6.111 FALL 2015

SNAPPA REFEREE

December 9, 2015

De Jesus, Juan
Orton, Matthew

Contents

1 Overview and High-level Architecture 4
1.1 DesignChoices v i i i et e e e e 5
1.2 EnhancingGameplay. L 5
1.3 BasicOperation i e e 6

1.3.1 BackgroundBlock o ... 7
1.3.2 Object RecognitionBlock 7
1.3.3 ShotMemoryBlock. L 7
1.3.4 RefereelogicBlock o ... 8
1.3.5 GraphicsBlock 8

2 Design and Implementation 9
2.1 NTSC Camera to VGA Display (Matthewand Juan) 9
2.2 Hue Detection (MatthewandJuan) 9
2.3 Center of Mass (Matthew) i e 11
2.4 Finite State Machine (Juan) 12

241 Idle e e e 13
242 Replay 13
243 Recording 13
244 GaAIME-OVEL v vttt e 14
2.5 ShotReplay (Juan) e 14
2.6 Graphics (Matthew) e 16
2.6.1 BallMarker 16
2.6.2 ThresholdLines 16
2.6.3 LowlIndicator e 16
2.6.4 Scoreboard. 17
265 GameOVer e e e e e e e e e e e e 18

6.111 Fall 2015

3 Testing 20
3.1 VGAdisplayandDelays 20
3.2 Hue Detection and Center-of-Mass 20
3.3 GamelogicandReplay 21
3.4 Graphicsand Game-Play. L L 22
35 Conclusion L 22

4 Appendix 23
4.1 Verilog o e 23

Page 2 of 69

6.111 Fall 2015

INTRODUCTION

Snappa is a drinking game played by two teams of two that sit on opposite ends of a long
rectangular table. The teams take turns throwing a die to score points, until 7 points are
reached for a win. The die must travel in an arc and clear a loosely defined "low line” the four
players agree on before the game. If the die bounces on the table and goes off the opponent’s
end of the table (exiting through the side of the table does not score a point) without being
caught, the shooting team scores a point. Our project, Snappa Referee, not only aims to
eliminate the difficulty of deciding whether the die passed the height threshold by tracking
the movement of the die, but also enhances the experience with added visual effects, by
allowing replays of any plays, and a scoreboard to keep track of points in this game.

To achieve these goals, we developed an FPGA-based motion-sensor referee. For our
project, we will utilized a tennis ball and a Frisbee wrapped in colored paper instead of a die
for motion-tracking simplicity. The ball tracking system is the most vital part of our project,
as it compares the ball to its background to determine its position in space. Our Referee can
then utilize this video input information to determine whether the ball traveled high enough
to cross the predetermined low line. The integration of other modules allows for replays and
user-inputs, further enhancing the gaming experience. These modules are explained in detail
later in this report.

Stretch goals for this project revolve about being able to decide whether the die in a
Snappa game actually went off the opponent’s end of the table (point) or the side of the table
(no point), This can be achieved by modifying the Referee module to consider where the ball
falls, plus attaching motion-sensors on the edges of the table to eliminate contentious edge
cases.

The goal of this report is to explain in-depth how these modules were designed and
integrated so that the SNAPPA Referee would work successfully so that future developers

could effectively utilize this document in order to mimic or further develop our prototype.

Page 3 of 69

Chapter 1
Overview and High-level Architecture

When choosing a final project, we wanted modules that were closely tied to the skills we
learned from our labs while also requiring us to break into new problems. In addition, we
wanted to make sure the project stayed fun to work on, so we chose to design around a
game to keep everything light hearted at a high level. Snappa is a good game for this project
because it is visually simple for an FPGA to be able to extract the relevant visual information
and because there are ways in which an impartial observer could improve the quality of the

game. Figure 1.1 shows a high-level overview of how we planned to enact our Referee.

B

User Inputs: Start,
Reset, Replay, ASound and
Low Line Display Output

Figure 1.1: High level design of Snappa Referee

6.111 Fall 2015

1.1 DESIGN CHOICES

One of the primary concerns in designing a Snappa Referee was to make sure that our Referee
would neither be a drag to use, nor take away from player’s autonomy. We achieved this in
a variety of ways. One of these was by allowing the players to be the ultimate judges of the
validity of a throw by updating the scoreboard manually.

Another way in which we made the Referee a more informative guide was with a replay
option. Reducing the system’s interference with the original gameplay was most difficult
when designing the replay module. We wanted the FPGA to know when to start and stop
recording a shot with as little player input as possible. Ideally, there would be no required
player input, but we realized it would be easy to confuse the system into thinking the next
shot was starting very shortly after the previous shot had ended. While this could be worked
around with a delay, we decided the system would be more robust if players provide a button
push to signal the start of a shot and the FPGA determines the end of a shot. This does not
alter the flow of the game much because offensive players must wait for the defense to be

ready before throwing anyways.

1.2 ENHANCING GAMEPLAY

In a traditional game of snappa, the defensive team must call the shot low before the play
has ended, so to simulate this, our system will show a red cross signifying a low throw once
the ball is moving down after not crossing the low line, albeit no indication will be provided
when the ball exits through the side of the table (our stretch goal). This is in part because our
current Hue ball-tracking technology cannot discern effectively whether a ball exits through
the end or side of the table unless our stretch goal is met of making corner-case detectors.
Because the defensive player will often have a better perspective than a side-view camera as
to where the ball left the table, this is not a major concern for our project.

The primary output for this system will be a display of the camera input with additional
information. The threshold lines (Background Block) and the scoreboard will always be
displayed on top of the background. After a throw, the display will indicate whether or not
the shot was high enough, and if the system thinks the ball left the table from a side edge or
the back edge. Additionally, the ball will be highlighted on the display so it can be more easily

seen by the players during replays or while a throw is happening.

Page 5 of 69

6.111 Fall 2015

1.3 BASIC OPERATION

In this section, we will briefly explain how the flow of visual input would proceed to the
modules, how it would be utilized, and how our project works from a high-level perspective.
For simplicity, we've combined modules together into 'blocks’ based on functionality. For
reference, Figure 1.2 shows the physical set-up we used, which is simply an NTSC camera

connected to an FPGA, and a table in front to play the game.

Figure 1.2: Physical Set up.

Page 6 of 69

6.111 Fall 2015

1.3.1 Background Block

This block keeps track of the spatial position of the threshold lines in order to give the
necessary data to our FSM so that a decision about the validity of a shot can be made. Hence,
this module takes in user inputs so that the lines can be moved. The threshold lines are as

follows:
¢ Low Line: This is the line the thrown ball must cross in order to be a valid throw

» Table Top: This line signifies where the top of the table is in space. This will be utilized

to determine when recording of a throw will end.

» Table Lines: These lines will be set to the edges of the table to provide the FPGA
with boundary information on the table. This boundary information will be used to

determine where a throw left the table, for our possible stretch goals.

1.3.2 Object Recognition Block

In this block, we are taking in visual input in the form of RGB values. After a conversion to
HSV, the different hue values being input into the system by the camera will be processed in
order to determine where the ball is located through a center-of-mass calculation. We have
chosen to utilize this object due to its bright color and modest size (allowing for consistent
motion-tracking). For demos from afar, a Frisbee proved to be even more consistent. Once
the system has located the object, this module will keep track of it by storing its position as an
x-y value from the camera input, continuously updating it based on where it sees the bright

color of the ball again. This information will be placed on the display.

1.3.3 Shot Memory Block

This is the cornerstone of our project’s ability to replay any throw. As explained previously,
once the player pushes the "Start” button to begin a throw, the system will switch into the
recording state, and begin storing video input (in the form of center-of-mass x and y locations)
as Addresses, overriding the oldest video input once memory is filled. Recording only stops
when our FSM switches from a recording to an idle state, signifying the end of a shot. Once a
player wants to replay a throw, the Referee will call on this memory to be placed upon the

display.

Page 7 of 69

6.111 Fall 2015

1.3.4 Referee Logic Block

This module is the arbiter of the project. It will take in the position of the ball in space, the
background of the ball (the arena), plus the user inputs of Start, Reset and Line Positions
in order to determine a result. This system has four states: idle, recording, replaying, and
game over. State transitions as well as the function of each state will be covered in the

implementation chapter.

1.3.5 Graphics Block

This module keeps track of points being input by the players. As explained in the design
choice section, we chose to have the Snappa referee only as an unbiased guide, but the
ultimate decision lies on the players themselves. This module gives information that will be
displayed, plus is utilized to tell our Referee Logic when to transition into the game over state,

once a team wins.

Page 8 of 69

Chapter 2
Design and Implementation

In the Overview chapter, we mentioned the different components of our system (Object
Recognition, Shot memory, Referee Logic, Graphics and Background display) separated
by their different functions and how they came together. We will now explore the various
modules that make up each of those components, and describe exactly how they were

designed and implemented.

2.1 NTSC CAMERA TO VGA DISPLAY (MATTHEW AND JUAN)

A variety of modules were given to us at the beginning of the project that would take in the
ntsc visual input from the camera, and output it onto the display in black and white, in the
form of YCrCb data. Modifications pertaining to address space were made to the ntsc_to_zbt
module so that YCrCb values would be transformed into RGB, and properly stored in zbt for
display purposes.

RGB values were then transformed using an RGB2HSV converter module that was pro-
vided, where no modifications needed to be made. Tracking, as explained in the Hue Detec-

tion module, is much more effective when done with HSV values.

2.2 HUE DETECTION (MATTHEW AND JUAN)

In order to track an object on camera, you have to process the camera image to determine
what parts of it are desirable and which can be ignored. For this processing, we chose to
use HSV(Hue, Saturation, Value) data from the image rather than the RGB data we display

on the monitor. HSV data is extracted using a module provided to us, but this module is

6.111 Fall 2015

computation intensive, so we had to delay all of our other video signals so they would line up
with their corresponding calculated HSV.

We chose to do all this because Hue in particular is a more consistent image metric than
RGB, so it allows the ranges we want to detect to be relatively stable. In order to test our ability
to detect their hue ranges, We used four round objects, each a different color, and toggled
between the positive hue ranges with a couple switches on our labkit. Pixels that matched
the selected Hue range were colored magenta to distinguish them on screen.

In testing, we found that we narrowed the Hue ranges as much as possible while still
allowing us to match the majority of each test object, but doing this was not sufficient to
eliminate the massive amount of noise generated by background lighting and the camera
itself. To cope with this, we decided to add additional range checking on saturation and value
as well.

Ultimately, pixels were colored magenta if they matched Hue, Saturation, and Value, they
were colored blue if they matched Hue and Saturation but not Value, and they were colored
green if they matched Hue but not Saturation. Pixels that did not match the Hue range were
either untouched or colored black depending on a switch on the labkit. Please see Figure 2.1

for reference.

Figure 2.1: VGA Display with blacked out camera image except for pixels matching combina-
tions of HSV.

Page 10 of 69

6.111 Fall 2015

2.3 CENTER OF MASS (MATTHEW)

Once the pixel data from the camera is marked according to its HSV parameters, an average
location has to be determined from all of pixels. This average, or center of mass, is found
by taking the x and y coordinates (hcount and vcount) of every pixel in a frame that is a
match, and summing them with their respective coordinates of the other matched pixels.
These sums are divided by the total number of matching pixels in a given frame to produce
coordinates for the center of mass of the frame. This center of mass position was displayed as

a green pixel, as seen in Figure 2.2.

Figure 2.2: Green pixel shows the effective tracking of the object

Page 11 of 69

6.111 Fall 2015

It was a requirement for our project that the center of mass calculator and hue detector
were both able to adjust to the rapid movement of a thrown object, but also be highly
resistant to noise introduced by having the object relatively far from the camera. We tried a
few different approaches, but we found the most success with limiting the window looked
at for hue detection. When the designated switch was toggled, the hue detector module
would only look at a fixed window surrounding the last calculated center of mass value
instead of the entire camera image. With this feature, the center of mass calculator is highly
resistant to noise because most of the image is ignored, and reacts quickly to movement as
long as the object does not move entirely out of the window in the time span of one frame

(0.05seconds).This tracking window can be seen in action on Figure 2.3.

Figure 2.3: VGA Display with blacked out camera image and matched values only around
COM point

2.4 FINITE STATE MACHINE (JUAN)

As explained in the Overview Chapter, the FSM module is in charge of all game logic and
hence, is the only module pertaining to the Referee Logic Block. Figure 2.4 shows the relevant
inputs to the FSM. The FSM then outputs scores and whether a throw counts as a point for
the Graphics module to display, plus its own state, to tell the Shot Memory module when to

begin storing and deleting memory. The states, as well as their functions and transitions, are

Page 12 of 69

6.111 Fall 2015

explained below:

Figure 2.4: Game Logic FSM.

2.4.1 Idle

The FSM starts in the idle state once the game is first turned on. Pressing the reset button will
clear all states and variables of the module and return to the idle state as well.

In the idle state, the system is waiting for any of a few user inputs. The threshold lines
and the score can be adjusted using their designated button inputs in this state. The system
will transition to the replay state if the replay switch is flipped, to the recording state if the
button is pressed signifying the start of a shot and to the game-over state should a score reach

7 points. Logic was added so that a win by 2 is required as well.

2.4.2 Replay

In the replay state, the system will loop through the recorded video clip of the previous shot.
The speed of this replay can be modified with push buttons, and the system will return to the
idle state by flipping the replay switch back to its original position. More information about

how to enact the actual storage of information in the Shot Replay module.

2.4.3 Recording

In the recording state is entered, the system will begin overwriting the memory holding the
previous shot by utilizing our Shot Replay module, which begins recording when the FSM
reaches this state.

The shot, and hence the recording, can end by two different mechanisms. The first one is

when the center of mass of the object crosses the table line. Once this occurs, the system will

Page 13 of 69

6.111 Fall 2015

record for 2 more seconds, after which it will time out and transition back to idle. Whether
the object passed the threshold height or not does not influence the transition, since that is
simply used by the Graphics module to either output a checkmark, or a cross.

The other way a shot can end is if the object crosses the threshold line, but not the table
line. This signifies that either the object was too high (leaving field of vision), or that the
opposing player caught it before it hit the table (no point then). It transitions back to idle

through a similar time-out mechanism as above.

2.4.4 Game-over

Once one side reaches 7 points (win by 2), the system will enter the game over state from the
idle state. In this state a new screen will be displayed showing the final score and commemo-
rating the winning side, as seen in the Graphics section. From here, the only transition is for

the user to reset for the next game.

2.5 SHOT REPLAY (JUAN)

This module creates an array of registers where we can store center of mass values. There are
27 registers, each 25 bits long (so that 13 bits of x-center and 12 bits of y-center information
can be stored). This array of registers (roughly 130 of them) allows for 130 different COM
values. As we obtain one value per frame, and we have 20 frames per second, we can store 6.5
seconds of information, which we believe would convey all relevant information of the shot,
thanks to our short time-outs.

This module is very similar to the mybram module explored in Lab 5. As given, this
module would be outputting information, until a write-enable signal told the module to store
information instead. For our purposes, it was modified so that it could write into memory
(when state became "record”), it could output from memory (when state became "replay”)
but it could also just stay idle, for when the system was in the "idle” state.

Additionally, code was written to create a clock and an address increase only when a new
center-of-mass calculation was outputted. The address number would get cleared when the
FSM transitioned (so that each replay would start at the beginning, and each recording would
be done on a fresh memory), and as a stretch goal, a button could be pressed to slow down
the speed of the address variable so that the replay could be seen in slow motion.

Replay would send out its COM values to the graphics, which would then superimpose a

pixel onto the display, as shown in Figure 2.5:

Page 14 of 69

6.111 Fall 2015

Figure 2.5: Replay in action.

Page 15 of 69

6.111 Fall 2015

2.6 GRAPHICS (MATTHEW)

The graphics we added to enhance the system are for the most part informative. The exception
to this is the pattern of blue bars that serve as the background for the display. They were
included in a module provided to us, but we chose to keep them for the final display because
we found them visually appealing. All of the other graphic additions are variations on a simple
sprite module that changes the value of a pixel to be displayed on screen for determined

ranges of hcount and vcount.

2.6.1 Ball Marker

This sprite receives the coordinates for the calculated center of mass and displays a small
square at that location. We use this marker to clearly see where the system thinks the ball
is on the screen. If the system is in replay mode, the square is twice as large and a different

color to more closely resemble the ball we are tracking rather than just a marker.

2.6.2 Threshold Lines

There are two lines generated on screen. The red line shows the threshold that a throw must
exceed in order to be eligible to score a point. The green line marks where the table begins, so
the system can determine once a shot has hit the table or dropped below it. The sprite that
is used to generate each of these lines takes a height input from the FSM corresponding to
a vcount and colors all pixels at that vcount within the area that the camera image is being
displayed. The lines can be adjusted with buttons on the labkit that modify the height inputs
provided by the FSM. These lines can be seen in Figure 2.6.

2.6.3 Low Indicator

The red "X” on the VGA display is an indication that the previous throw did not successfully
cross the low threshold line. If the previous throw had been high enough, a green check
mark of equivalent size would be displayed instead, as shown on Figure 2.7. The shapes were
made by writing out equations for the lines, rearranging them to remove all subtraction to
avoid potential negative numbers, and then turning them into inequalities with an additional

parameter for line thickness.

Page 16 of 69

6.111 Fall 2015

Figure 2.6: Threshold line in red, Table line in green

2.6.4 Scoreboard

The scoreboard contains three instances of a sprite module that acts as a segmented display.
The middle of the three modules is fixed as a dash, but the other two receive score inputs
that are passed along from the FSM. The score input determines which of the segments are

turned on so the module displays the number corresponding to the score.

Page 17 of 69

6.111 Fall 2015

Figure 2.7: Checkmark appears when object is high enough

2.6.5 Game Over

Finally, when one team wins text is displayed on the screen indicating which team was the
victor. The text is a single module containing modules for each letter as an individual sprite.
The bounds for letters were made using the same approach as the low indicator. There is
one input telling the module that the game has ended and another to tell it which side won.

Figure 2.8 shows this game-over screen.

Page 18 of 69

6.111 Fall 2015

Figure 2.8: Final VGA Display

Page 19 of 69

Chapter 3
Testing

Development of our project followed a pretty smooth path, with modules working in roughly
the order we needed, until we had a final, integrated, working project. In this chapter, we will
present how this process occurred from start to end, including any complications and how

we went about solving them.

3.1 VGA DISPLAY AND DELAYS

Getting the camera visual input to display in color onto the monitor was not very difficult,
and it had few set-backs. By the first week, we had a system where we were consistently
outputting visual input, which was key to troubleshooting the rest of the project. We did
encounter an issue with slight delays from the conversion to RGB, but this was quickly fixed

using the delay modules provided to delay hcount and vcount by a few clock cycles.

3.2 HUE DETECTION AND CENTER-OF-MASS

Reliably matching desired pixels was a long process. We started by getting a sense of the Hue
values of the objects through online resources. We refined these values by making blacking
out all pixels, except those matched. This process is explained in-depth in the previous
section on the Hue Matching module. These values were constantly refined throughout the
project after every compiling. One problem we encountered was the fact that depending on
the time of day, our system would work either very well, or not so well (due to incoming light
from the window). We also tried out a variety of colors, and found blue and green to work

exceptionally well. Red seemed to match the environment excessively, as shown in Figure 3.1.

20

6.111 Fall 2015

Figure 3.1: Red hue matching had too much background noise

This was the moment where we decided to use Saturation and Value to aid matching
as well as using a window for matching to eliminate all "noise”. Once we took these vital
steps, we found the COM calculator to be working very well. Again, due to the amount of
calculation involved in COM calculations, we settled on a delay of 60 clock cycles for all of

the ntsc variables (hcount, vcount, etc).

3.3 GAME LOGIC AND REPLAY

Getting the FSM up and running went very well. We had written code for it early on, while

still trying to get correct Hue matching and object tracking, so integration took less than a

Page 21 of 69

6.111 Fall 2015

day. We found that the FSM transitioned smoothly and correctly. We utilized the hex display
on the labkit in order to be sure that the FSM transitioned as desired.

Replay code was also written ahead of time, but it took more time to successfully integrate.
This was simply because we had to be very careful to clear memory at specific state transitions,
plus keep track of addresses throughout the process. Overall, it only took a couple of days to
enact a proper replay, including the option that allowed the replay to slow down to half of its

speed (by cutting address increment and clock transitions to half the frequency).

3.4 GRAPHICS AND GAME-PLAY

All graphics, as explained in the Graphics module section, were done as blobs, with a good bit
of math involved to determine good shapes. On every compile, we took the opportunity to
see how the blobs looked, and how they could be refined to look more appropriate. However,
the final week was enough time to make sure all graphics were suitable, and transitioned
based on the FSM transitioning.

We also had in mind, as a stretch goal, to add sound effects. We created a Coregen ROM
that stored the necessary bit values, and then we utilized the code from lab 5 to output AC97
sound. However, we were unable to make this work correctly. Though the addressing into the
CoreGen incremented correctly (as seen in the Hex Display), the CoreGen was not outputting

any values. After a brief discussion with Miren, we decided there was little to do but drop it.

3.5 CONCLUSION

Our Snappa Referee provides a clean interface that enhances a favorite pastime of ours.
It uses image data from a camera to track a thrown ball and determine whether the shot
was high enough to be eligible to score a point. This effectively ends the greatest point of
contention in what some might call the greatest game. Most importantly, it provided us with a
very important experience experience: trying to program a real world system with real world
constraints. We spent many hours combating noise among other enemies to bring forward a

robust system, and we hope the work we have done will help those in years to come.

Page 22 of 69

Chapter 4

Appendix

4.1 VERILOG

23

//

// File: zbt 6111 sample.v

// Date: 26-Nov-05

// Author: I. Chuang <ichuang@mit.edu>
//

// Sample code for the MIT 6.111 labkit demonstrating use of the ZBT

// memories for video display. Video input from the NTSC digitizer is
// displayed within an XGA 1024x768 window. One ZBT memory (ramO) is
used

// as the video frame buffer, with 8 bits used per pixel (black & white).
//

// Since the ZBT is read once for every four pixels, this frees up time
for

// data to be stored to the ZBT during other pixel times. The NTSC
decoder

// runs at 27 MHz, whereas the XGA runs at 65 MHz, so we synchronize

// signals between the two (see ntsc2zbt.v) and let the NTSC data be

// stored to ZBT memory whenever it is available, during cycles when

// pixel reads are not being performed.

//

// We use a very simple ZBT interface, which does not involve any clock
// generation or hiding of the pipelining. See zbt 6111.v for more info.
//

// switch[7] selects between display of NTSC video and test bars

// switch[6] is used for testing the NTSC decoder

// switch[1l] selects between test bar periods; these are stored to ZBT
// during blanking periods

// switch[0] selects vertical test bars (hardwired; not stored in ZBT)

//

//

// Bug fix: Jonathan P. Mailoa <jpmailoa@mit.edu>
// Date : 11-May-09

//

// Use ramclock module to deskew clocks; GPH

// To change display from 1024*787 to 800*600, use clock 40mhz and change
// accordingly. Verilog ntsc2zbt.v will also need changes to change
resolution.

//

// Date : 10-Nov-11

L1707 707 7077777777777 7777777777777 777777777777 777777777777777777777777777
/17777

//

// 6.111 FPGA Labkit -- Template Toplevel Module

//

// For Labkit Revision 004

//

//

// Created: October 31, 2004, from revision 003 file

// RAuthor: Nathan Ickes

//

L1770 777777777777 777
/17777

//

// CHANGES FOR BOARD REVISION 004

//

// 1) Added signals for logic analyzer pods 2-4.

// 2) Expanded "tv _in ycrcb" to 20 bits.

// 3) Renamed "tv_out data" to "tv out i2c data" and "tv_out sclk" to

// "tv_out i2c clock".

// 4) Reversed disp data in and disp data out signals, so that "out" is

// output of the FPGA, and "in" is an input.

// CHANGES FOR BOARD REVISION 003

// 1) Combined flash chip enables into a single signal, flash ce b.

// CHANGES FOR BOARD REVISION 002

// 1) Added SRAM clock feedback path input and output
// 2) Renamed "mousedata" to "mouse data"
// 3) Renamed some ZBT memory signals. Parity bits are now incorporated

into

// the data bus, and the byte write enables have been combined into
the

// 4-bit ram# bwe b bus.

// 4) Removed the "systemace clock" net, since the SystemACE clock is now
// hardwired on the PCB to the oscillator.

//

L1707 7777000777777 77777777777 777777777777777777777777777777777777777
117777

//

// Complete change history (including bug fixes)

//

// 2011-Nov-10: Changed resolution to 1024 * 768.

// Added back ramclok to deskew RAM clock

//

// 2009-May-11:
//

//

//

//

//

//

//

effect.

//

// 2005-Sep-09:
//

//

//

// 2005-Jan-23:
devices

//

to

//

//

// 2004-0Oct-31:
//

// 2004-May-01:
default

//

to

//

//

// 2004-Apr-29:
devices

//

to

Fixed memory management bug by 8 clock cycle forecast.
Changed resolution to 800 * 600.

Reduced clock speed to 40MHz.

Disconnected zbt 6111's ram clk signal.

Added ramclock to control RAM.

Added notes about raml default wvalues.

Commented out clock feedback out assignment.

Removed delayN modules because ZBT's latency has no more

Added missing default assignments to "ac97 sdata out",
"disp data out", "analyzer[2-3] clock" and

"analyzer[2-3] data".

Reduced flash address bus to 24 bits, to match 128Mb
actually populated on the boards. (The boards support up
256Mb devices, with 25 address lines.)

Adapted to new revision 004 board.

Changed "disp data in" to be an output, and gave it a
value. (Previous versions of this file declared this port
be an input.)

Reduced SRAM address busses to 19 bits, to match 18Mb

actually populated on the boards. (The boards support up

// 72Mb devices, with 21 address lines.)

//

// 2004-Apr-29: Change history started

//

L1777 7 7077777777777 7777777777777 777777777777777777777777777777777777777
/111777

module zbt 6111 sample(beep, audio reset b,
ac97 sdata out, ac97 sdata in, ac97 synch,
ac97 bit clock,

vga_out red, vga out green, vga out blue, vga out sync b,

vga out blank b, vga out pixel clock, vga out hsync,

vga out vsync,

tv_out ycrcb, tv out reset b, tv out clock,
tv_out i2c clock,

tv_out i2c data, tv_out pal ntsc, tv out hsync b,

tv_out vsync b, tv _out blank b, tv out subcar reset,

tv_in ycrcb, tv _in data valid, tv_in line clockl,

tv_in line clock2, tv in aef, tv_in hff, tv in aff,

tv_in i2c clock, tv in i2c data, tv_in fifo read,

tv_in fifo clock, tv _in iso, tv in reset b, tv in clock,

ram0 data, ram0 address, ram0O adv_1d, ramO clk, ram0O cen b,
ram0O ce b, ram0 oe b, ram0 we b, ram0 bwe b,

raml data, raml address, raml adv 1d, raml clk, raml cen b,
raml ce b, raml oe b, raml we b, raml bwe b,

clock feedback out, clock feedback in,

flash data, flash address, flash ce b, flash oe b,
flash we Db,

flash reset b, flash sts, flash byte b,

rs232 txd, rs232 rxd, rs232 rts, rs232 cts,

mouse clock, mouse data, keyboard clock, keyboard data,

clock 27mhz, clockl, clockz,

disp blank, disp data out, disp clock, disp rs, disp ce b,
disp reset b, disp data in,

button0, buttonl, button2, button3, button enter,
button right,

button left, button down, button up,

switch,

led,

userl, user2?2, user3, user4,

daughtercard,

systemace data, systemace address, systemace ce Db,

systemace we b, systemace oe b, systemace irq,
systemace mpbrdy,

analyzerl data, analyzerl clock,
analyzer2 data, analyzer2 clock,
analyzer3 data, analyzer3 clock,
analyzerd4 data, analyzer4 clock);

output beep, audio reset b, ac97 synch, ac97 sdata out;
input ac97 bit clock, ac97 sdata in;

output [7:0] vga out red, vga out green, vga out blue;
output vga out sync b, vga out blank b, vga out pixel clock,
vga_out hsync, vga out vsync;

output [9:0] tv_out ycrcb;
output tv out reset b, tv out clock, tv out i2c clock,
tv_out i2c data,
tv_out pal ntsc, tv _out hsync b, tv _out vsync b, tv out blank b,
tv_out subcar reset;

input [19:0] tv_in ycrcb;
input tv_in data valid, tv_in line clockl, tv_in line clock2,
tv _in aef,
tv_in hff, tv in aff;
output tv in i2c clock, tv in fifo read, tv_in fifo clock, tv in iso,
tv_in reset b, tv in clock;
inout tv_in i2c data;

inout [35:0] ramO data;

output [18:0] ramO_ address;

output ram0 adv 1d, ramO clk, ramO cen b, ram0 ce b, ram0 oe Db,
ram0 _we b;

output [3:0] ramO bwe b;

inout [35:0] raml data;

output [18:0] raml address;

output raml adv_1d, raml clk, raml cen b, raml ce b, raml oe b,
raml we b;

output [3:0] raml bwe b;

input clock feedback in;
output clock feedback out;

inout [15:0] flash data;

output [23:0] flash address;

output flash ce b, flash oe b, flash we b, flash reset b,
flash byte b;

input flash sts;

output rs232 txd, rs232 rts;
input rs232 rxd, rs232 cts;

input mouse clock, mouse data, keyboard clock, keyboard data;
input clock 27mhz, clockl, clock2;
output disp blank, disp clock, disp rs, disp ce b, disp reset b;

input disp data in;
output disp data out;

input button0O, buttonl, button2, button3, button enter, button right,
button left, button down, button up;

input [7:0] switch;

output [7:0] led;

inout [31:0] userl, user?2, user3, user4;
inout [43:0] daughtercard;

inout [15:0] systemace data;

output [6:0] systemace address;

output systemace ce b, systemace we b, systemace oe b;
input systemace irqg, systemace mpbrdy;

output [15:0] analyzerl data, analyzer2 data, analyzer3 data,
analyzerd4 data;
output analyzerl clock, analyzer2Z clock, analyzer3 clock,
analyzer4 clock;

L1717 7 7077777777777 7777777777 77
/17

//

// I/0 Assignments

//

N NN,
/17

// Audio Input and Output
assign beep= 1'b0;
// assign audio reset b = 1'b0;
// assign ac97 synch = 1'b0;
// assign ac97 sdata out = 1'b0;
/*
*/

// ac97 sdata in is an input

// Video Output

assign tv _out ycrcb = 10'hO;
assign tv_out reset b = 1'b0;
assign tv_out clock = 1'b0;

assign tv out i2c clock = 1'b0;
assign tv_out i2c data 1'b0;
assign tv_out pal ntsc = 1'b0;
assign tv_out hsync b = 1'bl;

assign tv _out vsync b = 1'bl;
assign tv _out blank b = 1'bl;
assign tv_out subcar reset = 1'b0;

// Video Input

//assign tv_in i2c clock = 1'b0;

assign tv_in fifo read = 1'bl;

assign tv_in fifo clock = 1'b0;

assign tv_in iso = 1'bl;

//assign tv_in reset b = 1'b0;

assign tv_in clock = clock 27mhz;//1'b0;
//assign tv_in i2c data = 1'bZ;

// tv_in ycrcb, tv_in data valid, tv _in line clockl,
tv_in line clockZ2,
// tv_in aef, tv _in hff, and tv in aff are inputs

// SRAMs
/* change lines below to enable ZBT RAM bank0 */

/*
assign ram0 data = 36'hZ;
assign ram(O address = 19'hO0;
assign ram0 clk = 1'b0;
assign ram0 we b = 1'bl;
assign ram0 cen b = 1'b0;// clock enable

*/

/* enable RAM pins */

assign ram0 ce b = 1'b0;
assign ram0 oe b = 1'b0;
assign ram0O _adv 1d = 1'b0O;
assign ram0 bwe b = 4'h0;

/**********/

assign raml data = 36'hZ;
assign raml address = 19'h0;
assign raml adv _1d = 1'bO;
assign raml clk = 1'b0;

//These values has to be set to 0 like ram0O if raml is used.

assign raml cen b = 1'bl;
assign raml ce b = 1'bl;
assign raml oe b = 1'bl;
assign raml we b = 1'bl;
assign raml bwe b = 4'hF;

// clock feedback out will be assigned by ramclock
// assign clock feedback out = 1'b0; //2011-Nov-10
// clock feedback in is an input

// Flash ROM

assign flash data = 16'hZ;
assign flash address = 24'h0;
assign flash ce b 1'bl;
assign flash oe b = 1'bl;
assign flash we b = 1'bl;
assign flash reset b = 1'b0;
assign flash byte b = 1'bl;
// flash sts is an input

// RS-232 Interface

assign rs232 txd = 1'bl;

assign rs232 rts = 1'bl;

// rs232 rxd and rs232 cts are inputs

// PS/2 Ports
// mouse clock, mouse data, keyboard clock, and keyboard data are
inputs

// LED Displays
/*
assign disp blank = 1'bl;
assign disp clock = 1'b0;
assign disp rs = 1'b0;
assign disp ce b = 1'bl;
assign disp reset b = 1'b0;
assign disp data out = 1'b0;
*/

// disp data in is an input

// Buttons, Switches, and Individual LEDs

//1lab3 assign led = 8'hFF;

// button0, buttonl, button2, button3, button enter, button right,
// button left, button down, button up, and switches are inputs

// User I/0s

assign userl = 32'hZ;
assign user2 = 32'hZ;
assign user3 = 32'hZ;
assign user4 = 32'hZ;

// Daughtercard Connectors
assign daughtercard = 44'hZ;

// SystemACE Microprocessor Port

assign systemace data = 16'hZ;
assign systemace address = 7'h0;
assign systemace ce b = 1'bl;
assign systemace we b = 1'bl;
assign systemace oe b = 1'bl;

// systemace irqg and systemace mpbrdy are inputs

// Logic Analyzer

assign analyzerl data = 16'h0;
assign analyzerl clock = 1'bl;
assign analyzer2 data = 16'h0;
assign analyzer2 clock = 1'bl;
assign analyzer3 data = 16'h0;
assign analyzer3 clock = 1'bl;
assign analyzer4 data = 16'h0;
assign analyzer4 clock = 1'bl;

L1117 T7777 7770007777777 7777777777777 777777777777 77777777777777777777777
/17

// Demonstration of ZBT RAM as video memory

// use FPGA's digital clock manager to produce a
// 65MHz clock (actually 64.8MHz)
wire clock 65mhz unbuf,clock 65mhz;

DCM vclkl(.CLKIN(clock_27mh27,.CLKFX(clock_65mhz_unbuf));

//

// synthesis attribute
// synthesis attribute
// synthesis attribute
// synthesis attribute

CLKFX DIVIDE of vclkl is 10
CLKFX MULTIPLY of vclkl is 24
CLK _FEEDBACK of vclkl is NONE
CLKIN PERIOD of wvclkl is 37

BUFG vclk2 (.0 (clock 65mhz),.I(clock 65mhz unbuf));

wire clk =

clock 65mhz;

// gph 2011-Nov-10

/*
[T D777 7777000777077 7777 7770777777077 7777777077777 7777 77777777777
/17

// Demonstration of ZBT RAM as video memory

// use FPGA's digital clock manager to produce a

// 40MHz clock (actually 40.5MHz)

wire clock 40mhz unbuf,clock 40mhz;

DCM vclkl (.CLKIN(clock 27mhz), .CLKFX(clock 40mhz unbuf));
// synthesis attribute CLKFX DIVIDE of vclkl is 2

// synthesis attribute CLKFX MULTIPLY of vclkl is 3

// synthesis attribute CLK FEEDBACK of vclkl is NONE

// synthesis attribute CLKIN PERIOD of vclkl is 37

BUFG vclk2(.0(clock 40mhz),.I(clock 40mhz unbuf));

wire clk = clock 40mhz;
*/ -
wire locked;
//assign clock feedback out = 0; // gph 2011-Nov-10

ramclock rc(.ref clock(clock 65mhz), .fpga clock(clk),
.ram0_ clock(ram0 clk),
//.raml clock(raml clk), //uncomment if
raml is used
.clock feedback in(clock feedback in),
.clock feedback out (clock feedback out),
.locked (locked)) ;

// power-on reset generation

wire power on reset; // remain high for first 16 clocks

SRL16 reset sr (.D(1'b0), .CLK(clk), .Q(power on reset),
.AO0(1'bl), .Al1(1'bl), .A2(1'bl), .A3(1'bl)):;

defparam reset sr.INIT = 16'hFFFF;

// ENTER button is user reset

wire reset,user reset;

debounce dbl (power on reset, clk, ~button enter, user reset);
debounce db2 (reset, clk, ~button0, button0 clean);
debounce db3(reset, clk, ~buttonl, buttonl clean);
debounce db4 (reset, clk, ~button3, button3 clean);
debounce db5 (reset, clk, ~button up, button up clean);
debounce db6 (reset, clk, ~button down, button down clean);
debounce db7 (reset, clk, ~button left, button left clean);
debounce db8 (reset, clk, ~button right, button right clean);

assign reset = user reset | power on reset;

// display module for debugging

reg [63:0] dispdata;

display l6hex hexdispl (reset, clk, dispdata,
disp blank, disp clock, disp rs, disp ce Db,
disp reset b, disp data out);

// generate basic XVGA video signals

wire [10:0] hcount;

wire [9:0] vcount;

wire hsync,vsync,blank;

xvga xvgal (clk,hcount, vcount, hsync, vsync,blank) ;

// wire up to ZBT ram

wire [35:0] vram write data;
wire [35:0] vram read data;
wire [18:0] vram addr;

wire vram we;

wire ramO clk not used;
zbt 6111 zbtl(clk, 1'bl, vram we, vram addr,
vram write data, vram read data,
ram0 clk not used, //to get good timing, don't connect
ram clk to zbt 6111

ram0 we b, ram0 address, ram0O data, ram0O cen b);

// ADV7185 NTSC decoder interface code

// adv7185 initialization module

adv7185init adv7185(.reset (reset), .clock 27mhz(clock 27mhz),
.source(1'b0), .tv _in reset b(tv_in reset b),
.tv_in i2c clock(tv_in i2c clock),
.tv_in i2c data(tv_in i2c data));

wire [29:0] ycrcb; // video data (luminance, chrominance)

wire [2:0] fvh; // sync for field, vertical, horizontal
wire dv; // data valid
ntsc decode decode (.clk(tv_in line clockl), .reset(reset),

.tv_in ycrcb(tv_in ycrcb[19:10]),
.ycrcb (ycrcb), .f(fvh[2]),
.v(fvh[1l]), .h(fvh[0]), .data valid(dv));

// Get 24 bit RGB data out of 30 bit ycrcb data and reduce it to 18
bit RGB data

wire [17:0] rgb;

wire[7:0] R,G,B;

YCrCb2RGB ycrcb2rgb (.R(R), .G(G), .B(B), .clk(tv_in line clockl),
.rst (reset),
.Y (ycrcb[29:20]), .Cr(ycrcb[19:10]),
.Cb(ycrcb[9:01));
assign rgb = {R[7:2],G[7:2],B[7:21};

// code to write NTSC data to video memory

wire [18:0] ntsc addr;

wire [35:0] ntsc data;

wire ntsc we;

ntsc to zbt n2z (clk, tv_in line clockl, fvh, dv, rgb,//ycrcb[29:22],
ntsc_addr, ntsc data, ntsc we, 1'b0);

// code to write pattern to ZBT memory (The blue bars in the
background)

reg [31:0] count;
always @ (posedge clk) count <= reset ? 0 : count + 1;
wire [18:0] vram addr2 = count[0+18:0];

// Select two possible widths of blue bars for the background
wire [35:0] vpat = {4{count[3+4:4],4'b0}};

// mux selecting read/write to memory based on which write-enable is

chosen
wire sw _ntsc = ~switch[7];
wire my we = sw_ntsc ? (hcount[0]==1'dl) : blank;
wire [18:0] write addr = sw ntsc ? ntsc addr : vram addr2;
wire [35:0] write data = sw _ntsc ? ntsc data : vpat;

//
//

// generate pixel value from reading ZBT memory
wire [17:0] vr pixel;
wire [18:0] vram addrl;

vram display vdl (reset,clk,hcount,vcount,vr pixel,
vram addrl,vram read data);

wire write enable = sw ntsc ? (my we & ntsc we) : my we;
assign vram addr = write enable ? write addr : vram addrl;
assign vram we = write enable;

// used in ZBT Ram Module
assign vram addr = my we ? write addr : vram addrl;
assign vram we = my we;
assign vram write data = write data;

// Convert 24 bit RGB data into 24 bit HSV data

wire [7:0] H,S,V;

rgb2hsv RGB2HSV (.clock(tv_in line clockl), .reset(reset),
.r({vr pixel[17:12],2'd0}),

.g({vr pixel[11:6],2'd0}),

b ({vr pixel[5:0],2'd0}), .h(H),

-s(S), .v(V));

// Delay VGA signals other than pixel to line up with pixel delays

wire delay b,delay hs,delay vs;

wire [17:0] delay pixel;

wire [10:0] delay hcount;

wire [9:0] delay vcount;

delayN delayB(.clk(clk), .in(blank), .out(delay b));
delayN delayHs (.clk(clk), .in(hsync), .out(delay hs));
delayN delayVs(.clk(clk), .in(vsync), .out(delay vs));

delayNbusl8 delayPix(.clk(clk), .in(vr pixel), .out(delay pixel));

delayNbusll delayHcount (.clk(clk), .in(hcount),

.out (delay hcount));

delayNbusl0 delayVcount (.clk(clk), .in(vcount),

.out (delay vcount));

// Raise a flag if current pixel matches ball color range
wire [17:0] hue pixel;

wire match;

wire [1:0] color;

wire background;

wire [12:0] x center;

wire [11:0] y center;

reg [10:0] x center test;

reg [9:0] y center test;

reg [31:0] middleHSV; // For display bank

always @ (posedge clk) begin

// For narrowing the window we look at for COM calculation

X _center test <= button3 clean ? 0 : x center;
y_center test <= button3 clean ? 0 : y center;
if (delay hcount==500 && delay vcount==500)

middleHSV <= {H, 4'b0, S, 4'b0, V};

end

assign color = {switch[1l], switch[O0]};

assign background = switch[2];

hue detector color tester(.clk(clk), .H(H), .S(S), .V(V),

.color(color), .background(background),
.hcount (delay hcount),

.vcount (delay vcount), .xX center (x center test),

.y_center(y center test), .match(match), .rgb(delay pixel),
.test rgb(hue pixel));

// Calculate the Center of mass of the frame

wire [23:0] matches in frame;

wire center done;

wire average;

assign average = 1;

center of mass center (.average (average), .clk(clk), .match(match),
.hcount (delay hcount), .vcount(delay vcount),

.x_center (x_center),

.y_center (y center),

.final count (matches in frame), .done(center done)

)7

wire [9:0] threshold height;
wire [9:0] table height;
wire [2:0] state;

wire record;

wire point;

wire [3:0] player 1 score;
wire [3:0] player 2 score;

FSM fsm(.clk(clk), .reset(reset), .up(button up clean),
.down (button down clean),
.throw start (buttonl clean),
.point enter (button0 clean), .point toggle(switch[4]),
.replay start(switch[5]), .line toggle(switch[6]),
.y_center (y center),
.threshold height (threshold height),
.table height (table height),
.state(state), .record(record), .point (point),
.player 1 score(player 1 score),
.player 2 score(player 2 score));

reg [8:0] addr bram;
reg clear addr bram;
reg speed;
reg center done 2;
reg speed toggle;
always @ (posedge center done) begin
speed <= speed + 1;
if (speed) center done 2 <= 1;
else if (speed == 0) center done 2 <= 0;

if (button right clean) speed toggle <= ~speed toggle;

if ((record) &(~clear addr bram)) begin
addr bram <= 0;

clear addr bram <= 1;

end
else if ((record)&(clear addr bram)) begin
addr bram <= addr bram + 1;
end
else if ((~record)é& (clear addr bram)) begin
addr bram <= 0;
clear addr bram <=0;
end
else if ((~record)&(switch[5])) begin
if (speed toggle)
addr _bram <= speed ? addr bram + 1 : addr bram;
else
addr _bram <= addr bram + 1;
end

end
wire [24:0] mem out;

// example use: make a 64K x 8 memory, this instance is 279 x 25 memory
wire center done speed;
wire center done slow;
assign center done slow = speed toggle ? center done 2
center done;
assign center done speed = switch[5] ? center done slow
center done;
mybram # (.LOGSIZE(9), .WIDTH(25))
example (.addr (addr_bram), .clk(center done speed),

.we (record), .din({x_center,y center}), .dout (mem out));

wire [12:0] x center disp;

wire [11:0] y center disp;

assign x center disp = switch[5] ? mem out[24:12] : x center;
assign y center disp = switch[5] ? mem out[11:0] : y center;

// Generate sprite based on calcualted center of mass of hue
wire [17:0] ball pixel;
ball generator ball(.x center(x center disp),

.y _center(y center disp),

.hcount (delay hcount), .vcount (delay vcount),
.matches (matches in frame),
.replay(switch[5]),
.background (hue pixel),
.pixel (ball pixel));

// Generate a Low line on screen
wire [17:0] low pixel;
line generator lowLine(.height (threshold height), .color(1l'bl),

.hcount (delay hcount), .vcount (delay vcount),
.background (ball pixel),
.pixel (low_pixel));
// Generate a Table line on screen
wire [17:0] table pixel;
line generator tablelLine(.height (table height), .color(1'b0),

.hcount (delay hcount), .vcount (delay vcount),
.background(low pixel),
.pixel (table pixel));

// Generate a indicator of valid throw height
wire [17:0] marker pixel;
low _indicator lowMarker (.point (point),
.x_start(11'd30),
.y _start(10'd30),

.hcount (delay hcount), .vcount (delay vcount),
.background(table pixel),
.pixel (marker pixel));

// Generate a Score on screen

wire [17:0] score pixel;

scoreboard score(.clk(clk), .left score(player 2 score),
.right score(player 1 score),

.hcount (delay hcount), .vcount (delay vcount),
.background (marker pixel),
.pixel (score pixel));

// Write the Game Over text on the screen when FSM in game over
state

reg game over;

wire left wins; // left will be red, right will be blue

assign left wins = (player 2 score > player 1 score);
always @ (posedge clk)begin
if (state == 7)
game over <= 1;
else
game over <= 0;
end
wire [17:0] word pixel;
Word # (.XSTART (20), .YSTART(400), .THICKNESS (20))

gameOver (.hcount (delay hcount), .vcount (delay vcount),
.background (score pixel), .pixel(word pixel),
.red wins(left wins));

// select output pixel data
reg [17:0] pixel;
reg b,hs,vs;

always @ (posedge clk)begin
// Set output pixel to either black and white bars, or pixel read
from VRAM
// pixel <= switch[0] ?
{hcount[8:6],3'b0, hcount[8:6],3'b0,hcount[8:6],3'b0} : vr pixel;
pixel <= game over ? word pixel : score pixel;
b <= delay b;
hs <= delay hs;
vs <= delay vs;
end

// VGA Output. In order to meet the setup and hold times of the
// AD7125, we send it ~clk.

assign vga out red = {pixel[17:12],2'b0};

assign vga_ out green = {pixel[11l:6],2'b0};

assign vga out blue = {pixel[5:0],2'b0};

assign vga out sync b = 1'bl; // not used

assign vga out pixel clock = ~clk;

assign vga out blank b = ~b;

assign vga out hsync = hs;
assign vga_ out vsync = vs;

// debugging

// assign led = ~{vram addr[18:13],reset,switch[0]};
// assign led = ~{state,2'b0, ready,sound on, reset};
assign led = ~{state, 2'b0, button3 clean, sound on, reset};

reg [31:0] dispcount = 0;
always @ (posedge clk)begin
if (dispcount == 27000000)begin
dispcount <= 0;
// dispdata <= {low_audio, 2'b0, sound addr, middleHSV,
4'b0, 1'b0, state};
dispdata <= {middleHSV ,29'b0, state};
end
else
dispcount <= dispcount + 1;
end
endmodule

L1717 7 7077777777777 7777777777 77
117777
// xvga: Generate XVGA display signals (1024 x 768 @ 60Hz)

module xvga (vclock,hcount,vcount,hsync,vsync,blank);
input wvclock;
output [10:0] hcount;
output [9:0] vcount;
output vsync;
output hsync;
output Dblank;

reg hsync,vsync,hblank,vblank,blank;
reg [10:0] hcount; // pixel number on current line
reg [9:0] vcount; // line number

// horizontal: 1344 pixels total
// display 1024 pixels per line

wire hsyncon, hsyncoff,hreset,hblankon;
assign hblankon = (hcount == 1023);
assign hsyncon = (hcount == 1047);
assign hsyncoff = (hcount == 1183);
assign hreset = (hcount == 1343);

// vertical: 806 lines total
// display 768 lines

wire vsyncon,vsyncoff,vreset,vblankon;
assign vblankon = hreset & (vcount == 767);
assign vsyncon = hreset & (vcount == 776);
assign vsyncoff = hreset & (vcount == 782);
assign vreset = hreset & (vcount == 805);

// sync and blanking

wire next hblank,next vblank;
assign next hblank = hreset ? 0 : hblankon ? 1 hblank;
assign next vblank = vreset ? 0 : vblankon ? 1 vblank;

always @ (posedge wvclock) begin
hcount <= hreset ? 0 : hcount + 1;
hblank <= next hblank;

hsync <= hsyncon ? 0 : hsyncoff ? 1 : hsync; // active low

vcount <= hreset ? (vreset ? 0 : vcount + 1) : wvcount;
vblank <= next vblank;
vsync <= vsyncon ? 0 : vsyncoff ? 1 : vsync; // active low
blank <= next vblank | (next hblank & ~hreset);
end
endmodule

/*

L1177 7 7077777777777 7777777777777 777777777777777777777777777777777777777
/17177

// xvga: Generate XVGA display signals (800 x 600 Q@ 60Hz)

module xvga (vclock,hcount,vcount,hsync,vsync,blank);
input wvclock;
output [10:0] hcount;
output [9:0] wvcount;
output wvsync;
output hsync;
output Dblank;

reg hsync,vsync,hblank, vblank,blank;
reg [10:0] hcount; // pixel number on current line
reg [9:0] vcount; // line number

// horizontal: 1056 pixels total
// display 800 pixels per line

wire hsyncon, hsyncoff, hreset, hblankon;
assign hblankon = (hcount == 799);
assign hsyncon = (hcount == 839);

assign hsyncoff = (hcount == 967);
assign hreset = (hcount == 1055);

// vertical: 628 lines total
// display 600 lines

wire vsyncon,vsyncoff,vreset,vblankon;
assign vblankon = hreset & (vcount == 599);
assign vsyncon = hreset & (vcount == 600);
assign vsyncoff = hreset & (vcount == 604);
assign vreset = hreset & (vcount == 627);

// sync and blanking

wire next hblank,next vblank;
assign next hblank = hreset ? 0 : hblankon ? 1 : hblank;
assign next vblank = vreset ? 0 : vblankon ? 1 : vblank;

always @ (posedge vclock) begin
hcount <= hreset ? 0 : hcount + 1;
hblank <= next hblank;

hsync <= hsyncon ? 0 : hsyncoff ? 1 : hsync; // active low
vcount <= hreset ? (vreset 2?2 0 : vcount + 1) : wvcount;
vblank <= next vblank;
vsync <= vsyncon ? 0 : vsyncoff ? 1 : vsync; // active low
blank <= next vblank | (next hblank & ~hreset);

end

endmodule */

N NN

/177

// generate display pixels from reading the ZBT ram

// note that the ZBT ram has 2 cycles of read (and write) latency

//

// We take care of that by latching the data at an appropriate time.
//

//

Note that the ZBT stores 36 bits per word; we use only 32 bits here,

// decoded into four bytes of pixel data.

//

// Bug due to memory management will be fixed. The bug happens because
// memory is called based on current hcount & vcount, which will actually
// shows up 2 cycle in the future. Not to mention that these incoming
data

// are latched for 2 cycles before they are used. Also remember that the
// ntsc2zbt's addressing protocol has been fixed.

// The original bug:

// -. At (hcount, vcount) = (100, 201) data at memory address(0,100,49)
// arrives at vram read data, latch it to vr data latched.

// -. At (hcount, vcount) = (100, 203) data at memory address(0,100,49)
// is latched to last vr data to be used for display.

// -. Remember that memory address(0,100,49) contains camera data

// pixel (100,192) - pixel (100,195).

// -. At (hcount, vcount) = (100, 204) camera pixel data(100,192) is
shown.

// —-. At (hcount, vcount) = (100, 205) camera pixel data(100,193) is
shown.

// —-. At (hcount, vcount) = (100, 206) camera pixel data(100,194) is
shown.

// —-. At (hcount, vcount) = (100, 207) camera pixel data(100,195) is
shown.

//

// Unfortunately this means that at (hcount == 0) to (hcount == 11) data
from

// the right side of the camera is shown instead (including possible sync
signals) .

// To fix this, two corrections has been made:

// —-. Fix addressing protocol in ntsc_ to zbt module.

// —-. Forecast hcount & vcount 8 clock cycles ahead and use that

// instead to call data from ZBT.

module vram display(reset,clk,hcount,vcount,vr pixel,

8)

vram addr,vram read data);

input reset, clk;

input [10:0] hcount;

input [9:0] vcount;

output [17:0] vr pixel;
output [18:0] vram addr;
input [35:0] vram read data;

//forecast hcount & vcount 8 clock cycles ahead to get data from ZBT
wire [10:0] hcount f = (hcount >= 1048) ? (hcount - 1048) : (hcount +

wire [9:0] vcount f = (hcount >= 1048) ? ((vcount == 805) ? 0 : vcount

+ 1) : vcount;

wire [18:0] vram addr = {vcount f, hcount £f[9:1]};

wire hcd4d = hcount[0];

reg [17:0] vr pixel;

reg [35:0] vr data latched;
reg [35:0] last vr data;

always @ (posedge clk)
last vr data <= (hc4==1'dl) ? vr data latched : last vr data;

always @ (posedge clk)
vr data latched <= (hc4==1'd0) ? vram read data : vr data latched;

always Q(*) // each 36-bit word from RAM is decoded to 4 bytes
case (hc4)
//2'd3: vr pixel = last vr data[7:0];
//2'd2: vr pixel = last vr data[7+8:0+8];
2'dl: vr pixel = last vr data[l7:0];
2'd0: vr pixel = last vr data[l7+18:0+18];
endcase

endmodule // vram display

[ITTTTT777 7777000777777 7777777777777 7777777777777 7777777777777777777777
/117

// parameterized delay line

//module delayN(clk,in,out);
// input clk;

// input in;

// output out;

//

// parameter NDELAY = 3;

//

// reg [NDELAY-1:0] shiftreg;

// wire out = shiftreg[NDELAY-1];

//

// always @ (posedge clk)

// shiftreg <= {shiftreg[NDELAY-2:0],1in};
//

//endmodule // delayN

// delay 1 bit by N clock cycles, used by b, hs, vs
module delayN(clk,in,out);

input clk;

input in;

output out;

parameter NDELAY = 56;

reg [NDELAY-1:0] shiftreg;
wire out = shiftreg[NDELAY-1];

always @ (posedge clk)
shiftreg <= {shiftreg[NDELAY-2:0],1in};

endmodule // delayN

// delay 18 bits by N clock cycles
module delayNbusl8 (clk, in,out) ;

input clk;
input [17:0] in;
output [17:0] out;

parameter NDELAY = 56;
parameter BUS = 18;

reg [NDELAY*BUS-1:0] shiftreg;
wire out = shiftreg[BUS*NDELAY-1:BUS* (NDELAY-1)];

always @ (posedge clk)
shiftreg <= {shiftreg[BUS* (NDELAY-1)-1:0],in};

endmodule // delayN

// delay 11 bits by N clock cycles
module delayNbusll (clk, in,out) ;
input clk;
input [10:0] in;
output [10:0] out;

parameter NDELAY = 56;
parameter BUS = 11;

reg [NDELAY*BUS-1:0] shiftreg;
wire out = shiftreg[BUS*NDELAY-1:BUS* (NDELAY-1)];

always @ (posedge clk)
shiftreg <= {shiftreg[BUS* (NDELAY-1)-1:0],in};

endmodule // delayN

// delay 10 bits by N clock cycles
module delayNbuslO (clk,in,out);
input clk;
input [9:0] in;
output [9:0] out;

parameter NDELAY = 56;
parameter BUS = 10;

reg [NDELAY*BUS-1:0] shiftreg;
wire out = shiftreg[BUS*NDELAY-1:BUS* (NDELAY-1)];

always @ (posedge clk)
shiftreg <= {shiftreg[BUS* (NDELAY-1)-1:0],1in};

endmodule // delayN

N o
/17

// ramclock module

L1771 7 07777777777 77
117777

//

// 6.111 FPGA Labkit -- ZBT RAM clock generation

//

//

// Created: April 27, 2004

// BAuthor: Nathan Ickes

//

L1717 7 7777777777777 7777777777777 777777777777777777777777777777777777777
/17777

//

// This module generates deskewed clocks for driving the ZBT SRAMs and
FPGA

// registers. A special feedback trace on the labkit PCB (which is length
// matched to the RAM traces) 1is used to adjust the RAM clock phase so
that

// rising clock edges reach the RAMs at exactly the same time as rising
clock

// edges reach the registers in the FPGA.

//

// The RAM clock signals are driven by DDR output buffers, which further
// ensures that the clock-to-pad delay is the same for the RAM clocks as
it is

// for any other registered RAM signal.

//

// When the FPGA is configured, the DCMs are enabled before the chip-
level I/0

// drivers are released from tristate. It is therefore necessary to

// artificially hold the DCMs in reset for a few cycles after
configuration.

// This is done using a 16-bit shift register. When the DCMs have locked,
the

// <lock> output of this mnodule will go high. Until the DCMs are locked,
the

// ouput clock timings are not guaranteed, so any logic driven by the

// <fpga clock> should probably be held inreset until <locked> is high.
//

L1777 7 7077777777777 7777777777777 777777777777777777777777777777777777777
/17777

module ramclock(ref clock, fpga clock, ramO clock, raml clock,
clock feedback in, clock feedback out, locked);

input ref clock; // Reference clock input

output fpga clock; // Output clock to drive FPGA logic

output ram0 clock, raml clock; // Output clocks for each RAM chip

input clock feedback in; // Output to feedback trace

output clock feedback out; // Input from feedback trace

output locked; // Indicates that clock outputs are
stable

wire ref clk, fpga clk, ram clk, fb clk, lockl, lock2, dcm reset;
L1177 777
/17

//To force ISE to compile the ramclock, this line has to be removed.
//IBUFG ref buf (.0O(ref clk), .I(ref clock));

assign ref clk = ref clock;
BUFG int buf (.0O(fpga clock), .I(fpga clk));

DCM int decm (.CLKFB (fpga clock),

.CLKIN (ref clk),
.RST (dcm_reset),
.CLKO (fpga_clk),
.LOCKED (lockl)) ;

// synthesis attribute DLL FREQUENCY MODE of int dcm is "LOW"

// synthesis attribute DUTY CYCLE CORRECTION of int dcm is "TRUE"
// synthesis attribute STARTUP WAIT of int dcm is "FALSE"

// synthesis attribute DFS FREQUENCY MODE of int dcm is "LOW"

// synthesis attribute CLK FEEDBACK of int dem is "1X"

// synthesis attribute CLKOUT PHASE SHIFT of int dcm is "NONE"

// synthesis attribute PHASE SHIFT of int dcm is O

BUFG ext buf (.O(ram clock), .I(ram clk));

IBUFG fb buf (.0(fb clk), .I(clock feedback in));

DCM ext decm (.CLKFB(fb clk),
.CLKIN (ref clk),
.RST (dcm_reset),
.CLKO (ram_clk),

.LOCKED (lock2));

//
//
//
//
//
//
//

synthesis
synthesis
synthesis
synthesis
synthesis
synthesis
synthesis

attribute
attribute
attribute
attribute
attribute
attribute
attribute

DLL_FREQUENCY MODE of ext dcm is "LOW"
DUTY CYCLE CORRECTION of ext dcm is "TRUE"
STARTUP WAIT of ext dcm is "FALSE"

DFS FREQUENCY MODE of ext dcm is "LOW"
CLK FEEDBACK of ext dcm is "1X"

CLKOUT PHASE SHIFT of ext dcm is "NONE"
PHASE SHIFT of ext dcm is O

SRL16 dcm rst sr (.D(1'b0), .CLK(ref clk), .Q(dcm reset),
.A0(1'bl), .Al(1'bl), .A2(1'bl), .A3(1'bl));
// synthesis attribute init of dcm rst sr is "000F";

OFDDRRSE ddr reg0 (.Q(ram0 clock), .CO(ram clock), .Cl(~ram clock)

.S(1'b0));

.CE (1'bl), .DO(1'b1l), .D1(1'b0O), .R(1'bO),
OFDDRRSE ddr regl (.Q(raml clock), .CO(ram clock), .Cl(~ram clock),
.CE (1'bl), .DO(1'b1l), .D1(1'O), .R(1'bO), .S(1'bQ));
OFDDRRSE ddr reg2 (.Q(clock feedback out), .CO(ram clock),
.Cl(~ram clock),
.CE (1'bl), .DO(1'bl), .D1(1'b0O), .R(1'bO), .S(1'b0Q));

assign locked = lockl && lock2;

endmodule

R R R N R N N N N R N N N N N N N N N R R R R R R R R R R RN

module YCrCb2RGB (R, G, B, clk, rst, Y, Cr, Cb);
output [7:0] R, G, B;

input clk, rst;

input[9:0] Y, Cr, Cb;

wire [7:0] R,G,B;

reg [20:0] R _int,G int,B int,X int,A int,Bl int,B2 int,C int;
reg [9:0] constl,const2,const3,const4,const5;

reg[9:0] Y reg, Cr reg, Cb reg;

//registering constants

always @ (posedge clk)

begin
constl = 10'b 0100101010; //1.164 = 01.00101010
const2 10'b 0110011000; //1.596 01.10011000
const3 = 10'b 0011010000; //0.813 = 00.11010000
const4 10'b 0001100100; //0.392 00.01100100
const5 = 10'b 1000000100; //2.017 = 10.00000100

end

always @ (posedge clk or posedge rst)

if (rst)
begin
Y reg <= 0; Cr reg <= 0; Cb_reg <= 0;
end

else
begin

Y reg <= Y; Cr reg <= Cr; Cb_reg <= Cb;

end

always @ (posedge clk or posedge rst)

if (rst)
begin
A int <= 0; Bl int <= 0; B2 int <= 0; C _int <= 0; X int <= 0;
end
else
begin
X int <= (constl * (Y reg - 'd64)) ;
A int <= (const2 * (Cr_reg - 'dbl2));
Bl int <= (const3 * (Cr reg - 'd512));
B2 int <= (const4 * (Cb _reg - 'd512));
C int <= (const5 * (Cb _reg - 'd512));
end

always @ (posedge clk or posedge rst)
if (rst)
begin
R int <= 0; G int <= 0; B _int <= 0;
end
else
begin
R int <= X int + A int;
G int <= X int - Bl int - B2 int;
B int <= X int + C_int;
end

/*always Q@ (posedge clk or posedge rst)
if (rst)
begin
R int <= 0; G int <= 0; B int <= 0;
end
else
begin
X int <= (constl * (Y reg - 'dé64)) ;
R int <= X int + (const2 * (Cr_reg - 'd512));

G int <= X int - (const3 * (Cr _reg - 'd512)) - (constd4d * (Cb reg -
'd512)) ;

B int <= X int + (constb * (Cb reg - 'd512));

end
*/
/* limit output to 0 - 4095, <0 equals o and >4095 equals 4095 */
assign R = (R int[20]) 2?2 0 : (R _int[19:18] == 2'b0) ? R int[17:10]
8'b11111111;
assign G = (G _int[20]) 2 0 : (G int[19:18] == 2'b0) ? G int[17:10]
8'b11111111;
assign B = (B int[20]) 2 0 : (B int[19:18] == 2'b0) ? B int[17:10]

8'b11111111;

endmodule

L1107 7 777777777777 7777777777777 777777/77/777777777777777777777777777777777
/177717777
module Word # (parameter XSTART=0, YSTART=0, THICKNESS=10,
RED={6'h3f,6'h00,6'h00},
GREEN={6'h00,6'h3f,6'h00},
BLUE={6'h00, 6'h00, 6'"h3f})
(
input [10:0] hcount,
input [9:0] wvcount,
input [17:0] background,
output [17:0] pixel,
input red wins

) ;

wire [17:0] b pixel, 1 pixel, u pixel, e pixel,
w pixel,o pixel,n pixel, r pixel,
e2 pixel, d pixel;

// WON
W # (.XSTART (XSTART+550), .YSTART (YSTART), .THICKNESS (THICKNESS),
.COLOR (GREEN))
w (.hcount (hcount), .vcount (vcount), .background(background),
.pixel (w_pixel));

O # (.XSTART (XSTART+725), .YSTART (YSTART), .THICKNESS (THICKNESS),
.COLOR (GREEN))
o(.hcount (hcount), .vcount(vcount), .background(w pixel),
.pixel (o_pixel));

N # (.XSTART (XSTART+860), .YSTART (YSTART), .THICKNESS (THICKNESS),
.COLOR (GREEN))
n (.hcount (hcount), .vcount (vcount), .background(o pixel),

.pixel (n_pixel));

// BLUE
B # (.XSTART (XSTART), .YSTART(YSTART), .THICKNESS (THICKNESS),
.COLOR (BLUE))
b (.hcount (hcount), .vcount(vcount), .background(n pixel),
.pixel (b_pixel));

L # (.XSTART (XSTART+125), .YSTART(YSTART), .THICKNESS (THICKNESS),
.COLOR (BLUE))
1 (.hcount (hcount), .vcount(vcount), .background(b pixel),
.pixel (1 pixel));

U # (.XSTART (XSTART+250), .YSTART (YSTART), .THICKNESS (THICKNESS),
.COLOR (BLUE))
u(.hcount (hcount), .vcount (vcount), .background(l pixel),
.pixel (u pixel));

E # (.XSTART (XSTART+375), .YSTART(YSTART), .THICKNESS (THICKNESS),
.COLOR (BLUE))
e (.hcount (hcount), .vcount (vcount), .background(u pixel),
.pixel (e pixel));

// RED
R # (.XSTART (XSTART+50), .YSTART(YSTART), .THICKNESS (THICKNESS),
.COLOR (RED))
r (.hcount (hcount), .vcount (vcount), .background(n pixel),
.pixel (r pixel));

E # (.XSTART (XSTART+175), .YSTART (YSTART), .THICKNESS (THICKNESS),
.COLOR (RED))
e2 (.hcount (hcount), .vcount(vcount), .background(r pixel),
.pixel (e2 pixel));

D # (.XSTART (XSTART+300), .YSTART (YSTART), .THICKNESS (THICKNESS),
.COLOR (RED))
d(.hcount (hcount), .vcount (vcount), .background(e2 pixel),
.pixel (d pixel));

assign pixel = red wins ? d pixel : e pixel;
endmodule

// B
module B # (parameter XSTART=0, YSTART=0, THICKNESS=10,
COLOR={6'h3f,6'h3f,6'h3f})
(

input [10:0] hcount,

input [9:0] wvcount,

input [17:0] background,

output reg [17:0] pixel

)

always @ * begin
// Letter will be contained in 75 x 150 block within 125 x 200
block
if ((hcount > XSTART + 25 && hcount < XSTART + 100) && (vcount
> YSTART + 25 && vcount < YSTART + 175)) begin
if (hcount > XSTART + 75)begin
if (vcount < YSTART + 100)begin
if ((hcount + YSTART > wvcount + XSTART + 50) ||
(hcount + wvcount > 175 + XSTART + YSTART))
pixel = background;
else
pixel = COLOR;
end
else begin

if ((hcount + YSTART + 25 > vcount + XSTART) ||
(hcount + wvcount > 250 + XSTART + YSTART))
pixel = background;
else
pixel = COLOR;
end
end
else 1f ((hcount < XSTART + 50))
pixel = COLOR;
else 1f ((vcount < YSTART + 50) || (vcount > YSTART + 150))
pixel = COLOR;
else 1f ((vcount > YSTART + 90) && (vcount <
YSTART + 110))
pixel = COLOR;
else
pixel = background;
end
else begin
pixel = background;
end
end

endmodule

// D
module D # (parameter XSTART=0, YSTART=0, THICKNESS=10,
COLOR={6'h3f,6'h3f,6'h3f})
(

input [10:0] hcount,

input [9:0] wvcount,

input [17:0] background,

output reg [17:0] pixel

)

always @ * begin
// Letter will be contained in 75 x 150 block within 125 x 200
block
if ((hcount > XSTART + 25 && hcount < XSTART + 100) && (vcount >
YSTART + 25 && vcount < YSTART + 175)) begin
if (hcount > XSTART + 75)begin
if ((hcount + YSTART > vcount + XSTART + 50) || (hcount +
vcount > 250 + XSTART + YSTART))
pixel = background;
else
pixel = COLOR;
end
else i1if ((hcount < XSTART + 50))
pixel = COLOR;
else if ((vcount < YSTART + 50) || (vcount > YSTART + 150))
pixel = COLOR;
else
pixel = background;
end
else begin
pixel = background;
end
end

endmodule

// E
module E # (parameter XSTART=0, YSTART=0, THICKNESS=10,
COLOR={6'h3f,6'h3f,6'h3f})
(

input [10:0] hcount,

input [9:0] wvcount,

input [17:0] background,

output reg [17:0] pixel

) ;

always @ * begin

// Letter N will be contained in 75 x 150 block within 125 x 200

block
if ((hcount > XSTART + 25 && hcount < XSTART + 100) && (vcount >
YSTART + 25 && vcount < YSTART + 175)) begin
if ((hcount < XSTART + 50))
pixel = COLOR;
else 1f ((vcount < YSTART + 50) || (vcount > YSTART + 150)
((vcount > YSTART + 90) && (vcount < YSTART + 110)))
pixel = COLOR;
else
pixel = background;
end
else begin
pixel = background;
end
end

endmodule

// L
module L # (parameter XSTART=0, YSTART=0, THICKNESS=10,
COLOR={6'h3f,6'h3f,6'h3f})
(

input [10:0] hcount,

input [9:0] wvcount,

input [17:0] background,

output reg [17:0] pixel

)

always @ * begin
// Letter will be contained in 75 x 150 block within 125 x 200
block
if ((hcount > XSTART + 25 && hcount < XSTART + 100) && (vcount >
YSTART + 25 && vcount < YSTART + 175)) begin
if ((hcount < XSTART + 50))
pixel = COLOR;
else i1f ((vcount > YSTART + 150))
pixel = COLOR;
else
pixel = background;
end
else begin
pixel = background;
end
end

endmodule

// N
module N # (parameter XSTART=0, YSTART=0, THICKNESS=10,

COLOR={6'h3f,6'h3f,6"'h3f})
(
input [10:0] hcount,
input [9:0] wvcount,
input [17:0] background,
output reg [17:0] pixel
)

wire [11:0] double hcount;
assign double hcount = (hcount-XSTART) << 1;
always @ * begin
// Letter will be contained in 75 x 150 block within 125 x 200
block
if ((hcount > XSTART + 15 && hcount < XSTART + 110) && (vcount >
YSTART + 25 && vcount < YSTART + 175)) begin
if ((hcount < XSTART + 40) || (hcount > XSTART + 85))
pixel = COLOR;
else if(((double hcount) + YSTART + THICKNESS > vcount + 25)
&& ((double hcount) + YSTART < THICKNESS + vcount + 25))
pixel = COLOR;
else
pixel = background;
end
else begin
pixel = background;
end
end

endmodule

// O
module O # (parameter XSTART=0, YSTART=0, THICKNESS=10,

COLOR={6'h3f,6'h3f,6'h3f})
(
input [10:0] hcount,
input [9:0] wvcount,
input [17:0] background,
output reg [17:0] pixel
) ;

always @ * begin
// Letter N will be contained in 75 x 150 block within 125 x 200
block
if ((hcount > XSTART + 25 && hcount < XSTART + 100) && (vcount >
YSTART + 25 && vcount < YSTART + 175)) begin

if ((hcount < XSTART + 50) || (hcount > XSTART + 75))
pixel = COLOR;
else 1if ((vcount < YSTART + 50) || (vcount > YSTART + 150))
pixel = COLOR;
else
pixel = background;
end

else begin
pixel = background;
end
end

endmodule

//R
module R # (parameter XSTART=0, YSTART=0, THICKNESS=10,
COLOR={6'h3f,6'h3f,6'h3f})
(

input [10:0] hcount,

input [9:0] wvcount,

input [17:0] background,

output reg [17:0] pixel

) ;

wire [11:0] double hcount;
assign double hcount = (hcount-XSTART) << 1;
always @ * begin

// Letter will be contained in 75 x 150 block within 125 x 200

block
if ((hcount > XSTART + 25 && hcount < XSTART + 100) &&
YSTART + 25 && vcount < YSTART + 175)) begin

(vcount >

if ((hcount > XSTART + 75) && (vcount < YSTART + 110)) begin

if ((hcount + YSTART > wvcount + XSTART + 50)
vcount > 185 + XSTART + YSTART))
pixel = background;
else
pixel = COLOR;
end
else 1f ((hcount < XSTART + 50))
pixel = COLOR;

(hcount +

else 1f ((vcount < YSTART + 50) || ((vcount >

YSTART + 90) && (vcount < YSTART + 110)))
pixel = COLOR;

else if(((double hcount) + YSTART + THICKNESS > vcount + 25)

&&

((double hcount) + YSTART <

THICKNESS + vcount + 25) &&

(vcount > YSTART + 100))

pixel = COLOR;
else
pixel = background;
end
else begin
pixel = background;
end
end

endmodule

// U
module U # (parameter XSTART=0, YSTART=0, THICKNESS=10,
COLOR={6'h3f,6'h3f,6"'h3f})
(

input [10:0] hcount,

input [9:0] wvcount,

input [17:0] background,

output reg [17:0] pixel

) ;

always @ * begin

// Letter will be contained in 75 x 150 block within 125 x 200

block

if ((hcount > XSTART + 25 && hcount < XSTART + 100) && (vcount >

YSTART + 25 && vcount < YSTART + 175)) begin
if ((hcount < XSTART + 50) || (hcount > XSTART + 75))
pixel = COLOR;
else 1f ((vcount > YSTART + 150))
pixel = COLOR;
else
pixel = background;
end
else begin
pixel = background;
end
end

endmodule

/ /W
module W # (parameter XSTART=0, YSTART=0, THICKNESS=10,
COLOR={6'h3f,6'h3f,6'h3f})
(

input [10:0] hcount,

input [9:0] wvcount,

input [17:0] background,

output reg [17:0] pixel

) ;

always @ * begin

// Letter W will be contained in 125 x 150 block within 175 x 200

block

if ((hcount > XSTART + 25 && hcount < XSTART + 150) && (vcount >

YSTART + 25 && vcount < YSTART + 175)) begin
if ((hcount < XSTART + 50) || (hcount > XSTART + 125))
pixel = COLOR;

else 1if ((hcount > XSTART + 75) && (hcount < XSTART + 100))

pixel = COLOR;
else if (vcount > YSTART + 150)
pixel = COLOR;
else
pixel = background;
end
else begin
pixel = background;
end
end

endmodule

N o o

/17777777
module scoreboard # (parameter RED={6'h3f,6'h00,6'h00},
BLUE={6'h00,6'h00,6"'h3f})
(

input clk,

input [3:0] left score,

input [3:0] right score,

input [10:0] hcount,

input [9:0] wvcount,

input [17:0] background,
output [17:0] pixel
) ;

wire [17:0] left pixel, right pixel, dash pixel;
score generator # (.XSTART(300), .YSTART(30), .COLOR(RED))
leftScore(.clk(clk), .score(left score),
.hcount (hcount), .vcount (vcount),
.background (background),
.pixel (left pixel));
score generator # (.XSTART(600), .YSTART(30), .COLOR(BLUE))
rightScore(.clk(clk), .score(right score),
.hcount (hcount), .vcount (vcount),
.background (left pixel),
.pixel (right pixel));
score generator # (.XSTART (450), .YSTART (30))
dash(.clk(clk), .score(4'hF),
.hcount (hcount), .vcount (vcount),
.background(right pixel), .pixel(dash pixel));

assign pixel = dash pixel;
endmodule

L1770 770777777777 7777 777777777777 7777777777777777777777777777777777777
/171177777
module score generator # (parameter XSTART=0, YSTART=0,
COLOR={6'h3f,6'h3f,6'h3f})
(
input clk,
input [3:0] score, // 0-9 correspond to 0-9, otherwise dash
input [10:0] hcount,
input [9:0] wvcount,
input [17:0] background,
output reg [17:0] pixel
)

reg A,B,C,D,E,F,G;
// Designate the segements corresponding to the number we want to
display
always @ (posedge clk)begin
case (score)

4'h0:begin
A <= 1;
B <= 1;
C <= 1;
D <= 1;
E <= 1;
F <= 1;
G <= 0;

end

4'hl:begin
A <= 0;
B <= 1;
C <= 1;
D <= 0;
E <= 0;
F <= 0;
G <= 0;

end

4'h2:begin

L N S LN TR TN LT TN T NN TN

o o o o LN LSRN o~ N
O O O O L B e B T B |

A O O o R = CHd OO o O a0 au A0
T T T T S S S S S Snonon
V V VYV VYV YV g<<<<<<< g<<<<<<< g<<<<<<< g<<<<<<< g<<<<<<< g<<<<<
< MOAMMBMO MABCDEFG MABCDEFG mABCDEFG mABCDEFG mABCDEFG MABCDE

(e8] < Lo O ~ [e6]

T o T O T T T T

a - o - a - g - . .

0 < 0 < O < 0w 0 < 0 <

F <= 1;
G <= 1;
end
4'h9:begin
A<= 1;
B <= 1;
Cc <= 1;
D <= 1;
E <= 0;
F <= 1;
G <= 1;
end
default:begin
A <= 0;
B <= 0;
C <= 0;
D <= 0;
E <= 0;
F <= 0;
G <= 1;
end
endcase

end
// Fill in the appropriate segments
always @* begin
if ((hcount > XSTART + 20 && hcount < XSTART + 80) &&
(vcount > YSTART + 0 && vcount < YSTART + 20))
pixel = A ? COLOR : background;
else 1if ((hcount > XSTART + 80 && hcount < XSTART + 100) &&
(vcount > YSTART + 0 && vcount < YSTART + 100))
pixel = B ? COLOR : background;
else 1f ((hcount > XSTART + 80 && hcount < XSTART + 100) &&
(vcount > YSTART + 100 && vcount < YSTART + 200))
pixel = C ? COLOR : background;
else 1f ((hcount > XSTART + 20 && hcount < XSTART + 80) &&
(vcount > YSTART + 180 && vcount < YSTART + 200))
pixel = D ? COLOR : background;
else 1if ((hcount > XSTART + 0 && hcount < XSTART + 20) &&
(vcount > YSTART + 100 && vcount < YSTART + 200))
pixel = E ? COLOR : background;
else 1f ((hcount > XSTART + 0 && hcount < XSTART + 20) &&
(vcount > YSTART + 0 && vcount < YSTART + 100))
pixel = F ? COLOR : background;
else 1f ((hcount > XSTART + 20 && hcount < XSTART + 80) &&
(vcount > YSTART + 90 && vcount < YSTART + 110))
pixel = G ? COLOR : background;
else
pixel = background;
end

endmodule

[/170777 7777777777777 777777777 77
11771771777
module rgb2hsv(clock, reset, r, g, b, h, s, Vv);

input wire clock;

input wire reset;

input wire [7:0] r;

input wire [7:0] g;

input wire [7:0] b;

output reg [7:0] h;
output reg [7:0] s;
output reg [7:0] v;
reg [7:0] my r delayl, my g delayl, my b delayl;

reg :0] my r delay2, my g delay2, my b delay2;
reg :0] my_r, my g, my b;
reg :0] min, max, delta;

reg [15:0] s bottom;

reg [15:0] h top;

reg [15:0] h bottom;

wire [15:0] s quotient;

wire [15:0] s remainder;

wire s rfd;

wire [15:0] h quotient;

wire [15:0] h remainder;

wire h rfd;

reg [7:0] v_delay [19:0];

reg [18 0] h negative;

reg [15:0] h add [18:0];

reg [4:0] 1i;

// Clocks 4-18: perform all the divisions
//the s divider (16/16) has delay 18
//the hue div (16/16) has delay 18

[7
[7
[7
reg [15:0] s_top;
[
[
[

coreGenDivider hue divl(
.clk(clock),
.dividend(s_top),
.divisor (s_bottom),
.quotient (s _quotient),
// note: the "fractional" output was originally named
"remainder" in this

// file -- it seems coregen will name this output "fractional"
even 1if
// you didn't select the remainder type as fractional.
.fractional (s_remainder),
.rfd(s_rfd)
)
coreGenDivider hue div2(
.clk(clock),
.dividend(h top),
.divisor (h_bottom),
.quotient (h_quotient),
.fractional (h remainder),
.rfd(h_rfd)
) ;
always @ (posedge clock) begin
// Clock 1: latch the inputs (always positive)
{my r, my g, my b} <= {r, g, b};
// Clock 2: compute min, max
{my r delayl, my g delayl, my b delayl} <= {my r, my g,
my b};

if((my_r >= my g) && (my_r >= my b)) //(B,S,S)
max <= my r;

else if((my g > my r) && (my g > my b)) //(S,B,S)
max <= my g;

else max <= my b;

if((my r <= my g) & (my r <= my b)) //(S,B,B)
min <= my r;

else 1if((my g <= my r) && (my g <= my b)) //(B,S,B)
min <= my g;

else
min <= my b;

// Clock 3: compute the delta
{my r delay2, my g delay2, my b delay2} <= {my r delayl,

my g delayl, my b delayl};

v_delay[0] <= max;
delta <= max - min;

// Clock 4: compute the top and bottom of whatever

divisions we need to do

- my b delay2)

- my r delay2)

- my g delay2)

*

*

*

s _top <= 8'd255 * delta;
s_bottom <= (v_delay[0]>0)?{8'd0, v _delayl[0]}: 16'dl;

if (my r delay2 == v _delayl[0]) begin
h top <= (my g delay2 >= my b delay2)?(my g delay?2
8'd255: (my b delay2 - my g delay2) * 8'd255;
h negative[0] <= (my g delay2 >= my b delay2)?0:1;
h add[0] <= 16'd0;
end
else if(my g delay2 == v _delay[0]) begin
h top <= (my b delay2 >= my r delay2)?(my b delay?
8'd255: (my r delay2 - my b delay2) * 8'd255;
h negative[0] <= (my b delay2 >= my r delay2)?0:1;
h add[0] <= 16'd85;
end
else if(my b delay2 == v _delay[0]) begin
h top <= (my r delay2 >= my g delay2)?(my r delay?2
8'd255: (my g delay2 - my r delay2) * 8'd255;
h negative[0] <= (my r delay2 >= my g delay2)?0:1;
h add[0] <= 16'dl170;
end

h bottom <= (delta > 0)?delta * 8'd6:16'd6;

//delay the v and h negative signals 18 times
for (i=1; i<19; i=i+1) begin

v _delay[i] <= v _delay[i-1];

h negative[i] <= h negative[i-1];

h add[i] <= h add[i-1];
end

v_delay[19] <= v _delayl[18];
//Clock 22: compute the final value of h
//depending on the value of h delay[18], we need to

subtract 255 from it to make it come back around the circle

if (h negative[1l8] && (h gquotient > h add[18])) begin
h <= 8'd255 - h quotient[7:0] + h add[18];

end

else if (h negative[1l8]) begin
h <= h add[18] - h guotient[7:0];

end

else begin

h <= h quotient[7:0] + h add[18];
end

//pass out s and v straight

s <= s _quotient;

v <= v_delay[19];

end

endmodule
LITTTTT777 7777000777777 777 7777777777777 7777 777777777777777777777777777777
/177
// Prepare data and address values to fill ZBT memory with NTSC data

module ntsc_ to zbt(clk, vclk, fvh, dv, din, ntsc addr, ntsc data,
ntsc_we, sw);

input clk; // system clock

input velk; // video clock from camera
input [2:0] fvh;

input dv;

input [17:0] din;

output [18:0] ntsc_addr;

output [35:0] ntsc data;

output ntsc we; // write enable for NTSC data

input SW; // switch which determines mode (for debugging)

//parameter COL_START = 10'd150;

//parameter ROW_START = 10'd60;
parameter COL START = O;
parameter ROW START = 0;

// here put the luminance data from the ntsc decoder into the ram
// this is for 1024 * 788 XGA display

reg [9:0] col = 0; // moved to outputs to use outside module
reg [9:0] row = 0;

reg [17:0] vdata = 0;

reg vwe;

reg old dv;

reg old frame; // frames are even / odd interlaced

reg even odd; // decode interlaced frame to this wire
wire frame = fvh[2];

wire frame edge = frame & ~old frame;

always @ (posedge vclk) //LLCl is reference
begin
old dv <= dv;
vwe <= dv && !fvh[2] & ~old dv; // if data valid, write it
old frame <= frame;
even odd = frame edge ? ~even odd : even odd;

if (!'fvh[2])
begin

col <= fvh[O0] ? COL_START

('fvh[2] && 'fvh[1l] && dv && (col < 1024)) ? col + 1
col;

row <= fvh[1l] ? ROW_ START
('fvhi[2] && fvh[0] && (row < 768)) ? row + 1 : row;

vdata <= (dv && !'fvh[2]) ? din : vdata;

end
end

// synchronize with system clock

reg [9:0] x[1:0],y[1:0];
reg [17:0] data[l1l:0];
reg wel[l:0];

reg eo[1l:07];

always @ (posedge clk)
begin
{x[1],x[0]} <= {x[0],col};
{y[11,y[0]} <= {y[0], row};
{data[l],data[0]} <= {data[0],vdata};
{wel[l],we[0]} <= {we[0],vwe};
{eo[l],eo0[0]} <= {eol[0],even odd};
end

// edge detection on write enable signal

reg old we;
wire we edge = we[l] & ~old we;
always @ (posedge clk) old we <= we[l];

// shift each set of four bytes into a large register for the ZBT

reg [35:0] mydata;
always @ (posedge clk)
if (we_edge)
mydata <= { mydatal[l7:0], datall] };

// NOTICE : Here we have put 4 pixel delay on mydata. For example,
when:

// (x[11, yI[1l]l) = (60, 80) and eo[l] = 0, then:

// mydata[31:0] (pixel(56,160), pixel(57,160), pixel(58,160),
pixel (59,160))

// This is the root of the original addressing bug.

// NOTICE : Notice that we have decided to store mydata, which

// contains pixel (56,160) to pixel(59,160) in address

// (0, 160 (10 bits), 60 >> 2 = 15 (8 bits)).

//

// This protocol is dangerous, because it means

// pixel (0,0) to pixel(3,0) is NOT stored in address

// (0, 0 (10 bits), 0 (8 bits)) but is rather stored

// in address (0, 0 (10 bits), 4 >> 2 =1 (8 bits)). This
// calculation ignores COL_START & ROW_START.

//

// 4 pixels from the right side of the camera input will
// be stored in address corresponding to x = 0.

//

// To fix, delay col & row by 4 clock cycles.

// Delay other signals as well.

reg [39:0] x delay;

reg [39:0] y delay;

reg [3:0] we delay;

reg [3:0] eo delay;

always @ (posedge clk)
begin

x delay <= {x delayl[29:0], x[1]};
y_delay <= {y delay[29:0], yI[1]};
we delay <= {we delay[2:0], we[l]};
eo delay <= {eo _delayl[2:0], eo[l]};
end
// // compute address to store data in

// wire [8:0] y addr = y delay[38:30];
// wire [9:0] x addr = x delay[39:30];
// compute address to store data in
parameter YOFFSET 125;
parameter XOFFSET = 150;

wire [8:0] y addr = (y delay[38:30]+YOFFSET < 768) *?
(y delay[38:30]+YOFFSET) : (y delay[38:30]+YOFFSET - 768);
wire [9:0] x addr = (x delay[39:30]+XOFFSET < 1024) ?
(x_delay[39:30]+XOFFSET) : (x delay[39:30]+XOFFSET - 1024);

//wire [18:0] myaddr = {1'b0,y addr[8:0], eo delay[l],x addr[9:2]};
wire [18:0] myaddr = {y addr[8:0], eo delay[l],x addr[9:1]};

// Now address (0,0,0) contains pixel data(0,0) etc.
// alternate (256x192) image data and address

wire [35:0] mydata?2 {data[l],data[l]};
wire [18:0] myaddr2 = {y addr[8:0], eo delay[l],x addr[8:0]};

// update the output address and data only when four bytes ready
reg [18:0] ntsc_addr;

reg [35:0] ntsc data;

wire ntsc we = sw ? we edge : (we edge & (x delay[30]==1'b0));

always @ (posedge clk)

if (ntsc_we)
begin
ntsc addr <= sw ? myaddr2 : myaddr; // normal and expanded modes
ntsc _data <= sw ? mydata2 : mydata;
end

endmodule // ntsc to zbt
JI1ITT1110 07700770077 1777777777777777777777777707777777777777777777777777717
/17177777
module mybram # (parameter LOGSIZE=14, WIDTH=1)
(input wire [LOGSIZE-1:0] addr,
input wire clk,
input wire [WIDTH-1:0] din,
output reg [WIDTH-1:0] dout,
input wire we);
// let the tools infer the right number of BRAMs
(* ram style = "block" *)
reg [WIDTH-1:0] mem[(1<<LOGSIZE)-1:0];
always @ (posedge clk) begin
if (we) mem[addr] <= din;
dout <= mem[addr];
end
endmodule

L1117 77 7777777777777 7777777777 777777/77777777777777777777777777777777777
/17177777
module low indicator (
input point,
input [10:0] x start,
input [9:0] y start,
input [10:0] hcount,
input [9:0] vcount,
input [17:0] background,
output reg [17:0] pixel
)

parameter THICKNESS = 15;

parameter GREEN = {6'h00,6'h3f,6'h00};
parameter RED = {6'h3f,6'h00,6'h00};
parameter XMAX = 200;

parameter YMAX = 200;

always @* begin
if ((hcount > x start && hcount < XMAX) &&
(vcount > y start && vcount < YMAX)) begin
// Generate a check mark
if (point) begin
if (((hcount + 120 4+ THICKNESS > vcount) &&
(hcount + 120 < vcount + THICKNESS)) ||
((hcount + vcount + THICKNESS > x start +
240) && (hcount + vcount < x start + 240 + THICKNESS)))
pixel = GREEN;
else
pixel = background;
end
// Generate an X
else begin
if (((hcount + THICKNESS > vcount) && (hcount <
vcount + THICKNESS)) ||
((hcount + vcount + THICKNESS > x start +
200) && (hcount + vcount < x start + 200 + THICKNESS)))
pixel = RED;
else
pixel = background;
end
end
else
pixel = background;
end

endmodule

L1717 777 7077777777777 7777777 777
1117177777
module line generator(
input [9:0] height,
input [10:0] hcount,
input [9:0] wvcount,
input [17:0] background,
input color,
output reg [17:0] pixel
)
parameter THICKNESS = 5;

parameter RED = {6'h3f,6'h00,6'h00};
parameter GREEN = {6'h00,6'h3f,6'h00};
parameter YOFFSET = 250;

parameter XOFFSET = 150;

parameter XMIN = 0 + XOFFSET;
parameter XMAX = 720 + XOFFSET;

always @* begin

if ((hcount > XMIN && hcount < XMAX) &&
((vcount+THICKNESS) > (height+YOFFSET) &&

vcount< (height+YOFFSET+THICKNESS)))
pixel = color ? RED : GREEN;
else

pixel = background;

end

endmodule

LITTTTT777 7777000777077 7777777777777 7777777777777 7777777777777777777777

111177777
module hue detector (
input clk,

input [7:0] H,
input [7:0] S,
input [7:0] Vv,
input [1:0] color,// expand as necessary for testing
input background,
input [17:0] rgb,

input [10:0] hcount,
input [9:0] wvcount,
input [10:0] x center,
input [9:0] y center,

output reg [17:0] test rgb,
output reg match

parameter XOFFSET = 150;
parameter YOFFSET = 250;
parameter XMIN = 0 + XOFFSET;
parameter XMAX 700 + XOFFSET;
parameter YMIN 10 + YOFFSET;
parameter YMAX = 500 + YOFFSET;

reg [10:0] X Start = XMIN;
reg [10:0] X End = XMAX;
reg [9:0] Y Start = YMIN;
reg [9:0] Y End = YMAX;

parameter MinS = 8'h30;

parameter MaxS = 8'hBRO;
parameter MinV = 8'h30;
parameter MaxV = 8'hFO0;

reg testerH = 0;
reg testerS = 0;
reg testerV 0;

always @ (posedge clk)begin
if ((x_center==0) && (y center==0))begin

X Start <= XMIN;
X_End <= XMAX;
Y Start <= YMIN;
Y End <= YMAX;
end
else begin
X Start <= (x _center<(XMIN+50)) ? XMIN : x center - 50;
X End <= (x_center>(XMAX-50)) ? XMAX : x center + 50;
Y Start <= (y center<(YMIN+50)) ? YMIN : y center - 50;
Y End <= (y center>(YMAX-50)) ? YMAX : y center + 50;
end
if ((hcount>X Start) && (hcount<X End)
&& (vcount>Y Start) && (vcount<Y End))begin
case (color)
// RED 00h < H < 20h
2'b00:begin
if(H > 8'h00 && H < 8'hl8)begin
testerH <= 1;
if(S > MinS && S < MaxS)begin
testers <= 1;
if(V > MinV && V < MaxV)
testerV <= 1;
else
testerV <= 0;
end
else
testerS <= 0;
end
else begin
testerH <= 0;
end
end
// BLUE 96h < H < BEh
2'b01:begin
if(H > 8'h96 && H < 8'hBE)begin
testerH <= 1;
if (S > MinS && S < MaxS)begin
testers <= 1;
// if(V > MinV && V < MaxV) // blue
ball had issues matching value
testerV <= 1;
// else
// testerV <= 0;
end
else
testerS <= 0;
end
else begin
testerH <= 0;
end
end
// GREEN 20h < H < 3Fh
2'b10:begin
if(H > 8'h20 && H < 8'h3F)begin
testerH <= 1;
if (S > MinS && S < MaxS)begin
testerS <= 1;
1f(V > MinV && V < MaxV)
testerV <= 1;
else

testerV <= 0;
end
else
testerS <= 0;
end
else begin
testerH <= 0;
end
end
// YELLOW 10h < H < 2Fh
2'bll:begin
if(H > 8'hl0 && H < 8'h2F)begin
testerH <= 1;
if(S > MinS && S < MaxS)begin
testerS <= 1;
if(V > MinV && V < MaxV)
testerV <= 1;
else
testerV <= 0;
end
else
testerS <= 0;
end
else begin
testerH <= 0;
end
end
default:begin
testerH <= 0;
end
endcase
end
// hcount and vcount outside of bounds
else begin
testerH <= 0;
end

// Now assign pixel values and set a match flag based on HSV

matching
if (testerH)begin
if (testerS)begin
if (testerV)begin
match <= 1;
test rgb <= background ? {6'h3f,6'h00,6"'h3f}
rgb; // Magenta
end
else begin
match <= 0;
test rgb <= background ? {6'h00,6'h00,6"'h3f}
rgb; // Blue
end
end
else begin
match <= 0;
test rgb <= background ? {6'h00,6"'h3f,6'h00}
rgb; // Green
end
end
else begin
match <= 0;

test rgb <= background ? {18'b0} rgb;
end

end // end of always block
endmodule

L1707 77777 777 77777777777
117777777
module FSM(input clk,

input reset,

input up,

input down,

input throw start,

input point enter,

input point toggle,

input replay start,

input line toggle,

input [10:0] y center,

output [9:0]
output
output
output
output
output
output

reg threshold height,
reg [9:0] table height,

reg [2:0] state,

reg record,

reg point,

reg [3:0] player 1 score,
reg [3:0] player 2 score);
[32:0] transition;
[32:0] countdown;
[64:0] countdown 2;
debounce 1;
debounce 2;

reg
reg
reg
reg
reg

parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter

idle =
replay 2
play low b
play high
play low af
record end play
game _over = 7;
buffer 10;
point to end = 100000000;
time out 300000000;
YOFFSET 250;

1;

f

6;

initial begin
state <= idle;
transition <= 0;
countdown <= 0;
countdown 2 <= 0;
threshold height <= 75;
table height <= 400;
player 1 score <= 0;
player 2 score <= 0;
debounce 1 <= 1;
debounce 2 <= 1;

end

always @ (posedge clk) begin

if

(reset) begin //Reset all system

variables

state <= idle;
transition <= 0;
countdown <= 0;
countdown 2 <= 0;
threshold height <= 75;
table height <= 400;
player 1 score <= 0;
player 2 score <= 0;

record <= 0;
point <= 0;

end

if (state == idle) begin

be recognized

countdown <= 0;
countdown 2 <= 0;

//Line toggling
if ((line toggle == 0) & (up) & (debounce 1)) begin
threshold height <= threshold height - 5;

end
else

end
else

end
else

end
else

debounce 1 <= 0;

//user-inputs will now

if ((line_toggle == 0) & (down) & (debounce 1)) begin
threshold height <= threshold height + 5;

debounce 1 <= 0;

if ((line_toggle ==

) & (up) & (debounce 1)) begin

table height <= table height - 5;

debounce 1 <= 0;

if ((line_toggle ==

) & (down) & (debounce_ 1)) begin

table height <= table height + 5;

debounce 1 <= 0;

if ((~up)&(~down)) debounce 1 <= 1;

//Point set-up
if ((point toggle == 0)&(point enter) & (debounce 2))

begin
end
else
begin
end

player 1 score <= player 1 score + 1;

debounce 2 <= 0;

if ((point toggle ==

) & (point enter) & (debounce 2))

player 2 score <= player 2 score + 1;

debounce 2 <= 0;

else if (~point enter) debounce 2 <= 1;

//Game-over Transition
if (((player 1 score > player 2 score +
1) & (player 1 score > 6)) |

((player 2 score > player 1 score +

1) & (player 2 score > 6)))

//endgame by 7,

//Replay Transition,

state <= game over;
two points ahead

or Start-Throw

if (replay start) state <= replay;
//begin replay
else if (throw start) begin //begin
throw and recording
state <= play low bf;
record <= 1;
point <= 0;
end
end

if ((state == replay) &(replay start == 0))
state <= idle; //transition back to idle after replay

//Object still below threshold line
if ((state == play low bf)é&(y center < threshold height -
buffer + YOFFSET)) begin
state <= play high;

point <= 1;
end
else if ((state == play low bf)&(y center > table height +
buffer + YOFFSET))
state <= record end play; //1f it drops below table,

go to time-out

//Object higher than threshold line
if (state == play high) begin
countdown 2 <= countdown 2 + 1;
if (y _center > threshold height + buffer + YOFFSET)
begin
state <= play low af;
countdown 2 <= 0;
end
else if (countdown 2 == time out) state <=
record end play; //Time-out 1if it

//doesn't drop below
threshold line

end

//Object lower than threshold line
if (state == play low _af) begin
countdown 2 <= countdown 2 + 1;
if (y center > table height + buffer + YOFFSET) state <=
record end play;

else if (countdown 2 == time out) state <=
record end play; //Below table
end
if ((state == record end play) & (countdown < point to end))

//Time-out
countdown <= countdown + 1;
else if ((state == record end play) & (countdown ==
point to end)) begin
state <= idle;
record <= 0;
end
end
endmodule
R N N N N N N N N N N N R N N N R R R R R R RN
module center of mass (
input average,

input clk,

input match,

input [10:0] hcount,

input [9:0] wvcount,

output reg [12:0] x center,

output reg [11:0] y center,

output reg [23:0] final count, // used to determine if center due

to noise alone

output reg done

) ;

parameter XOFFSET 150;
parameter YOFFSET = 250;
parameter XMIN = 0 + XOFFSET;
parameter XMAX = 700 + XOFFSET;
parameter YMIN 10 + YOFFSET;
parameter YMAX = 500 + YOFFSET;

reg [43:0] x buffer;
reg [39:0] y buffer;
reg [31:0] x sum = 0;
reg [31:0] y sum = 0;

reg [23:0] count = 0;
reg frame done = 0;

// Have a little cushion on the edge of the frame
reg [10:0] X Start = XMIN;

reg [10:0] X End = XMAX;

reg [9:0] Y Start = YMIN;

reg [9:0] Y End = YMAX;

// accumulate coordinate values for the center of mass calculation
always @ (posedge clk)begin
if ((hcount >= X Start && hcount <= X End)
&& (vcount >= Y Start && vcount <= Y End))begin
if (hcount==X Start && vcount==Y Start)begin
x sum <= 0;
y_sum <= 0;
count <= 0;
frame done <= 0;
end
else if (match)begin
X sum <= X sum + hcount;
y sum <= y sum + vcount;
count <= count + 1;
end
end
if (frame done == 1)
frame done <= 0;
else if (vcount==Y End && hcount==X End+50)
frame done <= 1;
end

// Calculate center of mass (average X and Y of matches)
wire [31:0] x numer = x sum;

wire [23:0] x denom = count;

wire [31:0] x quotient;

wire [15:0] x fraction;

wire x_ready;

coreGenDivider32 x divider (.clk(clk),

.dividend(x numer), .divisor (x_denom), .quotient (x quotient),
.fractional (x_fraction), .rfd(x ready)):

wire [31:0] y numer = y sum;
wire [23:0] y denom = count;
wire [31:0] y quotient;

wire [15:0] y fraction;

wire y ready;

coreGenDivider32 y divider(.clk(clk), .dividend(y numer),

.divisor (y denom), .quotient(y quotient),

.fractional(y fraction), .rfd(y ready));

always @ (posedge clk)begin

if (frame done && x ready && y ready)begin
x _buffer <= {x buffer[32:0], x quotient[10:0]};
y buffer <= {y buffer[29:0], y quotient[9:0]};

final count <= count;
done <= 1;
// Calculate the average center

x _center <= average ? {2'b0, x quotient[10:0]}

((x_center<<2) - x buffer[43:33] + x quotient[10:0])>>2;
y _center <= average ? {2'b0, y quotient[9:0]}
((y_center<<2) - y buffer[39:30] + y quotient[9:0])>>2;
end
else begin // done only asserted for one cycle
if (done)
done <= 0;
end
end
endmodule

N N N N N N N N N N R R N R R R R R R R R
module ball generator (
input [12:0] x center,
input [11:0] y center,
input [10:0] hcount,
input [9:0] wvcount,
input [15:0] matches,
input [17:0] background,
input replay,
output reg [17:0] pixel
)i
parameter WIDTH = 7;
parameter HEIGHT = 7;
parameter BLUE = {6'h00,6'h00,6"'h3f};
parameter GREEN = {6'h00,6'h3f,6'h00};
parameter RED = {6'h3f,6'h00,6'h00};

always @* begin
if (!replay)begin
if (((hcount+WIDTH) >= x center &&
(x_center+WIDTH)) &&
((vcount+HEIGHT) >= y center
(y_center+HEIGHT)))
// pixel = (matches > 16'h0300)
pixel = GREEN;
else

pixel background;

hcount <

&& vcount <

? GREEN : RED;

end
else begin
if (((hcount+20) >= x center && hcount < (x center+20))
& &
((vcount+20) >= y center && vcount <
(y_center+20)))

pixel BLUE;

else

pixel background;
end

end

endmodule

