally, I attempted transmitting the clock that the data was being transmitted at as well as the data
line. This way, I thought I would be able to sample the data coming in at the same clock speed that it
was being transmitting. However, with two separate lines being transmitted, this created cross talk
between the separate data lines. To fix this, I created a separate clock in the receiver that had the same
frequency as the transmission clock. This fixed the error of contamination in the data, but it also meant

| 18

that to change the clock speed, I needed to alter portions of the code in both the receiver and
transmitter project files.

Finite State Machine
While exploring different designs of preventing players from walking through walls, I had initially
created an algorithm that would more accurately and realistically determine valid locations. For
example, in the example provided by Figure 3, the valid path elements which would transition the player
out of the WARNING state would not be limited to those directly adjacent to the last valid location.
Instead they would also include all of the path elements between the current wall and the next wall on
the left. If this algorithm had been used, this would have allowed (0,0), (0,1), (1,0), (1,1), (2,0), and (4,3)
(with (0,0) being the upper-left-most element shown) to additionally be considered valid path elements.
In the final implementation of Invisimaze, I opted for the simpler algorithm that I described previously
because the significantly smaller cost of calculation outweighed the slight increase in accuracy I would
have achieved using the more complicated algorithm. The alternative, more accurate algorithm could be
better a choice if the maze grid was of a higher resolution (more grid elements per physical square foot)
and required a more accurate and realistic method of calculating when the player has walked through a
wall or not.

As mentioned previously, the warning countdown time can be improved by designing a reprogramming
option. This would allow players to choose how much grace time they are given when they enter an
invalid area, thereby increasing or decreasing the difficulty of the game in one facet.

A random number generator could be implemented to randomly select from the available maze maps at
the beginning of each new game so that players do not have to select from a predetermined number.

Another fun feature I thought of but did not implement was to have an ultra-difficult (”Arnold
Schwarzenegger”) mode where the maze map randomly changes on the player while they are playing
the game. This would add an extra layer of fun and challenge to the game for those who have mastered
it. In terms of implementation, all of the logic would remain the same and does not need any additional
modification (this has been tested by manually flipping the switches to choose a different map). The
only additional logic needed would be a pseudo-random generator and a more complex valid location
localization because the last valid location may not necessarily be valid anymore in the new maze.

Additionally, I learned that when you add two numbers together in Verilog, you must check that the sum
is not larger than the binary logarithm of either of the numbers, even if you appropriately size the
destination register or wire. This is because when Verilog adds them together, it temporarily stores it in
a register the size of the largest addend. This caused some glitches on both the camera and the logic
side.

| 19

5 | Conclusion

To conclude, we created a virtual reality maze game that a player could navigate through, albeit with
some glitches. If we were to continue work on this project, the largest improvements we could make
would be averaging of the transmitted data to reduce glitching, some form of correction at the edge
between the view of the two cameras, and fully integrating the audio component of the system.
However, it was very rewarding to see the system able to track the person’s location in the maze based
on color.

Working on this project allowed us to develop numerous valuable skills. Most importantly, it allowed us
both to become increasingly comfortable working with Verilog. Beyond this, it allowed us to learn a
great deal about color recognition, particularly the differences between representation of color in
different color spaces, and gave us more experience developing more complex finite state machines and
serial transmission protocol.

Overall, the opportunity to work on this project and complete the various 6.111 labs throughout the
term were great learning opportunities.

	TitlePage
	ZhangPavlick
	TitlePage
	Final_SPEZ
	2.1 System Overview
	2.2 Physical Setup
	3.1 A Word on Relative and Absolute Coordinates, and the Maze Grid
	3.2 Game Logic Libby
	Finite State Machine 0F
	NEWGAME State
	STANDBY State
	PLAYING and WARNING States
	JUSTWON and YOULOSE States

	Countdowns and Timers 1F
	Maze Map Selection2F
	Virtual versus Live-Action Play3F

	3.3 Hex Display and Binary-Code Decimal Converter4F Libby
	3.4 VGA Display5F Libby
	3.5 Object-Recognition and Tracking Stephanie
	NTSC Camera Feed to ZBT Memory
	adv7185 and ntsc_decode
	ntsc_to_zbt
	zbt_6111
	vram_display

	Color Detection and Center of Mass Calculator
	YCrCb2RGB
	rgb2hsv and divider
	color_detector
	center_calculator and divider_pipeline
	average_center
	com_to_maze

	Implementation and Testing
	Color Detection in HSV Space
	HSV Threshold Calibration Tool Libby
	Center of Mass Calculation

	3.6 Serial Transmitter and Receiver Steph
	Transmitter
	Receiver
	Testing
	NTSC camera and Color Recognition
	COM to Maze
	Transmitter/Receiver
	Finite State Machine

