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Abstract 
 
The FPGA DJ system is a music synthesizer capable of taking in two audio signals via a 
3.5 mm jack, processing them in real time, and mixing them to produce a single 
handcrafted output consisting of surround sound and an LED volume display.  The user 
has the ability to select the processing effects of the two audio signals individually, 
including both time and frequency effects - namely echo, reverse echo, filtering, and 
equalization.  The user can then custom mix the processed signals to produce a unique 
audio output to the surround sound speakers via an AC97 audio codec, either selecting 
to output just one of the processed audio inputs, a weighted addition of the two 
processed audio inputs, or one of the processed audio inputs controlled by the 
beat/volume of the opposite audio input. 
 
Our project is exciting because we wanted to learn about and implement signal 
processing techniques, and because all of the effects and synthesis occur in real time 
with minimal delay.  Additionally, the system is not preprogrammed with effects - it 
allows the user to choose from a wide array of processing techniques, mixing and 
matching them in a variety of different combinations, adding a great layer of complexity 
and potential to the user experience and the system itself. 
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High Level Block Diagram - Alex and Madeleine 
 

 

Fig. 1 System Block Diagram 
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Major Modules - Alex and Madeleine 
 
AC97 Audio Codec -Alex 
 
The AC97 audio codec serves as the input and output of our system. Via the RCA inputs 
on the labkit, we receive the analog audio signals from the desired audio source. The 
codec then performs an A-D conversion on the the analog audio signal, transforming it 
into a stereo output consisting of two 18 bit digital audio signals. At a speed of 48kHz 
these audio signals are then presented to the system along with a ready signal which 
signifies when the data is ready and when the AC97 is ready to receive data for output. 
This ready signal is used in many of our modules as a clock with which we increment 
audio samples through the system. 
 
Setting up the AC97 in this manner was done by taking the modules given in Lab 5 and 
modifying some of the register bits sent to the codec during initialization, thereby 
transforming it from an 8-bit monaural source to an 18-bit stereo source. Following all 
of our processing, the resulting 18-bit stereo signal is presented back to the AC97 on the 
ready signal where it is then  transformed back into an analog output and played 
through a pair of speakers. 
 
Processing Module - Alex and Madeleine 
 
 
Time Module - Alex 
 
The effects carried out in the time module are time based and implemented utilizing 
feedback or feedforward paths around a delay block. The delay block is implemented via 
BRAM, performing the function of a circular buffer. As new signal data comes in it is 
written to an address in memory directly behind the location currently being read. Only 
once the read pointer passes through the entire BRAM address space will it read this 
new data, thereby creating approximately a 350ms delay. As built, it is capable of 
generating reverse echo or continuous echo, or both.  
 
When reverse echo mode is activated, an attenuated version of the incoming signal is fed 
around the delay block directly to the output, creating a quieter copy of the actual signal 
playing ahead of the full volume version. In continuous echo mode, the output of the 
delay block is given an attenuated feedback path to its own input. As a result, the signal 
that comes out repeats a fixed amount of time later, at a quieter volume on top of the 
normal signal. This continues for many cycles until the attenuation fully decays the 
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echo. The user is able to actively adjust the attenuation factor along this continuous echo 
path, allowing for a wide range of echo longevity and intensity while the audio is 
playing.  

 

Fig. 2 Reverse Echo System Diagram 
 

As mentioned, the continuous echo and reverse echo can be used alone or in 
conjunction with one another. When used together, the result is very similar to a 
reverberation effect as many differently delayed versions of the same sound play next to 
each other. This can either be overwhelming or can greatly enhance the sound of certain 
songs. Because of how the effects are implemented, transitions between them are 
seamless in the sense that there is no cut in the audio, rather the effect either comes in 
or fades away on top of the unprocessed audio signal.  
 
From the perspective of the user, transitions between the effects are implemented by 
flipping switch 0 to on, in order activate continuous echo, and/or by flipping switch 1 to 
on, in order to activate reverse echo. These effects only are fully activated after the 
corresponding switch has been flipped and the user hits the enter button on the labkit. 
Whether the continuous echo is on or off, its attenuation factor can be controlled by 
hitting the left and right button on the labkit. This allows the user to prepare either a 
weak or strong attenuation factor prior to activating the effect. In any of the possible 
modes that the user sets up the time module, the final time processed output is then 
sent onto the frequency module as two 18-bit stereo signals once more. 
 
Frequency Module - Madeleine 
 
The frequency module takes as input the 18-bit audio data passed in from the time 
processing module, performs filtering and equalization on the audio signal, and outputs 
the 18-bit audio along with 56 bits of frequency data to the mixer for audio output to the 
AC97 Codec with custom volume control as described in greater detail in the mixer 
module. 
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Fig. 3 Frequency Module Diagram 
 
The frequency module consists of a high level module that instantiates six different 
401-tap FIR filters and their coefficients (along with one all-pass filter to add a delay to 
the original signal to realign the phase for equalization), effectively dividing the audio 
signal into six different frequency bins.  The frequency module then passes this data to 
an equalizer submodule that enables the user to select the effects they desire, e.g. 
boosting the bass in a song to make it more acoustically appealing.  The labkit user 
interface is designed such that the user has a high degree of freedom in terms of what 
he/she wishes to hear.  The frequency-based effects that can be selected range from 
outputting the original untouched audio signal to outputting the audio of just one of the 
frequency bands or, perhaps most importantly, outputting an equalized audio output - a 
weighted combination of the various frequency bands as selected by the user via buttons 
on the labkit.  This feature provides the user with the ability to boost the frequency 
ranges of songs that they deem most desirable and pleasing to the ear. 
 
As mentioned above, the frequency module instantiates six individual filters with 
differents sets of coefficients to perform the digital filtering for each frequency bin.  The 
individual filter module is a 401-tap FIR filter that takes an 18 bit audio signal in the 
time domain as input at each ready pulse and returns an 18 bit filtered audio signal as 
output.  The filter is designed to amplify a specific frequency range while attenuating all 
frequencies outside of this range.  Thus, with a 48 kHz ready pulse and a 27 MHz clock, 
we use 401 out of the 562 available 27 Mhz clock cycles that occur between ready pulses 
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to perform the filtering (we perform one multiplication on each clock cycle before 
adding the weighted samples).  I divided the audio spectrum into the following 
frequency ranges: 

- below 120 Hz (low bass) 
- 120 Hz - 260 Hz (mid/upper bass, male voice) 
- 260 Hz - 600 Hz (lower midrange) 
- 600 Hz - 1200 Hz (mid range) 
- 1200 Hz - 4 kHz (upper mid range) 
- above 4 kHz (high frequencies) 

 
Shown below is a Matlab plot of my 401-tap FIR filter with a 120-260 Hz passband, 
which I generated to ensure the validity of the FIR coefficients.  The coefficients have a 
gain of 1024 (10 bits) to avoid floating point arithmetic in Verilog, and the x-axis in the 
plot below has frequency normalized by the Nyquist frequency 24000 kHz.  Thus, the 3 
dB point cutoff is now 57 dB - lining up neatly with specified 120 and 260 Hz (0.005 and 
0.011 normalized) cutoff frequencies. 
 

 

Fig. 4 Magnitude and Phase Data of 401-Tap 
FIR Filter: Passband 120-260 Hz 
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The implemented FIR filter design is based off of the 31-tap FIR filter described in 6.111 
Lab 5; coefficients are stored in ROM and a circular buffer is used to store the 512 most 
recent audio inputs.  However, there two main differences.  Firstly, I use 401 taps rather 
than 31; 31 taps is not nearly enough data to produce a filter with sufficiently high 
precision at the low bass frequencies that we care about for music.  Secondly, Lab 5 uses 
the 8 MSBs to perform the filtering and scales up by a factor of 10 bits (to avoid floating 
point arithmetic in Verilog) to obtain 18 bits.  This technique does not produce audio of 
sufficient quality for our purposes, which I resolved by using a 28-bit accumulator and 
simply outputting the top 18 bits to avoid losing valuable data.  A greater in depth 
explanation as to the design challenges I overcame can be found in my design 
experience section. 
 
Once the frequency data has been obtained, the frequency module calls the equalizer 
module to perform the appropriate weighted addition of the signals and to store the 
user-selected weight of each of the individual filters.  The user interface is configured 
such that the user can toggle the switches to hear either the untouched audio, the audio 
output of just one of the filters, or the audio output of the equalizer that sums up all of 
the weighted audio frequency bands.  The user can increase/decrease the weight of a 
filter by toggling that filter’s switch to “1” and hitting the right/left buttons on the labkit. 
The weight of each filter is 5 bits, providing the user with a range of 32 different possible 
weights for each of the 6 frequency bands.  These weights are outputted to the labkit’s 
hex display for ease of use.  The 8 MSBs of each of the weighted frequency bands output 
by the equalizer submodule to the frequency module is passed directly to the mixer for 
volume control. 
 
Transmission Module - Alex 
 
On the second labkit, exact copies of all the major modules, except for the mixer and 
visual display modules, are instantiated. As such, the second labkit is capable of 
processing audio data to the same extent as that of the main labkit and outputting it 
through its own AC97 codec. Instead, however, the processed audio is sent to one of the 
user buses on the labkit for transmission to the primary labkit.  
 
The top twelve bits of each stereo signal, along with the ready signal on the secondary 
labkit, are sent continuously to 25 of the pins on the user bus. Only 12 bits of each signal 
are sent as 12 bits contain more than enough data for high quality audio playback and 
additional bits would require more wiring without much added benefit. A ribbon cable 
takes these signals in parallel and carries them over to one of the buses on the primary 
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labkit. The primary labkit contains a complementary receiver module which monitors 
the ready signal sent over by the secondary labkit.  
 
On every negative edge of the incoming ready signal it captures the signal data 
transmitted and synchronizes it with its own internal clock. In addition, it fills in the 
lower 6 bits of each stereo signal with the value of the highest order bit. This is done to 
reduce noise that occurs during sharp data transitions, especially when the signal 
changes signs from negative to positive. This data is then synchronously sent to the 
mixer module alongside the output of the system’s own processing module in the form 
of two 18 bit stereo audio signals. 
 
Mixer Module - Madeleine 
 
The mixer module combines the two processed audio signals to create a single stereo 
audio output for the user to hear.  The mixer take as input the two stereo audio signals 
(36 bits each) , 56 bits of frequency data (the 8 MSBs of audio data for each of the 
original 7 frequency ranges, though we only use 6 of them), and the selection controls 
from the user indicating how they wish to combine the signals.  The mixer is capable of 
the following mixing combinations: 

- output a selectable weighted combination of the two audio inputs 
- output audio input 1 
- output audio input 2 
- output audio 1 with volume controlled by the volume of audio 2 
- output audio 2 with volume controlled by the volume of audio 1 
- output audio 2 with volume controlled by the bass frequency data of audio 1 

 
The user can toggle between these different options using the switches on the labkit to 
connect these mixes to the output of the mixer and into the AC97 audio codec for output 
into the speakers. 

 

Fig. 5 Mixer Block Diagram 
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Shown above is a block diagram illustrating how the mixer is designed.  The mixer has a 
high level module named “Mixer Buffer” that takes in the audio data for both the left 
and right audio signals.  This module acts as a buffer, enabling the mixing of the left and 
right audio to occur in parallel.  The buffer receives 72 bits of audio data and 56 bits of 
frequency data, initializes the two individual mixer modules, and passes the appropriate 
data into the individual left and right mixer modules.  This design setup enables the 
labkit module to interface with just one mixing module for simplicity. 
 
When outputting the two signals together, the mixer performs a weighted addition of 
the audio inputs such that the output volume remains constant without clipping.  When 
the High Level FSM selects the mixer controls, the user can use the left and right 
buttons on the labkit to change the relative weighting of the audio 1 and audio 2 inputs. 
The weight1 and weight2 are each 5 bits buses and designed such that they always add 
up to 31.  This enables the output of the mixer to remain a constant volume when 
mixing, while the relative weight of the two signals changes.  To avoid clipping, the 
weighted addition of the signals is stored in a 23-bit bus (18 bits of audio + 5 bits of the 
weight), and the mixer simply outputs the 18 MSBs to the AC97 audio codec. 
 
To play input audio 1 modulated to the volume of input audio 2, the audio 1 is multiplied 
by a weight assigned by the volume data of the audio 2 signal.  This weight of the audio 
to be played is determined by the 5 MSBs of the audio 2 volume data (excluding the 
signed bit).  To avoid extreme changes in volume, the weight has a minimum volume 
threshold such that the mixer always outputs music.  Additionally, the weight only 
updates when it receives a positive audio sample, to simplify the calculation since we 
only care about magnitude as opposed to the output being positive/negative.  Lastly, the 
weight only updates every 0.02 seconds (every 1024 ready pulses) to smooth out the 
volume transitions such that the music is still recognizable while being modulated by 
the opposite signal.  This same approach is used for controlling the volume of audio 2 
with the bass/volume data of audio 1. 
 
Visual Display Module - Alex 
 
The visual display module is instantiated only on the primary labkit. This module is 
responsible for lighting a custom LED display located on top of the labkit according to 
the volume of the music currently playing. It consists of the LED matrix, and other 
minor circuitry, on the labkit breadboard as well as a verilog module programmed into 
the FPGA that controls the LEDs. 
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The display itself is a simple array of 30 red LEDs. Each LED is connected on its positive 
leg to the 5 volt rail supplied by the labkit and a 110 resistor on its negative leg. ThisΩ  

resistor, along with some wire, then connects the circuit to one of the pins on the labkits 
user bus. When the pin is driven digital low by the labkit, current is able to flow from the 
5 volt rail to the pin illuminating the LED. When the pin is set high, little to no current 
flows in the circuit, turning off the LED. Each one of the 30 LEDs is thus able to be 
turned on or off independently as they are all wired in parallel to 30 separate pins on the 
user bus. 
 
While many patterns and functionalities could be implemented using this LED matrix, 
and many more if more LEDs were added, the verilog module we created simply turns 
on or off LEDs based off the current volume of the audio signal being played. When the 
volume of the signal increases, LEDs are activated vertically along the first column on 
the left of the display, and then vertically along the next column and so on, culminating 
in the illumination of the LED on the top right of the display if the audio is near 
maximum volume.  
 
Since the audio signal fluctuates between negative and positive and we do not just want 
the LEDs to flicker, the LEDs activated do not represent the current value of the audio 
signal. Instead samples are taken every few milliseconds. If the sample taken is positive, 
it is averaged with the last 31 samples and used to generate the output for the LED 
display. Otherwise the sample is disregarded, as adding negative numbers to the average 
would decrease its value when we are really just interested in the magnitude of the 
signal not whether it happens to be positive or negative on any given sample. 
 
High Level FSM - Alex 
 
Due to the limited number of user inputs available on the labkit and the large variety of 
customizable effects we decided to implement, a high level FSM was required in order to 
allow the user to switch control between the various modules. As implemented, this 
FSM allows the user to utilize almost the complete set of labkit buttons to edit each 
customizable module’s settings, independently of the other modules’ settings. 
 
Within the FSM, the current state, i.e. which module is being modified, is being tracked. 
If the user wants to switch to control a different module, they simply press 3 to control 
the frequency module, 2 to control the time module, or 1 to control the mixer module 
thereby changing the state of the FSM. When transitioning to the frequency module, the 
current value of the switches immediately takes effect and passed as controls signals, 
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implementing whichever frequency filters or effects are switched on. For the time and 
mixer modules, the only the left and right buttons are immediately passed on to the 
module during a transition. If switches are activated or changed, the module is unaware 
until the user hits the enter button which then updates the modules control signals to 
match the current value of all switches.  
 
This way of updating control signals, while slower and requiring additional user 
interaction, was chosen to avoid accidentally messing up user settings. For instance if a 
user was to switch from the frequency module to the mixer and both of them updated 
automatically, then the user could accidentally change which signal was being output or 
the method in which the signal was output depending on the frequency module settings 
prior to the transition. Requiring use of the enter button ensures that settings are only 
applied when the user activates them.  
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Design Experience - Madeleine 
 
Designing and implementing a high quality audio processing and mixing system was an 
entirely new and educational experience for me.  Prior to this class, I had very little 
knowledge of digital logic, and prior to the final project for this class, I had never worked 
with audio or signal processing.  While I did not do the audio lab for Lab 5 of this class, I 
feel as though the labs leading up to the final project more than adequately prepared me 
to tackle this project, as they gave me the experience and knowledge of how to build and 
debug a complex digital system with timing constraints and carefully planned 
handshaking between the subcomponents in the system. 
 
My main contribution to this project was the frequency processing of the audio signals 
to enable equalization, a task that took far more time and thought than initially 
anticipated.  Outlined in the following paragraphs is the debugging strategy and method 
I took that enabled me to ensure that the frequency module met its desired specification. 
 
I made the mistake of trying to write the Verilog FIR filter first before fine tuning the 
parameters in Matlab, and had to redo much of my implementation once I modified and 
decided upon a new design.  Having never worked with filtering before, I spent the 
majority of my first couple weeks of the project testing and simulating the coefficients 
and FIR filtering in Matlab to fine tune the filters.  Working with Matlab was an 
excellent way to debug and gain a better understanding of how digital filtering works; I 
wrote an FIR filter function in Matlab for testing purposes and generated the 
coefficients using the Matlab provided function “fir1”.  I began by passing sine waves 
through the filters to ensure that they were amplified/attenuated appropriately, and 
settled on a 401-tap FIR filter rather than a 31-tap filter.  I made this design decision 
because it enabled me to have sufficient resolution at low frequencies without having to 
store too many samples in registers or needing to further pipeline the audio signal. 
 
Once the Matlab filters performed as desired, I imported MP3 audio files into Matlab, 
applied the 6 FIR filters to it, and listened to their outputs.  This way, I had a baseline 
with which I could check the validity of my Verilog implementation.  Additionally, I 
wrote Python scripts to convert the Matlab FIR coefficients into Verilog so that I did not 
have to copy several thousand coefficients into Verilog by hand. 
 
Lastly, I attempted to interface with the labkit’s built-in flash memory, using the flash 
manager provided in the 6.111 tools section.  One of our stretch goals was to store 
songs/sounds to memory and add them to the output via the mixer.  I successfully wrote 
a module that could record to and play from the flash memory, but I did not finish 
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debugging this portion of the project to effectively integrate this functionality into our 
final system.  While I did not succeed with this module, I gained valuable knowledge of 
how to work with Flash memory that I will take with me moving forward. 
 
Overall, I thoroughly enjoyed my work on this project and learned relevant design, 
modeling, and debugging techniques that I will take with me in future engineering 
projects and classes, and I am glad I had the opportunity to design and build the FPGA 
DJ project for 6.111 this semester. 
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Design Experience - Alex 
 
Like Madeleine, I had never actually worked with any sort of audio processing system 
prior to this project so learning about the various effects that are possible to implement 
in simple time and frequency based systems was very interesting. I discovered the wide 
variety of effects available to audio engineers in the processing of music and the results 
of combining these various effects in all sorts of combinations. In addition, I learned 
much about the technical challenges and requirements associated with storing and 
processing audio data. 
 
While designing the FPGA DJ project I researched a large variety of potential audio 
effects to see what would be feasible and fun within a DJ system. During this time I was 
amazed at how many of the most popular effects, like echo, swell, flanger, chorus, and 
reverberation utilized simple signal processing techniques that had been covered in 
courses like 6.003. In particular, the power of feedback and feedforward paths made my 
portions of the project come together since they are the key component of all of the 
popular time audio effects listed above.  
 
Implementing the delay required for audible time based effects was also very 
educational as it exposed me to memory interfaces. This exposure was required as 
storing the amount of audio data necessary for an audible delay needed much more 
memory than available in the simple registers we have typically used over the course of 
the labs. By utilizing the BRAM I was able to tap into a much larger storage pool and 
create large delays without sacrificing any audio quality. The IP Core generators 
provided with ISE also greatly simplified this process as I just had to specify the input 
output requirements and provide the proper connections, greatly abstracting any 
complicated aspects of indexing into large storage arrays. 
 
Building the Visual Display Module was also a very fun experience. A primary interest of 
mine is analog circuitry so being able to incorporate even a little bit of outside circuitry 
into the project was a major goal of mine. I’ve also always had a desire to work with LED 
display matrices so getting to build a larger one where I had enough pins, as provided by 
the labkit, to individually control each LED was very enjoyable. Also, thanks to Gim’s 
advice, I saved a great deal of time in this process by removing a large number of 
transistors that I originally thought I would need to activate each light. 
 
One last area of the project that I played a major part in developing and found 
interesting was in the creation of the High Level FSM and general structure of the 
system. I recognized early on in the project that integration and control would be greatly 
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facilitated by the existence of a pre-existing infrastructure that we could drop finished 
modules into. To this end, my first major task, after getting basic audio playback, was to 
create such an infrastructure. This system level layout also greatly impacted the overall 
design and completion of the project by bringing our attention to particular connections 
where timing might be tricky or where we had not specified well enough how we wanted 
the system to behave. Though this module is likely the least visible to the user, I feel it 
was my greatest contribution for that very reason. Because of it, we had the framework 
and tools from which all other modules could build from and interact within in a 
seamless manner characteristic of any user-friendly electronic system. 
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General Issues Encountered - Alex and Madeleine 

 
Throughout the implementation of the FPGA DJ system, we encountered a variety of 
challenges, some of them predictable and others entirely unforeseen.  Namely, we 
encountered difficulties with communicating with the AC97 audio codec, needing to 
power cycle the labkit any time we compiled the project, and with ISE crashing 
randomly at times. 
 
Much of our early work was done in parallel - once we designed the general structure of 
our project and agreed upon inputs and outputs, we generated skeleton files and worked 
entirely in parallel using GitHub to share our code.  Alex worked on the time effects and 
Madeleine worked on the frequency effects, and while this worked well, adding 
additional layers once these effects were implemented could inexplicitly cause the AC97 
audio codec to stop producing output. The exact reason for these glitches is unclear, 
especially when they occurred with modules like the Visual Display Module which is not 
actually in the signal path to the AC97. Utilizing continuously assigned wires instead of 
registers often solved these problems, but it would be good to know for sure why they 
occurred at all. 
 
Another bizarre quirk of our program was that once it had a few main modules added, 
whenever we wished to program the labkit with the most recent version of our project, 
we had to power cycle the labkit.  This anomaly began to occur about halfway into the 
development of our project, and took a while for us to recognize as initially we thought 
the issue was either a broken cable or an unforeseen bug that we introduced into our 
code. We did not confirm, but suspect the addition of BRAM and other memories into 
the project may have been the culprit. During the programming period, these memories 
may not be fully erased leading to problems during the initialization of the AC97 for 
instance. 
 
Lastly, ISE crashed multiple times over the span of a week, causing me (Madeleine) to 
redo my work with the equalizer several times.  Fortunately, we stored all of our code to 
GitHub, so, with the exception of a couple ill-timed crashes, our project was mostly 
protected and it was simply an exercise of rebuilding the project and re-generating the 
BRAM. 
  

17 



Potential Applications and Expansions 
 
Our FPGA DJ project could be utilized for a variety of applications where signal 
processing is useful, as well as expanded to include many more effects. The most 
obvious and intended application of our FPGA DJ system is as a live audio processing a 
mixing tool for individuals to create fun, creative sounding sounds and music. We also 
recognize that one of the audio inputs to the system could be a microphone as opposed 
to a music source, allowing a user to sing over a song and process both their voice and 
the song through our system in a kind of karaoke-like fashion, mixing them together at 
the end with custom volume weights.  
 
If a recorder was attached to the output rather than a speaker, then the user could save 
the processed and mixed signals, enabling the creation of cool replayable audio effects, 
mixes and mashups for future use. The system is not limited to working only with audio 
signals of course; any signal of a frequency below 24kHz could be filtered, echo’d and 
mixed according the user's desires and purposes. While we have not tried it, the system’s 
filters and other features could lend itself to other types of data processing and output. 
 
Lastly, the system could always be enhanced to handle more effects, such as flanger, 
chorus, phaser, distortion and many more that we have not even considered. In addition 
to more effects, the system could utilize the effects it already possesses in a more 
complex manner. For instance, the mixer could be upgraded to handle more than two 
signals, allowing for the parallel processing of many signals in preparation for final 
mixing and resulting in a more complex, layered final signal. Another upgrade would be 
allowing the user to simultaneously have multiple outputs from the system. For instance 
the user could record the complex mixed audio from both labkits, as well as the 
frequency data from all 6 filters independently for comparison. The possibilities are 
limited only by the upgrader’s and user’s imaginations. 
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