DSP Dude: A DSP Audio Pre-Amplifier

6.111 Project Proposal

Yanni Coroneos and Valentina Chamorro

Overview

The problem we would like to address with DSP Dude is the scenario where there are multiple
speakers in a single room but each can optimally produce only one set of frequencies. We
imagine DSP Dude as a quickly-reprogrammable digital signal processor that can filter out
frequencies a speaker can’t reproduce. By chaining multiple of these units together, we can
allow every speaker to only produce the frequencies it is good at reproducing. The digital nature
and reprogrammability is integral to our design because we intend for this system to be
deployable on short notice and in very different speaker arrangements—as is the case in public
spaces which host a variety of social events.

Motivation: Digital Signal Processing

A valid question one might ask is why must these audio signals be digitally processed when
there exist working analog solutions? Analog signal processors are large, difficult, and
ineffective to produce because of the cost and space associated with continuous-time (CT)
analog filters. A generally applicable analog signal processor will either need an array of CT
filters, which takes up space, or a few CT filters and a complicated voltage multiplier in order to
shift the center frequencies of the filters. This completed scheme still doesn’t even solve the
problem of arbitrary frequency response: what if the user needs a highly specific frequency
response whose shape cannot be achieved by just a few linear combinations of CT filters? In
the analog domain, this requires a completely custom circuit design—which is prohibitively
expensive for just about everyone. There is also the issue of noise and unbalanced signals.
Analog audio outputs on most consumer electronics are single-ended, which means that the
negative voltage is also the reference ground. This can cause issues at high frequencies or high
power because the current running through the ground wire will cause a voltage drop, or a back
EMF in the case of a very long cable. When the ground is no longer O volts the reference is lost.
In extreme cases this can cause a noticeable DC offset on the input to the amplifier which can
result in clipping or DC current through the speaker. A digital signal processor with user
re-programmable DSP functions could solve every issue previously mentioned while still
remaining small in size. A system consisting of only an FPGA and a codec can take the place of
all the analog electronics.

Block Diagram

To help illustrate how our project will achieve this goal, we created a block diagram that breaks
our project down into its major components: AK4117 input stage, serial controllers, |12S receiver,
FIR module, coefficient generation, 12S transmitter, AK4396 output stage, VGA volume

visualizer, and the clock gen module.

serial .
setial controller
clockgen
100MHz clock 100MHz
global reset
e pcm_data
125 _data 12S receiver
receiver/decoder
SPDIF/TOSLink
AK4117
Irelk
bick
sdcard coeffs

Filter Design Program such as MATLAB

setup_data

Nexys 4

settings

controller

FIR

9.6kHz

100Hz

pcm_data

volume_data

visualizer

serial

serial
controller

setup_data

settings
controller

125_data
125
transmitter

VGA controller

screen

AKA4396 Amplifier

Left Channel

Right Channel

Figure 1 - block diagram of expected functionality
On the far left of Fig.1, in the input stage, the AK4117 receiver IC takes in the SPDIF audio
signal from the computer and outputs 12S. In order to do that though, it must be properly
configured by our serial controller. After the 12S is input to the FPGA, we run it through our 12S

Speaker

receiver module to decode the 12S signal into a signed 24bit number containing the audio data
and pass it to the FIR filter module. An external program will calculate the FIR coefficients that
will also be passed to our FIR filter module which can then appropriately filter the audio signal.
After filtering, our 12S transmitter module will convert the signed filtered data into 12S so that the
AK4396 codec on our output stage can convert it to analog for our speakers to output. Finally,
since the codec can also be configured serially and one of those settings is volume, we will
send our desired volume value to a VGA visualizer so that the user can see the current volume.

AKM4117 Receiver IC Input Stage

The audio input is in the form of SPDIF over TOSLink, which is an optical communication
protocol necessary for ground isolation and low distortion; however, it is difficult to decode.
Specifically, SPDIF is encoded in a Bi-Mark phase encoding that has the clock and data on a
single wire. Proper and reliable decoding requires a phase-locked-loop (PLL) which the AK4117
receiver IC provides for us. After being configured by the serial controller, the AK4117 will
recover the audio data and sample rate from the SPDIF signal and output the audio data as 12S
that gets fed into our 12S receiver module.

Serial Control Module

Both the AK4117 receiver IC and the AK4396 codec first need to be configured to operate for
certain sampling frequencies and audio data widths. This is the job of our FSMs inside the serial
controller module. On every 100Hz clock pulse, a new configuration command is sent out to
both chips. Both chips operate on 16bit SPI, which is a three-wire protocol consisting of a
chip-select, clock, and data wire. When chip-select is low, data for the IC is read on the rising
edge of clock. We program the AK4117 and the AK4396 to operate in 12S audio mode with
24bits of audio data per channel.

I2S Receiver Module

After being configured by the serial control module, the AK4117 will output valid 12S which can
be decoded by our 12S receiver. 12S is a three-wire protocol where there is a sample rate clock,
a bit clock, and a data line. When the sample rate clock is low, bits for the left channel of audio
data are read off the data line on every falling edge of the bit clock. When the sample rate clock
is high, bits for the right channel of audio data are read off the data line on every falling edge of
the bit clock. Correct reception entails detecting both the rising and falling edges of the sample
rate clock, as well as the falling edges of the bit clock. After recovering the data, the 12S receiver
module will output signed 24bit data representing each of the left and right channels of audio.

FIR Module

The central part of DSP Dude is the FIR module that handles the actual audio filtering. At every
period of the sample, the FIR module reads the next output from the 12S receiver module. For
each sample, the FIR module calculates the result of a multi-tap FIR filter using the provided
coefficients and outputs a new transformed sample at the same rate as the samples come in.
This is possible because the FIR module is clocked at 100MHz, which is well above our

maximum sample rate of 192KHz. Assuming each FIR iteration takes 3 clock cycles, we can
support a 100MHz/192KHz/2/3=86 tap FIR filter. The extra division by 2 is because we must
calculate both left and right channel outputs. The coefficients we use for our FIR module will
come from the FIR coefficient generator module and the outputs of the FIR module will be two
signed 24bit numbers representing the left and right audio channel data. These will be fed into
the 12S transmitter module.

FIR Coefficient Generation

The coefficients necessary for our FIR module are generated externally by an engineering
design program such as MATLAB. The user will be able to design any type of FIR, linear phase
filter and MATLAB can compute a series of coefficients and store them on an sdcard. The FIR
coefficient module inside DSP Dude will read the sdcard in order to acquire the FIR filter
coefficients and then pass them on to the FIR module. This also means that it's possible to store
several different types of filters on a single sdcard and have DSP Dude switch between them at
any point. The sdcard will not use a filesystem and will, instead, just store raw bits in a linear
ordering. Different sets of coefficients will be marked with special header sequences.

12S Transmitter Module

The 128 transmitter module will take as input two 24 bit numbers representing left and right
audio channel data. It will then encode them into the same 12S protocol that was used for
reception and feed them into the AK4396 codec output stage. It is essentially the reverse of the
I2S receiver module.

AKM4396 Codec Output Stage

After configuration by the serial module, the AK4396 codec can take in an 12S audio data signal
from the 12S transmitter module and output left and right channel analog audio. This will be fed
to speakers. Unfortunately, this codec is a complicated beast: we are wiring it to operate in
serial PCM mode with split ground planes and split power rails. This is because The Nexys 4
operates on 3.3V logic and the analog circuitry within the codec operates on 5V (see figure 2

below).

i Digital
' Supply 3.3V
i 10y 0.4u
: 1| DVSS DZFR [25 }
e - 7| ovoo cAD1 E—%
MasterCIock—i—E MCLK DZFL |26
Reset & Power down —+—————p{ 4 | FDN PisS E@ it
1 0.1u -
Bdfs_.l—ﬂz BICK AK4396 VCOM |24 T g
24bit Audio Data —+—————®{ 6 _| SDATA A0UTL+ [Lch Lch
i B Lch
fs —i+— @[7] LRCK AOUTL- [22 ——| LPF ™ Mute | Out
1
L M oswm AOUTR+ [27 }——p{ Reh pl BEN L rchout
_ i LPF 7| Mute
Micro-] —— [9 | caDo AQUTR- [20 F——W
controller — p{ 10| CCLK AvSS |19 o= [
1 u
: p{1] cOT AVDD |18
Analo
& [17]| DIFo VREFH [T 1 - Supph?r 5y
®——{73| DIFt WREFL [16 =
E &—[i1| DIF2 TIL [45
1

' 7
Digital Ground —=<— Analog Ground

Figure 2 - AK4396 codec wiring diagram

VGA Volume Visualization

To allow users to see the operating volume of the system, there will be a module that outputs a
visual representation on the VGA of the volume. As mentioned before, the codec can be
configured serially and one of its configurable settings is volume. Using the labkit we can set an
8bit value with the switches that can then be passed to both the codec serial controller and the
VGA visualizer.

Clock Gen Module

In order for all of our modules to work correctly, they need different clocks. The AK4396 codec
needs a sample rate clock (LRCK 192 kHz), a bit rate clock (BICK 9.216 MHz), a master clock
(MCLK 24.5760 MHz), and a serial clock. The serial controller needs the same serial clock as
the codec, the I12S transmitter needs the bit rate clock, and the FIR module needs a 100MHz
clock. The internal 100MHz crystal clock on the Nexys 4 is divided down to 9.6KHz for the serial
clock and the AK4117 generates the BICK and MCLK from the the LRCK that it recognizes on
the SPDIF input. The receiver outputs all three clocks which are then fed directly to the AK4396.
A clock gen module on the FPGA, takes in the MCLK from the AK4117 and generates a
100MHz clock such that the FIR module is in phase with the data being received from the
AK4117. The clock gen module also generates the serial clock for the serial control modules
but those do not have to be in phase with the receiver IC.

Gantt Chart
10/25/2015

clock gen
module

serial
controller
module

12S
transmitter
module

settings
controller
module

codec
outputs
sound

generate
FIR
coefficients

r/w
coefficients
to sdcard

12S receiver
module

FIR module

interface
amplifier
and
speakers
with FPGA

volume
visualization
module

VGA
controller
module

check off

11/1/2015

11/8/2015

11/15/2015

11/22/2015

11/29/2015

12/6/2015

Labor Breakdown

1. Yanni:
a. Serial control for the receiver and codec
b. Interfacing with the sdcard
2. Valentina:
a. 12s for the receiver and coded
b. Interfacing with the VGA
3. Both will work on the FIR filter module and FIR coefficients generator

Conclusion

In the end, we hope to have a functional digital signal processor that can be easily
reprogrammed by the user to output the optimized audio signal for the specific speakers being
used. Based on our experience in audio sampling and interfacing with the Artix 7 FPGA we
expect a few areas to give us some trouble. Namely, ensuring that all our many clocks are
properly synchronized.

