Real Time Sound Analysis / Synthesis

Germain Martinez, Gerzain Mata, Michelle Qiu
6.111 Introductory Digital Systems Laboratory
Final Project Proposal

Fall 2015

Overview

There’s been a proliferation of Digital Audio Workstation programs throughout the last
couple of decades. Many of them have had varying degrees of success. Unfortunately, a
bunch of these systems lack the intuitiveness to get them into the hands of the masses. The
goal of our project is to produce a Human Interface Device that takes audio samples from a
microphone, saves them into memory, and overlay sound effects on those samples for instant
results. The user will be able to record multiple audio samples, choose which effects to perform
(i.e. reverb, echo, vocoder), and reproduce the audio with the effects applied. At the same time
we will be able to provide statistics on the sound sample, like maximum amplitude, frequency
domain content, etc, on the screen during playback.

Design

The project is expected to work in the following fashion: the user can select from two
modes: record and playback.

In the record mode, the FPGA picks up audio samples from the microphone input and
sends those samples to the memory handler. The memory handler stores these samples to
memory.

In the playback mode, the FPGA takes the samples stored in the memory and plays
them back through the speakers. The user can add sound effects to the samples playing
through the speakers by flipping switches on the labkit. Each switch will correspond to a
different effect; switch 1 could correspond to adding compression, switch 2 could correspond to
adding an echo, and so on. These samples will also be shown on the screen output as a
real-time representation of the audio playback output. As these samples are being played back,
a Fast Fourier Transform will be done on the samples and the results (the frequency content of
the audio output) will be shown on the display.

We will be using the ac97 module, which outputs 18 bit samples at 48kHz. However, to
save space in our memory, we will be only recording the 12 highest bits of the sample. In
addition, we will only be storing every 2nd sample, so the rate of audio data transfer is 12 bits at
24kHz. Since we have 2 blocks of 512k x 36 bits of ZBT SRAM, if we allocate 2 480k x 36

blocks for songs and 2 32 x 36 blocks for graphics, we can store a total of 120 seconds of audio
clips.

Block Diagram

Memory bus 2 x 480k x 36, 2 x 30k x 36
ZBT SRAM = =,
Memory
7 logic [?]
; Central)
Userinputs — FSMILogic
: ¥, Graphics
FI0e, logic [7] .
Feset—m Graphics
VGEA signal \I request [6.0]
[2}'[[k\ (~,
VGEA | ", L Graphics
Audio *~
logic [8:0] Audio to be YY_ ¥
_ [isplayed [
, S e Audio out
0] h 4 Memory Handler
T‘-—-.,,‘
Audio Input’FFT/
SFX J
Audio from memory [11:0]

Audio in from
mic [11:0]

Figure 1: Overall block diagram.

Module Implementation

The design will be split into multiple modules to facilitate the distribution of work and
debugging processes. The central FSM takes inputs from the user and the other modules in
order to control the functions of the other modules. There are three main modules that will
interact with the central FSM. These modules are the Audio / FFT / SFX Module, the Graphics
Module, and the Memory Handler Module. The Audio / FFT / SFX module processes and
outputs audio with the labkit's ac97 function and performs FFT and other sample
transformations and calculations on the audio. The Graphics Modules displays the state of the
program and statistics to the user. The Memory Handler Module stores audio and sprite
information so that it can be used in playback and display.

Germain will be responsible for the Audio / FFT /SFX Module, Michelle will work on
interfacing with the ZBT memory, and Gerzain will be tasked with handling the graphics output.

All group members will cooperate on handling the central FSM logic so that their individual
modules communicate correctly with each other and with the central FSM.

Central FSM Module

The central FSM will be in charge of sending the correct states (Playback / Record) to
the Audio / FFT module. At the same time, the central FSM will manage what statistics are
displayed to the graphics and which bank of memory to access on playback.

This module controls the three other main modules based on inputs from the user and
the other modules. This includes determining the state of the program (record, playback, filtered
audio, other menus) by transitioning based on inputs from the user and determining the state of
the other modules. The central FSM module controls the graphics module by telling which state
that the graphics module should be in and what info from the audio, and to some extent, the
memory, it should display. The central FSM controls the memory handler module by telling it
whether it should be reading or writing, which memory block it should be reading/writing audio
to, and when to start reading/writing to a memory block. The central FSM controls the audio
module by telling it which effects to apply to the audio and when to send audio to the speaker.

In addition, the Central FSM will keep track of how many address locations in memory a
recorded song takes up and translates the number of addresses to seconds.

Audio Input/ FFT /SFX Module (Audio Module)

Audio Module Block Diagram:

From Central To To To

F3SM Graphics Graphics Graphics
F Y F Y F Y
Record/ FFT to
Flayback Graphics [’r'j,
From ACA7 Y
(170 ———~—>| 0
] FET FFT Module
(Select
[17:0] FFT to
Clock—> Stats [?]
Reset—» h Audio to
s Graphics
Statistics Module Stats [71
A
_ From Memaory
To ACOT (W [11:0}
[17.0] = SFX Module *
Choose
Fm”'FSCﬁ”"E" Effects [7:0] g
vl

Figure 2: Audio Block Diagram.

The audio module records and plays the audio to ac97, calculates the statistics and
information for a sound clip, and performs FFT and synthesizer transformations on the audio.

In the Record state, this module will take in raw audio samples from the AC97, run these
samples through the FFT hardware core, and sending the decomposed frequency spectrum to
the Graphics Modulefor visualization. At the same time, these audio samples will be written to
the ZBT memory through the Memory Module.

In the Playback state, this module will take in audio samples from the chosen memory
bank. Depending on what effects the user selects, like compression, delay, phasing, and
limiting, this module applies these effects to the audio samples. These modified samples are
then output to the AC97 headphone output. At the same time, the module takes an FFT on the
audio output and sends this frequency information to the Graphics module for visualization.
Optionally, the module can record certain statistics, like maximum output, and send these
statistics to the graphics module for output.

While in previous labs we employed a 6 kHz sampling frequency, we obtained significant
improvements in audio quality at a sampling rate of 24kHz. We plan to employ a 24 kHz
sampling frequency with 12 bits per sample. This should give us a 288 kilobits per second data

rate. Ideally, the user should be able to record multiple audio samples; each song can be
recorded on a bank of the ZBT memory.

Audio Module submodules and their functions:

EFT: performs the FFT transformation on the audio signal and sends it to graphics.

Statistics: calculates the statistics of the audio, including max amplitude, frequency, effects, and
status.

SEX: applies special effects on the audio before it is sent to the speaker based on input from the
central FSM.

Memory Module block diagram:

To ZBT
SRAM
A
Memory|bus
Clock—® 24kHz sampler 25{&'3%‘_1|52l_x 36
Feset—m B
lzdhhz_assert
k4
Address
Sample Address [20.01 Memaory
Calculator Readeririter
: Logic[? Memory Memory
From ';*‘EF““;? out [35:0] in [35:0]
FSM ogic [7] % :
Sprite
Memory Reader info
Controller [35:0]
) i Logic [7] Memory Processor —»
From Graphics To
Graphics | request [6:0] |Graphics
Audio in from Memaory to
mic [11:0] audio [11:0]
| v
From/To Audio
Module

Figure 3: Memory Block Diagram.

The Memory Module is in charge of writing to and reading from memory. The module
will be tasked with writing the input microphone audio samples into ZBT memory during Record
mode and reading the audio samples once Playback mode is enabled.

At the same time this same memory module will be in charge of reading encoded image
data so that the Graphics module can output images and sprites indicating numbers, letters, or
other characters as needed. Since both video and audio data will be read there will have to be
some memory bus and clock sharing. Since the ZBT SRAM has two banks of 512k by 36-bit
memory this will allow the memory encoder to allocate between 480k locations of memory on
each bank for a song sequence. Our plan is to leave at least 30k locations on each bank for
image data.

Memory Module submodules and their functions:

24kHz sampler: tells the module when to increment to the next address for audio samples
Address Calculator: calculates which and what address should be read at that clock cycle
(audio, graphics, etc), increments and resets address

Memory Reader Controller: Transforms requests from the FSM and Graphics into a form that
the Address calculator and memory reader can use

Memory Reader/Writer: Reads and writes to memory given address information, data, and a
write signal. Outputs

Memory Processor: Transforms the read memory signal into an audio signal [35:0] to [11:0] or a
graphics signal [35:0] or from an audio signal into a memory signal [11:0] to [35:0]

Graphics Module

Graphics Module block diagram:

From i
memory Plk[%l:gfddr PIXEL 110 vaa
[35:0 Picture Buffer EEESE:"DF 23:0 s
Clock—M
Feset—m
LW HCOUNT
i blank
£— Picture Selector VCOUNT —
To Memaory Pic #
Module [E'EI:
HSYMC
b EEE—
To Memary
Module Start VSYNC
5— Start Condition YGEA Module o EE—
From FSM »

Figure 4: Graphics Block Diagram.

The Graphics Module will be tasked with displaying the frequency spectrum information
and current audio sample information delivered by the Audio / FFT Module. The frequency
spectrum will be displayed on the screen alongside the current running statistics of the sample,
which are max amplitude, frequency, effects, and status.

The intended resolution is 1024 x 768 pixels. Image sprites will be used throughout this
module, which means that it will have to fetch the images from the Memory Module. Since the
ZBT memory has a 36-bit wide bus this allows one to fetch six pixels for every memory read.
We will make each image 64 by 64 pixels using 256 colors. This means that each image will
take up approximately 24.5 kilobits of memory, which entails 683 ZBT memory locations. A
look-up table will be used to decode the 6 bits of pixel information into the 24 bits of information
required for the VGA protocol.

Graphics Module submodules and their functions:

Picture Buffer: processes, times, and holds information from memory to be used by the 256
color LUT.

256 color LUT: transforms information from memory into a 24 bit pixel encoding that can be
used by the VGA.

Picture Selector: chooses which picture needs to be extracted from memory..

VGA Module: decides what pixel from memory should be placed where in the display.

Start Condition: determines when a sprite needs to be pulled from memory.

Project Timeline

A summary of the proposed timeline is shown below. Unfortunately we initially planned
to do a different project that ended up being unfeasible. As such we had to reorganize a new
project and we were set back a week. Nevertheless we foresee having enough time to
accomplish our objectives. The lines are colored to differentiate between each work stage. The
timeline reflects the parallel workflow for each group member. It should take every team
member approximately equal amounts of work, nevertheless it is expected that if a team
member has accomplished their objectives with time left over then they should help out on other
necessary areas.

Required Task Week of Nov 9 [Week of Nov 15 | Week of Nov 23 | Week of Nov 30 | Week of Dec 7

Work on Individual Modules

Work on FSM Logic

Prove that Individual Modules Work

Combine Modules / Interfacing

Proof of Concept

Debugging / Adding Extra Features

Demaonstration of Completed Project

Figure 5: Timeline.

Week Tasks to Complete

Nov 9th Basic graphics output; reading/writing to ZBT memory; sampling
from microphone, playback from memory

Nov 15th Incorporating images in graphics; memory timings; saving samples
to memory; incorporating different sound effects; incorporate central
FSM logic

Nov 23rd Graphics, sound and memory modules synchronized to central FSM
logic

Nov 30th Final debugging, meeting stretch goals (time permitting)

Dec 7th Demonstration of Completed Project

Testing

For testing, we will create testbench modules to verify that a particular piece of the
project will work. Once the sound module has been completed, we will make a test project that
will check on whether or not the sound modules can perform the desired transformations on the
audio signal before outputting it to the AC97. On the FPGA, the memory handler module can be
tested in real-time by using the switches as the inputs and manually checking to see if the
output is as desired. The graphics module can be tested by running the code on the FPGA and
seeing the output on the screen.

Upon further progression, more testbenches will be implemented where communication
between specific modules will be tested (i.e. graphics - FFT communication, graphics - memory
communication, audio - memory communication). As for the audio effects, our plan is to
determine which effects are easier to perform. We hope to successively implement more
challenging effects with the hope that we can implement a rudimentary vocoder if time allows.

Resources Needed

In our approach we will use the 6.111 Labkit, which comes with a plethora of integrated
components, amongst which we will employ the AC97 codec, the ADV7185KST video decoder,
along with the two banks of CY7C1470V33 ZBT SRAM. For playback and recording, we will
use a headset provided by the course. Everything else can be synthesized through the FPGA.

Stretch Goals

Accomplishing anything extra beyond our description of the project will entail a fairly
substantial commitment. Nevertheless if time allows we plan to introduce additional functionality
to the project, including but not limited to implementing complex effects like an equalizer or
flanger, improved graphics, pause/ stop/ start functionality, and having variable sound clips to
manipulate. If time and constraints permit we would ideally like to have vocoder functionality.

Conclusion

Our project seeks to implement an introductory Digital Audio Workstation (DAW). Using
what our team has learned throughout the semester we plan to make use of the FPGA to
implement audio synthesis and processing to help interested audio enthusiasts gain a better
intuition of the inherent properties of audio signals and how effects influence those sounds in
the frequency spectrum.

