Music Visualization with Audio Beat-Matching
Maggie Reagan and Liz Schell

1. Overview

The goal for this project is to implement music visualization on a computer monitor using audio
beat detection for real-time music playing. Most commercially available applications for this
purpose are implemented in software, and are also limited in the visuals they provide.
Hardware implementations that exist for this purpose are entirely custom, and are even more
visually limited; the most common music visualization is done with LED strips. This project
would offer a hardware implementation for music beat detection and a more interesting and
visually pleasing visualization than currently exists on the market.

Our project has two major parts: audio beat detection and visual generator. The beat detection
output will be as an input to a visual display generator that will have several stages. The first
stage of the visual generator will rotate nested shapes on the screen. If we find that we have
enough time, we will make the visual generator more complex by adding a fractal generator
module to produce a background fractal image to put behind our simple image with nested
shapes.

2. Design Decisions

2.1 Project Overview
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Figure 1: High-level block diagram of the system



The project as a whole can be modeled as two major blocks as shown in Figure 1: the audio
processing block and the image generator block. The audio processing block samples musical
input from either a microphone or direct audio input and outputs the tempo and phase of the
song playing. These two outputs are given to the visual generation block, which changes the
color of the display based on the phase and the speed of the rotation of the nested shapes
based on the tempo.

2.2 Design Decisions and Motivation

We chose this project because we enjoy music and thought that it would be interesting to
implement a colorful and unique visualization to go with our favorite music. In order for this
project to be useful for a party or social event, we wanted to be able to process a song in real
time or as close to real time as possible. We decided to go with an algorithm that takes a 2.2
second sample of a song to start generating the tempo and phase, to allow for beat detection as
low as 60 bpm with some wiggle room. As new music samples come in, we will keep calculating
the phase and tempo with the new data to keep up with changing tempos.

The musical visualization we will be implementing will have two parts, one of which is a stretch
goal. The main visualization will be a series of rotating cubes and circles which rotate at a
speed correlated to the tempo detected from the audio block. The colors of the cube and circle
outline will also change color in time with the music; i.e. at every other beat. The color change
will occur at every beat or every other beat depending on the tempo of the song; for some faster
songs, what is most visually pleasing might be a slower color change rather than a strobe color
effect. We decided on this as our main visualization because we feel that the tempo matching
the rotation speed is an intuitive connection for someone viewing the visualization. The multiple
color-outlined shapes we decided on allow us to create a rainbow, color shifting effect, while the
black between the outlines keep the image from looking garish or overwhelming. The following
image, Figure 2, is what we plan for the final image to look like.

Figure 2: Music Visualization



The stretch goal for this music visualization will be a similar image, except instead of overlaying
a black background, the rotating circles and squares will overlay a Mandelbrot fractal. We
chose this as a background image because it is both computationally intense and also very
interesting visually. This background would be non-moving for the most part, although would be
able to be changed based on user input with some delay to zoom and pan left, right, up, and
down. This is defined as a stretch goal because combining it with the moving music
visualization will be fairly simple alpha blending, and because on its own it is a fairly complex
mathematical calculation that will require significant infrastructure and planning, especially with
regards to memory, which will be explained more in detail later on in this section. It is also a
slow calculation; adding a moving aspect that updates in real-time with music would require
more resources and time than is feasible in combination with the other aspects of this project.
Figure 3 is an example of what the Mandelbrot fractal would look like.

Figure 3: Mandelbrot Fractal

One of the main challenges we were faced with in coming up with this design was available
memory for storing images; while we could use a lower quality image, such as a 640x480 pixel
image or lower, and use less memory, this would not be as visually pleasing as a high quality
image. In addition, we want to be able to update the image in real-time or almost real-time;
therefore, as a compromise between high image quality and ability to update the image quickly,
we decided to use SVGA quality, or 800x600 16-bit pixels. Storing a current and next image on
the FPGA will involve using both ZBT SRAMSs, and possibly an additional BRAM buffer for
updating in real time. In addition, we need to separately store a non-rotating fractal background
image. Because this is a stretch goal, there is still some flexibility with how this will be
implemented. We could use flash memory and a BRAM buffer that stores part of the image at a
time, which is possibly too slow due to flash read and write times, or forego any memory other



than a BRAM holding part of the image, which is possibly more slow than the first option due to
computation times. Currently, our plan is to use flash memory and BRAM buffer, which is the
more structurally difficult of the two options, allowing us to fall back on the second option of
foregoing flash memory if necessary.

3. Implementation

3.1 Audio Processing Block
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Figure 4: Audio Processing Block Diagram

The purpose of the audio block is to process the input audio and output the frequency and
phase of the audio to the visual block. The frequency tells the visual block what the tempo of
the music is, and the phase tells the visual block how long it will be until the next beat so that
the visual block can generate images in phase with the audio. To do this, the input audio is first
split up into six different frequency bands by the frequency filterbank so that they can be
processed separately. Each of these different bands is sent to its own audio processing unit.
The audio processing unit contains an envelope extractor, a differentiator, a half-wave rectifier,
and then a comb filter. These first few modules will accentuate the tempos in the signal, and
then the comb filters act as resonators for different possible frequencies of the audio. After the
comb filters, we calculate the energy of their outputs to find the energy of different frequencies
within the band that is being processed by that audio processing unit. These energies are sent
on to the peak-picker, which compares the different energies to determine which frequency is



the fundamental tempo of the audio. This will be the tempo whose comb filter output has the
highest energy.

Once the fundamental tempo has been found, the phase detector will take in the output of the
comb filters and the tempo of the audio. It will look at the signal from the comb filter that
corresponds to the calculated tempo and determine the phase of this signal. Using this, it will
predict the time until the next beat, which will be sent onto the visual generator in the form of a
phase shift.

3.2 Image Generator Block
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Figure 5: Image generator block

The visual processing block will take in the frequency, or tempo, of the song and the phase, or
time until next beat, from the audio processing block. The tempo or frequency will be used to
calculate the speed at which the foreground square (see Figure 2) rotates. The phase will
determine exact time of the color change-- that is, when phase is zero, the color shift will occur.
The VGA block supplies the necessary inputs to the movement generator block such as hsync,
vsync, vclock, hcount, and vcount. We are choosing to use SVGA resolution (800x600 pixels)
rather than XVGA due to the amount of memory required to store the fractal image. The



movement generator will take in the pixel values generated by the fractal generator and
implement alpha blending to combine the two images. The movement generator block will
contain several submodules, as shown in Figure 6.
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Figure 6: Movement Generator

The movement generator will comprise of a coordinate generator, several address generators, a
rotation block, a coordinate controller, and a ZBT arbiter. The coordinate generator generates
the next x-y coordinate to be rotated, and sends that to the rotation block. The rotation block
performs the rotation of the x-y coordinate by multiplying the given x-y value by sin6 or cos@
values stored in LUTs. The angle 6 by which the image is rotated by is given by the coordinate
controller module, which maps the input frequency or tempo of the song given by the audio
processing block to a 8 value. The original and rotated image coordinates are passed through
an address generator and given to the ZBT Arbiter, where the pixel value at the original
coordinate address is stored at the rotated coordinate address in two ZBT SRAMs. This means
that we will only be reading from one ZBT (the current image) and only writing to one ZBT (the
next image) at a time. The hcount and vcount from the SVGA block are given to the coordinate



controller, which again sends this through an address generator to be given to the ZBT arbiter,
which is able to read the current pixel from the current image ZBT. If we are able to implement
fractal generation, the fractal pixel input to the ZBT Arbiter is alpha-blended with the current
moving pixel, and outputted to the monitor. The phase input to the ZBT arbiter will cause a
color shift in the pixel value; that is, on the rising edge of the phase input we will implement a
color shift by adding or subtracting to the pixel value.

The fractal generator block will contain several submodules, as shown in Figure 7.
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Figure 7: Background Fractal Image generator

Each mandelbrot calculation engine will take in the next x-y coordinate provided by the
Mandelbrot controller, and convert this x-y coordinate into Mandelbrot coordinates. Once
converted into Mandelbrot coordinates, the calculation will perform the iterative Mandelbrot
calculation. The number of iterations performed until a condition is met determines the color of
this pixel. The color of this pixel is then stored into flash memory, and the Mandelbrot controller
provides the next pixel x-y coordinate to be determined. The SVGA output controller reads pixel



values from the BRAM buffer at the appropriate 60Hz frame refresh rate. Because the
calculations for the Mandelbrot background will take a significant amount of time, any user input
causing a change in the background image will have a noticeable delay. The Mandelbrot
controller handles any user input such as zooming and panning, providing updated parameters
for the Mandelbrot coordinate conversion and pixel color calculation.

4. Timeline, Testing, and Division of Responsibility

1) Finalize block diagram and
shared signals

2a) Write and test filterbank and
audio processing unit

2b) Write and test coordinate
controller address generator,
coordinate generator, and rotation
block

3a) Write and test peak-picker and
phase detector

3b) Write and test ZBT arbiter

4)Integrate audio and visual
subsystems

5a) Work on stretch goals:
Mandelbrot controller and
calculation engine

5b) Work on stretch goals: Memory
architecture

6) Debugging

7) Final report, video, and checkoff

Figure 8: Proposed Schedule

The above figure shows our proposed schedule of milestones for completing this project, with
Liz’s tasks in blue, Maggie’s tasks in green, and shared tasks in purple.. In this section, we’ll
explain the finer details of these milestones.

1) First we will finalize a high level block diagram of the entire system and lower level block
diagrams of each the visual and audio blocks. We will decide on signals that are shared
between the two blocks so that each block can be written and tested separately before
integration.




2) Then we will begin the development of the two large blocks by writing and testing the
modules that they’re composed of. For Liz, this starts with the filterbank and audio
processing unit. For Maggie, this means the coordinate controller and generator, the
address generator, and the rotation block.

3) We will then move on to writing and testing the peak-picker and phase detector for Liz,
and the ZBT arbiter module for Maggie.

4) Next, the full audio and visual blocks will be integrated individually and then integrated
together to create the full system. Once basic design goals are working, we can begin
working on our stretch goals.

5) The stretch goals will involve working on the implementation of the Mandelbrot set
algorithm itself, and the memory architecture for storing pixels and streaming the video
output.

6) The last full week will be dedicated to buffer room and debugging of the full system.

7) Finally, we will get our project checkoff, record the demo video, and finish up our project
report.

The division of responsibility is fairly simple; Liz will be working on the audio processing block,
while Maggie will be working on the image generation block. We will both work on implementing
the stretch goal of the Mandelbrot Set generator.

5. Resources

Our project doesn’t require much hardware other than the supplied labkit and computer monitor.
We can supply the audio input with either an aux cable into the labkit or by a microphone
connected to the labkit. These parts can be easily bought or acquired on their own.

6. Conclusion

This project is technically challenging as well as interesting. The overall goal of this project is to
implement a music visualizer that will display interesting images while either listening to music
casually or during a party. Both of us have seen beat-matching implemented in LED displays
for usage during parties; we wanted to come up with a more technically challenging and visually
interesting alternative to this. The parts of our project are also versatile, because the audio beat
detector could be paired with other visualization generators for different effects, and the
visualization generator could be set up to change with something other than music. We hope to
build something that we can use frequently for parties or other social events.



