Fpglappy Bird: A side-scrolling game

Wei Low, Nicholas McCoy, Julian Mendoza
6.111 Final Project Report, Fall 2015

1 Introduction

On February 10th, 2014, the creator of Flappy Bird, a popular side-scrolling game for mobile devices,
removed the game from mobile application stores (Apple, Android, etc.). The reason for the removal was
due to the game becoming “an addictive product” that had “become a problem” (Nyugen). Currently
Flappy Bird is only available to those who downloaded the game before its deletion from application
stores or through a fan-created website, flappybird.io.

This final project aims to implement this popular and exciting game in hardware. Previous
implementations of this game, such as the original mobile app or fan-created online version, exist in
software form. As a result, bringing this game into the hardware realm truly distinguishes our project
from previous implementations of Flappy Bird. In the preexisting software-implemented versions of this
game, a small bird must hop to avoid obstacles in the form of green pipes that scroll across the screen
from right to left. The user taps the screen or clicks a button to make the bird jump up, but otherwise the
bird is constantly falling. Due to the counter-intuitive control scheme, which required the user to remain
vigilant, constantly monitoring the bird’s path of movement during the game, Flappy Bird became
renowned for its difficulty and infuriating controls.

Our goal is to implement our own version of the game on an FPGA (Nexys 4 DDR) and make the game
more interesting and difficult by incorporating a vision-tracking element that requires the player to jump
in order to control the on-screen bird protagonist. Specifically, the vision-tracking component will look
for a bright object placed over the player’s face (a “beak” in the form of a paper party hat), and then use
the coordinates of this said object as input for the player coordinates to the game. Therefore, a large
change in the player’s vertical position, as monitored by the vision-tracking component, will trigger a hop
for the player’s on-screen character. By incorporating this vision-tracking specific control screen, player’s
movements will be continually tracked, resulting in greater emphasis on the player’s attention and
engagement within the the game. Additionally, during game play, the player’s face will be layered onto
the bird sprite, allowing for a truly personalized experience.

Stretch goals of this project include implementing our project on two FPGAs connected via serial link to
create a multiplayer experience and dynamic calculations that allow rotation of the bird sprite during
jumps. The ideal outcome would be to deliver an aesthetically pleasing and physically engaging game that
demonstrates successful implementation of the game integrated with the vision-tracking component.

2 Design

2.1 System Overview
The project can be visualized in four major blocks as shown in Figure 1: object tracking, gameplay logic,
audio, and video display.

]

_ Videoln Object Tracking Block

T L 2

Video Block

~

Button Input @ Game Logic Block

Audio Block

Figure 1: The high level design of the game

2.2 Design Decisions and Motivation

The primary motivation for this project is to make a well designed and physically engaging game that
emphasizes and personalizes user experience. Completion of this project requires full functionality of
every module. As a result, we require that each of the four critical blocks be independent of the others,
allowing for streamlined parallel development and comprehensive testing of the modules. For object
tracking purposes, the player is required to wear a “beak”, a brightly colored party hat over their nose and
mouth, similar to a mask. The purpose of the physical “beak” is to provide an object of high contrast that
allows us to easily determine the location of the player’s face (Figure 2 below). The vision-tracking
component will look for a bright object placed over the player’s face (the “beak”), and then use the
coordinates of this object as input of the player coordinates to the game. As a result, any large changes in
the vertical coordinates of the player will be detected as a jump control sequence, which will cause the
on-screen character to consequently jump within the game.

Figure 2: “Beak” on player face

At the highest level, the project will track the player’s face for vertical changes during gameplay and
output sound effects (Audio Out) and video graphics (VGA out) where relevant. Depending on the
player’s vertical movement, the game logic processing block will change and update the sound and
graphics. The vision/object processing block takes input from the OV7670 camera and processes the

incoming video stream to determine the location of the “beak™ and then sends the location coordinates to
the game logic block. The game logic block uses an input button to start the game, and uses a combination
of physics and saved previous player location states to determine when to jump. Additionally, the game
logic block handles the location of new obstacles, and controls the movements of the bird. If the bird
collides with an obstacle, it ends the game. The game logic then sends position data of objects,
specifically the player face and obstacle location coordinates, to the video block, and also tells the audio
block what sound effects to play. The video block takes input of the player face coordinates to be able to
retrieve the player face sprite from BRAM and also takes in the object positions to convert them into
image representations. All of this information is then sent over to VGA to be displayed. The audio block
plays sound effects based on events determined by the game logic.

FEGLARPY|

Figure 3: Setup Including FPGA, Camera, Beak, Speakers, and Monitor

3 Implementation
3.1 Vision (jmend)

Introduction What sets this Flappy Bird implementation apart from the original game is the use of

motion tracking as the main method of control. The purpose of the vision module was to take the data

stream from the camera and convert it to the position and velocity of the player. This data are then used

by the game logic module to evaluate when the player is jumping and when they are not. In addition, the

module will save the camera frames in BRAM to be used for the sprite of the player. The main goal of

this module was to do all of this as efficiently as possible, specifically using as little memory as possible.

We make the player wear a brightly colored beak in the form of a red paper party hat in order to reduce

the problem complexity to an implementation of blob tracking. The initial approach for this module

proved impractical, so it was replaced with one that was much more space and computationally efficient

partway through the project.

Initial Approach/Flaws The original idea for the vision module consisted of working with the RGB16
data directly, converting to grayscale and post-processing it afterwards to pick out the color and find the

center of mass (See Figure).

o | [e

Preprocessing

Thresholding

Noise Filter

/ Output /;

Kalman Filter

|——

Object Identification

Figure 4: Original Design

There were two big issues with this approach, noise and

computational complexity. Firstly, processing RGB data directly

results in a lot of color noise which required post-processing to filter

out. In the RGB color space, thresholding isn't as simple as
thresholding the RGB values individually to figure out if a color

matches, because an intensity shift in color causes diagonal

movement over RGB (See figure). The best approach to figuring out
if a color is close to the desired color involves taking the dot product

of the two.

White
{255,255, 255)

B
{0, 0,255

Figure 5: RGB Color Space

P-D

=cos 0
|P|D|

Where P is the vector of the current pixel and D is the desired vector (color). Even this approach
produced a lot of noise, though. Since we required post-processing of the data, this also required saving
and rereading from BRAM, as well as pipelining. Additional computational complexity of the problem
came from the multiplication, division and square root, which would have required multiple clock cycles
to calculate accurately enough.

New Approach The complexity of the first approach led to research into different approaches to the gray
scale step, this led to the decision to change the color space from RGB to YUV. YUV is most commonly
used to transmit video because it takes into account human perception and allows you to store data in less
bits as a result. The key feature for us is that it separates luminance (intensity) and chrominance (colors).
This means that changes in intensity will result in a 1-dimensional shift in the YUV color space, so simple
thresholding can be used to pick out colors. In addition, this feature of the YUV color space means that
there will be less false positives. So there will be a natural reduction.

Wi, equasy s, de

Onginal Image Luminance (¥) Component Chrominance (U) Component Chrominance (V) Component

Figure 6: YUV Color Space Example

Implementation of New Approach With the new approach, the new goal was to process every pixel the
same clock cycle it was streamed from the camera. This meant the actual vision tracking module would
require no bram, other than saving the frame for the video module. Doing this involved a few

optimizations.
/ Camera / / Frame /

Preprocessing »| Thresholding Center of Mass

{ Output /

Figure 7: New Design

With the new approach, the preprocessing and thresholding steps happen together, and the center
of mass calculation occurs at the end of each frame. We decided to keep the camera outputting 16-bit
RGB values, and doing the conversions to YUV ourselves, because it would allow for more precision
than what the camera's 8-bit YUV output would give. To greatly reduce noise, we decided to change the
gains on the camera's output to make red (the tracked color) stand out more. The preprocessing module
simply consisted of doing the RGB/YUYV conversion.

0.299 0.587 0.114 R Y
—-0.169 —0.331 0.500 G|=|U
0.500 —-0.419 —-0.081 B V

Figure 8: RGEB to YUV Conversion

The issue with the exact conversion was that it required floating point math, to get around this, we
approximated the matrix to

1/4 1/2 1/4\ (R Y
1/4 —1/2 1/4 | |G| =|U
1/2 0 -1/2) \B 1%

Figure 9: Approximated Conversion

so the conversion simply consisted of some addition and shifting, which was very possible in one clock
cycle.

The center of mass calculation involved taking the mean of all the pixels which were part of the
cone. To do this while streaming, whenever a pixel was within the threshold we added it's x and y
coordinates to sumX and sumY. So if a pixel as at (320, 42) and was within threshold, then sumX =
sumX + 320 and sumY = sumY + 42. After a frame was done, we calculated the means of both by
dividing by the total number of pixels which were within threshold.

Another key difference between this approach and the original one was the decision to leave out
the Kalman Filter. With RGB processing, it would have been necessary to have a Kalman Filter because
otherwise, the false positive pixels would have created substantial noise, enough so that a jump might be
registered when a player was simply standing still. The Kalman Filter would have fixed this issue. After
implementation, two things led me to drop the Kalman Filter all together. Firstly, the new implementation
had virtually no noise, and few false positives. Since players could stand still and the calculated position
would stay within +/- 1 pixel, it seemed fine. Additionally, this noise ended up being key, as the
randomness of it was used in the game logic module as a random bit generator.

Simulation Examples To test out the algorithm, I implemented it in python using the skimage, scipy and
numpy packages. This implementation was several orders of magnitude slower than the final
implementation on the FPGA, but it’s purpose was to confirm that the approach was valid, not to match

the efficiency of the parallelized FPGA. To test out the
algorithm, I used a cone image (see figure), which I put through
several iterations of the algorithm.

The first thing I attempted was to use my original, naive
approach. This simulation disregarded the computational and
space complexities of this approach. Additionally, since I was
using a static image, I didn’t include the Kalman Filter which
was intended to be in the original approach. What I found from
this, was that even using the dot product to calculate the
“closeness” of two colors, there were still a lot of false positives.
In this image, they wouldn’t impact the center of mass
calculations substantially, but in the real world there would be
much more noise and the beak would be a much smaller portion
of the overall screen, so the noise would be substantial. (See
figures 11 and 12)

The next step was to simulate the YUV approach. Similar to the
actual implementation, the simulation used only one loop
through all of the pixels, calculating the YUV value,
thresholding and doing the center of mass calculations all
together. There was no noise reduction or additional passes to the pixels. There are two figures, one in
which I made educated guesses on the thresholds. The second was a result of refining the thresholds for
better results. One key feature of this image is that even with the expanded threshold values, the amount
of noise was still substantially less than with RGB.

Figure 10: Original Cone Image

Future Goals If [were given more time to do this project, I’d focus on adding two things: support for
more colors and replacing the current RGB to YUV conversion with one that is more accurate and uses
floating point math. For adding new colors, the changes would just have to be in the parameters, so it
would simply involve going into lab with different color beaks and trying out different configurations and
thresholds to optimize for desired colors. In addition, this would require creating at least two modules to
change the parameters on the camera and for the thresholds.

Replacing the RGB to YUV conversion would require pipelining because of the floating point
math operations, but this would simply delay the output, and wouldn’t require adding more steps to the
process. Since the time between frames is substantial, there would be virtually no loss to tracking data,
and this change would allow for more accurate color representations in YUV. The end result of the
increased color fidelity is that picking out colors would become easier, and more robust. In addition, this
would mean that the need for optimizing the camera’s color output to the desired one becomes more
unecessary.

Figure 11: (RGB) Post Grayscale Figure 12: (RGB) Post Thresholding/
Noise Filtering

Figure 13: (YUV) Guessed Threshold Figure 14: (YUV) Refined Threshold

3.2 Game Logic (weilow)

3.2.1 Introduction The gameplay will be similar to that of the original Flappy Bird in that the goal of the
game is for the player to avoid colliding with generated onscreen obstacles. The purpose of the game
logic block is to handle all aspects that make a game playable, such as the different state transitions and
physics that occur during gameplay. Specifically, the game logic block handles the obstacle location
generation, collision detection, movement physics and score tracking. This block will take in inputs in the
form of player position (x, y coordinates) and signed velocity (change in player position) from the vision
block to make the decision of whether or not the player has jumped. Depending on the state of the game,
the game logic block outputs enable bits controlling various game sounds to the audio module.
Additionally, the game logic block will output the locations of the generated obstacles and the location of
the player bird sprite after physics manipulation to the video block.

3.2.2 The Process

In my initial approach, I accounted for only three modules: gamestate, physics and highscore. However,
as I began implementation of these modules I realized that my original design was flawed in that it did not
account for the complexities that come with randomly generating obstacles, different clock domains or the
complexities needed to create smooth player (bird sprite protagonist) movement.

As a result, I needed to redistribute the functionality between modules and devise a different hierarchy
that would allow me to use different clock domains for different functions, while ensuring that the overall
game play is unaffected. For example, the player bird sprite location updates at a different rate than the
obstacle location updates. In response to this need to update aspects of the game at different rates, two
different clock domains were used for this project - the vga’s outputted vsync domain, which was used in
the obstacle_gen module and the default 25mhz clock, which was used for all other modules. The vision’s
VSYNC_C, one_hz signal and sixty hz signals were used for the updating of previous player coordinates
in the physics module, for the countdown (in seconds) in the timer module and for the computation of bird
locations respectively and were therefore not utilized as clock domains.

Finally, because we are only interested in the high score in the current running instance of Fpglappy Bird,
we need only store the top score achieved. Since the maximum score would be a max of 2 digits long,
there was no need to retrieve/save the score by writing/reading to an SD card. Instead, each time the
player loses the game, the score achieved is sent to the video block, which outputs the maximum of this
currently achieved score and the previous score. By eliminating the need for an SD card, we eliminated a
layer of processing that would come from reading/writing from the SD card, reducing the possibility of
delays/lag time during gameplay. Since a high score specific module was no longer needed, I simply
added scoring capabilities into the obstacle gen module, since within that module I would already have
access to all obstacle locations. As a result, the final breakdown of modules within the game logic block
are as follows: gamestate, physics, collision detection, obstacle gen, timer, randombit, onehzstart and
sixtyhzstart modules (see figure 15 on the next page). Additionally, a listing of all modules and their
respective inputs and outputs are included in Table 1 on the following page.

Player loc + ve

Button Input

- VGA vsync

|

Game State

Bird location

|
Obstacle Location ~

Audio enable >

High score en

Vision VSYNC_C
- / 4 A 4 [
Obstacle Physics
eneration
randombit g
Collision
Detection
1lhzstart 60hzstart
Physics

Figure 15: Updated Game Logic Block

Module

Inputs

Outputs

gamestate

clock (25mhz), start, reset, jump,
collision, expired, one hz

hs_enable, home_enable, updatepos, pause, reset_physics, reset_score,
reset_collision, sound_collide, sound jump, sound background, start timer

[3:0] state

obstacle_gen

clock (vsync), updatepos, reset_score,
reset_physics

[3:0] randbit

obslen, obs2en, obs3en
[6:0] score

[9:0] obs1x, obsly, obs2x, obs2y, obs3x, obs3y

collision_detection

clock (25mhz), updatepos,
reset_collision, obslen, obs2en, obs3en

[9:0] bird_x, bird_y, obslx, obsly,
obs2x, obs2y, obs3x, obs3y

collision

physics clock (25mhz), updatepos, reset_physics, | jump, prev_enable
sixty hz, frameupdate, up,
[19:0] diff,
[9:0] player_x, player y,
signed [10:0] signed y vel [9:0] bird_x, bird_y, prev_player locx, prev_player locy
timer clock (25mhz), start_timer, one_hz expired
[2:0] countdown
randombit clock (25mhz) [3:0] randbit
[9:0] player x
onehzstart clock (25mhz) one_hz enable
sixtyhzstart clock (25mhz) sixty _hz enable

Table 1: List of Modules, Inputs and Outputs for Game Logic Block

3.2.2.1 Game State Module
The game state module handles the different states within the game, which will be: START, PLAY,
PAUSE, LOSE.

—p after 5 seconds

I

BTNC assert
assert

BTND \(

assert

BTND
assert

Figure 16: Game State diagram

Within the START state, the game’s default screen will load, bearing the game title. Upon pressing
BTNC on the Nexys , the PLAY state will begin.

During the PLAY state, the player’s face will be displayed in sprite form and no obstacles will be
displayed on the screen. However, once the player jumps, then the obstacles will begin generating on
screen. At each jump that the player makes, a jump sound will be played. If at any point during the PLAY
state, the player presses BTNC on the Nexys, then the screen will have a red filter effect and all objects
will freeze in place. If at any point the player’s bird sprite hits an obstacle during the PLAY state, the
game will transition to the LOSE state. When a collision occurs, the collision sound will also play.
Finally, during the PLAY state, the player’s accumulated score will be displayed on the 7 segment
display.

Within the PAUSE state, if the player presses BTNC again, then the game will pick off from where the
player left off.

Within the LOSE state, the highest score obtained so far will be displayed on the screen. the game will
wait 5 seconds before transitioning back to the START state or the player can simply press BTND on the
Nexys to simply reset the game to the START state.

3.2.2.2 Physics Module

Since the game has a scrolling background and obstacles are generated on screen from right to left, the
player bird sprite has a fixed horizontal coordinate, the player’s jumps only impact the onscreen sprite’s
location in the vertical direction. Keeping this movement in only one dimension eliminates the need to
perform rotations and smooth out the x-y translational motion via interpolation, reducing the complexity
of calculations and ensuring that all needed calculations to produce the updated sprite position can occur
within a single clock cycle.

My original concept for movement physics lead to a very staggered and choppy behavior. Before, on a
valid input jump, I would update the player bird sprite location by subtracting 10 from the value of the
previous_player y coordinate each 25mhz clock cycle. If no jump occurred, then I would simply subtract
5 from the value of the previous_player y coordinate. Since by convention the top left corner of the
screen has coordinate (0,0), a vertical translation up results in a decrease in numerical value and a vertical
translation down results in an increase in numerical value for the coordinate. This approach lead to a
linear movement path, where the player bird sprite’s location would either increase or decrease by some
set value (See figure below).

Figure 17: Linear Movement Path

As aresult, I had to change my approach by instead updating the bird_y coordinate based on first
calculating a velocity value that updated on a 60hz clock cycle. By doing this, I could impact the
translational change in the bird y coordinate in a quadratic function, resulting in a better simulated
movement path when jumping and falling. To do so, I used two constants, VELOCITY UP =220 and
GRAVITY =-11, where VELOCITY_UP represented the velocity to be applied in the event of a player
jump and GRAVITY represented the gravitational constant affecting the player’s movement and set the
initial velocity to 7, a value that was arbitrarily picked. Finally, by only updating the bird y coordinate
every time the velocity value calculated reaches a multiple of 48, I was able to increase the precision of
bird sprite movement, completely eliminating staggered changes in bird sprite position. Therefore, the
sprite’s movement no longer jumped from one spot to another in a linear fashion, but rather in a quadratic
fashion (see figure 18 on the next page).

Figure 18: Quadratic Movement Path

In the presence of a jump, the formula for velocity was: velocity = VELOCITY_UP. In the presence
of no jump, the formula for velocity was: velocity = velocity + GRAVITY. The formula for
bird_y coordinate change was: bird_y <= bird_y -velocity/48, in the event the bird did not
reach the top or bottom edge of the screen. If the bird reached the top or bottom edge of the screen, then a
collision would be detected and the player would lose the game, removing the need to continue to update
the position of the bird sprite.

3.2.2.3 Collision Detection Module

For the collision detection module, the implementation was quite straightforward, essentially I needed to
check if the bird ever went beyond the bounds of the output VGA screen or if it collided with an obstacle.
Since the bird’s movement is restrained to only the vertical axis, it will never surpass the left of right edge
of the screen. When calculating collisions, the size of the bird must be taken into account. For Fpglappy
Bird, the bird coordinate refers to the top left corner of the sprite. Since the size of the bird is 64x64
pixels, collision detection must take into account the entire size of the bird. Therefore, if bird_y + 64
>= 505 orbird y <= 42, then the bird has surpassed the bounds of the screen and the collision bit is
set to 1. The other time a collision occurs is if the bird collides with an obstacle. This is calculated by
checking if the bird sprite fits within the gap contained within the pipe obstacles (refer to Figure 24 in the
Video block section, 4.3). Since the obstacle coordinates are generated with the convention of the top left
corner of the empty space between the pipes, which is essentially the rectangle between the top and
bottom portion of the pipe obstacle in which the bird may pass through, we are able to check if the bird
fits within the bounds. So, a collision also occurs if (bird x + 64 >= obstacle_x and bird x

< obstacle_x+obstacle_width) and (bird_y < obstacle_y or bird_y+ 64 >
obstacle_y+obstacle height).

3.2.2.4 Randombit and Obstacle Generation Module

To generate pseudo-randomized obstacle locations, I originally designed the randombit module to output
a number between 1 and 10 using the $random variable. However, the flaw in the utilization of this
$random variable was that I quickly found out that $random only works in simulation, not in physical

hardware. I then had to devise an ulterior method of generating pseudorandom bits to use in the obstacle
generation module. Since the player’s location coordinates change once every camera frame (even if they
are standing still, there are still natural slight movements that occur), it seemed reasonable for me to take
the 4 least significant bits from the player x position and use them as my pseudorandom bits, resulting in
an output of randbit [3:0] from the randombit module.

For the obstacle generation module, there were two important tasks I needed to accomplish. The first was
that there can be at most three obstacles onscreen at a time and that they should all be the same distance
apart. That is, the obstacles should be spaced out evenly on the screen to give the player a reasonable
buffer to change position their vertical position (e.g. if a player needs to go through an obstacle that has a
low gap location and then immediately through an obstacle that that has a high gap location - see figure
24 in section 4.3, the Video block section). The convention for obstacle location generation was that the
obstacle x, y coordinate corresponds to the top left corner of the valid rectangle between the top and
bottom portion of the obstacle pipes, that the player bird sprite can pass through. As a result, the x
position of the obstacles need to be generated at a constant rate and therefore cannot be randomized, since
gameplay requires the player to be able to see obstacles moving from the right to left side of the screen in
a predictable and steady rate. Therefore, in the obstacle generation module, the vsync clock domain from
the Lab 4 vga module was used. This was to ease the updating of the x positions of obstacles and ensure
they obstacles moved one pixel to the left at each positive edge of the vsync clock. The second component
was the fact that the y position of the obstacles however, needed to be generated pseudorandomly, as the
game would be quite boring if the player saw the same three obstacle gap heights at the same positions.
Taking in the 4 bit wire randbit from the randombit module, my formulas for generating the y component
of each obstacle were as follows:

obsly <= (randbit[2]==1'b0)? 200+(randbit*10):300-(randbit*11);
obs2y <= (randbit[@]==1'bl)? 300-(randbit*7):125+(randbit*2);
obs3y <= (randbit[3]==1'bl)? 300: 50+(randbit*3);

Such that there were 16 different y coordinates that could be generated for obstacle 1 and 2 each and there
were 9 different y coordinates that could be generated for obstacle 3.

Finally, the obstacle generator module was also responsible for keeping track of the player’s score thus
far. Since I would already have access to all of the obstacle locations, I could simply track if an obstacle’s
has moved far enough to the left past the bird_x coordinate that no collision would occur. Essentially, a
+1 was added to the running score count whenever one of the obstacles had an x-coordinate equal to 135.
This is due to the fact that the bird x coordinate is at 200 and since the obstacle has a width of 64, the
obstacle’s x coordinate must be less than 200-64, which means it must be less than 136.

3.2.2.5 Timer Module, Onehzstart, Sixtyhzstart Module

The purpose of the timer module is to simply countdown 5 seconds when the player loses the game. This
countdown serves as a delay between the player losing and then restarting the game itself, allowing the
high score to be displayed onscreen. This timer module was an edited version of the one I developed for

Lab 4, where instead of having multiple possible timer delay values, there was only one preset one for 5
seconds.

The purpose of the onehzstart module was to serve as a clock that asserted every one second, which was
necessary for the timer module. The purpose of the sixtyhzstart module was to assert 60 times a second,
and serve as an input clock for the physics movement.

3.2.3 Testing Procedure

To test the various functionality of the timer, onehzstart, sixtyhzstart, randombit and collision modules I
wrote testbenches (included in the gamelogic tb.v file) that checked that modules worked as predicted.
For testing the gamestate module, namely the transitions between the various states and to make sure the
correct bits were enabled, I used the buttons on the Nexys to represent state transitions and utilized the
LEDs to represent various output bits, such as the collision and jump sound enable bits. To test the
physics module, I first had to integrate my physics module with Nick’s video module. Then, I ran the
code on the Nexys with a VGA monitor output to check that the jump and fall movements of the bird
sprite looked smooth (as in the translational pixel updates occurred at a reasonable rate). To handle the
case of whether or not obstacles were generated in the proper locations and moved at the correct rate, |
made sure my obstacle generator module and Nick’s video module were integrated. Then, I tested the
obstacle generator module on the Nexys with the VGA monitor output to check that my generated
obstacle locations were correct.

3.2.4 Improvements/Future Iterations

If I had more time, I would want to generate a true random number generator in hardware that would
increase the randomness in the obstacle locations. Since I used several bits pulled from the player location
given by the camera, I did not have as much range in variety as I would have hoped for. Although Vivado
has a $random variable, that works in simulation, it is not implemented in hardware, which I learned
much later when I attempted to generate obstacles using the $random variable. Another factor I would
want to add would be varying levels of difficulty, selectable through the Nexys input switches. On higher
difficulty levels, the speed at which obstacles move across the screen from right to left would increas,
adding for added difficulty to the game. Overall, I was quite satisfied with the game logic block, including
overall flow of gameplay.

3.3 Video (nmccoy)

The video block will perform all necessary operations for displaying the game’s state. This should
provide the user with an interface as intuitive and aesthetically pleasing as possible. To do this, objects are
displayed on the screen, represented by custom sprites that are stored in memory. For the gameplay itself,
a sprite pipeline takes in the locations of every object from the game logic module, then places sprite
images at these locations, laying them over a scrolling background. In addition to the main gameplay,
there are other screens involved. An opening title screen (Figure 19) is displayed at the start of the game,
which is also stored in memory. A high score screen displays the game’s highest score as a two-digit
number (in case anyone ever manages to score two digits) after the player loses. A pause screen applies a
red filter to the image and pauses the scrolling of the background to represent the paused state.

Figure 19: The Startup Screen

The inputs to this module are the object locations, vga hcount/vcount, enable bits for the various screens
(startup, high score, pause), and an access port to the camera’s memory. The output is the RGB value to
be displayed at the current pixel.

The main sprite pipeline is formed around many sprites representing the various objects that can appear
on the screen. As shown in Figure 20, it uses many different images, which are each stored in a
synthesized IP ROM. These ROMs are preloaded with the values corresponding to the images they are
meant to display (more on this later). Each sprite is passed its x/y location, as well as the h/v count from
the VGA signal, and determines what value to make the pixel. If the current location does not overlap
with this sprite, or if we are in a transparent area of the sprite, the pixel remains unchanged from the
previous stage.

Camera
Pixel
Memory

Number Map IP ROM

B
Face Sprite A

Interface High Score Logic

A

WNod Ay
uoneso|

e
uoneso|

[Red
Pause Pixel O
Filter

Object Locs
= {
VGA h/v count

enable

unod afy
uoneso|

Obstacle Scrolling
1 2 Background

Obstacle Sprite IP ROM Background IP ROM

Figure 20: Video Module Block Diagram

The sprites were designed in Microsoft Paint, and saved as a PNG image. [modified a Matlab script to
generate .coe files off of these images, before realizing that 6.111 provided a similar script on the website.
These .coe files store an uncompressed bitmap of the image they represent, in 8-bit (3/3/2 1/g/b) color. In
their synthesized ROMs, the address input is {ycoord,xcoord}, where each combination of input bits
corresponds to exactly one pixel of the image, and the output is 8-bit pixel. The ROMs were configured
with their specific .coe files, then synthesized in an out-of-context module so they would not have to be
rebuilt every single time.

The obstacles had multiple measures added to minimize the amount of space they take up in the
implementation. One measure that greatly decreased their size was storing the entire pipe as a single
64x32 pixel image (Figure 21). This contains the head of the pipe, and a small section of the straight part.
The straight part of the image repeats the same line of colors for every row, so with a little logic sprite
module can just reuse the last line and use a small fraction of the pipe. Additionally, the top sprite is just
the mirror of the bottom sprite, so another bit of logic cut the memory requirement in half again. Finally, a
single synthesized ROM could be used for all three possible obstacles. Although they can all be on the
screen at once, they will never overlap, so we can use our current hcount/vcount to determine which

Figure 21: Stored Section of Pipe Sprite

obstacle sprite to grant access to the memory.

The high score logic needs to convert a binary score into an hexadecimal score to display for the player.
We can do this by using a special mapping file to convert a 4-bit number to a pixel mapping for display. |
made a custom character map where each hex number 0-F gets an 8-bit wide section of the mapping
image. It takes either the high or low 4 bits of the score, scales them, and adds them to the address to get
the desired character for displaying. It shares the same character map file between the two digits in a
similar way to how the pipe file is shared between three sprites.

Figure 22: Number Map in Action

The scrolling background comes from a stored sprite, but it is not displayed in a 1:1 ratio. Instead, it
divides the the hcount and vcount by 4, increasing the size of the pixels but cutting the amount of memory
used to 1/16. Not only does this save memory, but it also mirrors the aesthetic of the original Flappy Bird
game. Saving memory is crucial, as the sprites all need to fit in the ROM of the FPGA in order to get
single-cycle access for VGA display. Even with the pixel quadrupling, the sprite was still undersized, so it
was designed to loop continuously horizontally. Vertically, the top pixel (blue sky) is extended upwards,
similar to how the pipe sprites worked. For the scrolling itself, the vsync clock is divided, and the
background shifts by one pixel for every 16 frames. The main location is shifted by one display pixel,
rather than one image pixel, creating a smooth flowing effect (4 subdivision per image pixel) rather than a
block jumping effect.

Figure 23: Background Sprite

The face sprite is a special case. Unlike everything else, it does not come from a generated IP ROM.
Instead, it looks up pixels in a RAM that is used by the camera. The vision module updates it with the
image every frame, so it will always contain the latest camera image. The sprite pipeline has access to the
x and y coordinates of the player from the vision tracking, so it uses these to extract the sprite around the
center of the player’s face. I also added a scale factor parameter so we could choose how zoomed in/out
the view of the player’s face is.

In Figure 24, you can see the final product of the gameplay screen. The section of the camera image
around the player’s face is extracted and zoomed to create the game sprite. Multiple pipes appear on
screen at once, using the same ROM. The background uses pixel quadrupling to save memory and create
a similar pixelated background effect to the original Flappy Bird game.

it i
SRR R H
8 |

Figure 24: The Gameplay Screen

The Process

Initially, the plan was to first implement this module with simple shapes, and then later add the sprite
textures. However, I wanted to figure out how generated IP ROMs work, and ended up getting it working
with those first. Once the key elements of the sprite pipeline were completed, I could test each element by
wiring the coordinates to the switches on the Nexys, then move them around to see if it responds as
expected.

One element I had trouble with in this section was the getting the .coe files for the ROMs generated.
Unfortunately I didn’t realize there was already a Matlab script posted on the course website, so I spent a
lot of time trying to get a different one working. This one converted PNG files to 8-bit .coe pixel maps.
However, I eventually discovered that it only worked with pixel dimensions that went in powers of two.
This was frustrating at first, but was easy to work around as most of the sprites went by powers of two

anyway.

One frustrating problem to be noted for future projects is getting the vga to properly synchronize. At one
point, I forgot to take into account the at display area bit. This bit, generated by the vga module, is 1
whenever the hcount/vcount corresponds to a valid part of the display, and 0 otherwise. If it is not used,
and colors are output for the entire frame, it will not sync properly with the monitor, and positions/colors
will shift in a seemingly random fashion. This was very frustrating to debug, and would be a good thing
to keep in mind while debugging VGA signals.

3.4 Audio (nmccoy)

The audio block controls the audible components of game actions. In this case, we decided to implement
jumping and crashing, as these are the two sounds from the original Flappy Bird game. In order to make
this modules as simple as possible to the outside, taking on two bits to control. Each bit represents one of
the sounds, and the module will play the sound entirely if the input is a asserted for at least one clock
cycle. The sound files themselves are stored in generated [P ROMs, and the current values of each sound
are added together and sent to the DAC for output. The block diagram for this module is in Figure 25.

Crash Sound IP ROM

Crash Enable Crash Timer

Value

Jump Timer

Jump Sound IP ROM

Figure 25: Audio Module Block Diagram

This module presented another challenge for optimizing memory usage. We did not want to use the SD
card in order to avoid unnecessary complexity, as we knew we could fit everything in hardware if we
optimized. I created some sound effects using existing sound samples, and experimented with them in
Audacity. I realized that I could lower the sample rate of the sounds to 8khz and the bit depth to 4 bits,
while still having them sound as desired. This greatly reduced the amount of space they take up in the
ROM. I used the given Matlab script to convert these sounds to .coe files, and created ROMs for them
where the address is the index of the sample and the output is the value for the DAC.

A timer module was created to interface with these ROMs. The module is effectively a wrapper for the
ROM file itself. It takes in a parameter for the length of the sound file (in samples), and plays through it
once when the input is asserted. A clock divider generates an 8khz clock that is shared between these two
modules for progressing through the samples.

The Process

This section can easily be tested independently from the others, as it requires only two bits of inputs. The
two enable bits were mapped to buttons on the Nexys so the sounds could be played on demand. I started
with a simple sine-wave file loaded into the ROM. After confirming that the logic worked, the sine waves
were replaced with the actual sound effects. Integration of this module with the others was fairly
straightforward, as the interface is not complicated.

4 Conclusion

Implementing this game in hardware was an enjoyable project for all of us. It paired a fun final product
with a challenging implementation, an ideal combination for a project in this class. The work was
modular and divided well between three people, so we could optimize the division of labor. Our goals
were achievable, and we accomplished what we wanted. Overall, this project helped all of us gain
experience working with hardware implementation and interfacing with the outside world.

5 Resources

Besides the provided Nexys 4 FPGA board, OV7670 camera, and lab station complete with logic
analyzer, we used Github to regulate version control since three people worked in parallel for this project.
Additionally, our object of high contrast is in the form of a solid red conical party hat acquired from
Amazon.

6 Citations
Nguyen, Lan Anh. "Exclusive: Flappy Bird Creator Dong Nguyen Says App 'Gone Forever' Because It

Was 'An Addictive Product." Forbes. Forbes Magazine, 11 Feb. 2014. Web. 10 Nov. 2015.

7 Appendix

This section contains a listing of the Verilog files and modules generated for this project
I. fpglappy.v (all)
II. vision.v (jmend)

II. gamelogic.v (weilow)

IV. spriteline.v (nmccoy)

V. audio.v (nmccoy)

VI. gamelogic tb.v (weilow)
VII. vga.v (jmend - Lab 4)
Various .coe files used for audio and video ROM initialization (nmccoy)

