Surfing on a Sine Wave

6.111 Final Project Proposal
Sam Jacobs and Valerie Sarge

1. Overview

This project aims to produce a single-player game, titled ‘Surfing on a Sine Wave’, in
which the player uses a piano to control the frequency with which a character oscillates
vertically. A MIDI keyboard will be used for input, and outputs will include a VGA monitor and
audio. The game state machine will respond to frequency data from the keyboard, as well as
internal status checks such as hit detection. Frequency data will also be used to display a sine (or
more complex) waveform in the background of the game. Audio output will correspond to the
input frequency and may involve canned or state machine-composed music as well. Players will
attempt to pick up coins to gain a high score and, if time permits, will also need to avoid enemies
and search for powerups. The ultimate goal of this project is to produce a fun, engaging, and
visually pleasing game with an unconventional control scheme.

2. Design

Surfing on a Sine Wave is a side-scroller game in which the player uses a MIDI keyboard
to control the landscape traversed by a sprite. The sprite moves continuously along a wave
collecting coins to score points and avoiding obstacles that end gameplay. The frequency of the
wave is determined by the most recent key pressed on the keyboard — low keys correspond to
low frequency oscillations, and high keys correspond to high frequency oscillations. If multiple
keys are pressed simultaneously, the most recent key press will be used. The sprite stays at a
fixed horizontal offset and the player changes the path to cause the sprite to collide with or avoid

VAAVAVAN

g Iy

game objects.

Figure 1: Game appearance mock-up.

As the game progresses, the landscape scrolls increasingly quickly, requiring faster
response times from the user. This gameplay mechanism requires an element of strategy different

from popular side-scrolling games like Super Mario Bros. where the player controls the motions
of the character in reaction to changes in the game landscape. If time allows, the game will also
include such bells and whistles as musical accompaniment, power-ups, and different gameplay
modes.

The game will display a start screen upon powering up. The player will begin playing at
his or her command. The score is counted and displayed on screen. When the character dies after
hitting an enemy, the state of the game resets to the startup screen.

3. Implementation

The game will be organized around a central game logic module with peripheral modules
for MIDI deserialization, waveform/physics calculation, and sound and video output (Figure 2).
Values transmitted between modules will also typically be accompanied by a ready signal.

MIDI Deserializer
Wave ROM

Frequency [4:0 J‘ Sine wave dats
Flayer offset [10:0] Y

Player position [5:0]

Sprite Data Player position [5:0]
Image ROM »| Display Logic e Game Logic e Physics Engine [« ‘Wave / Signal Logic
Waveform [3:0] i { \

Entities [25.0] [40] Cunient wave [3:0]
Y g Previous weve [8:0]

Frequency [4:0

Canned music data

XVGA Encoder Sound Logic Audio ROM

Audio leve

Audio DAC

—

<)

Figure 2: Block diagram; modules described in detail below.

3.1 Game Logic

This central module serves as an interconnect for all the various modules, synthesizing
information from the keyboard input module, physics engine, wave engine, and sound engine
and issuing information to the display and sound modules. This design strategy ensures
modularity. Specifically, the game state machine is responsible for interpreting and
communicating information about the game landscape, keeping track of the positions of sprites,
the generation of game objects, and the overall state of the game.

3.2 MIDI Deserialization

This module interfaces with the MIDI keyboard used by the player to control gameplay.
The keyboard will use the MIDI protocol to communicate with the Nexys 4 FPGA board through
an opto-coupling breakout circuit to prevent damage to the FPGA. The circuit sends the current
from the MIDI cable through a light emitting diode. Inside the chip, a phototransistor connected
to the power line through a pull-up resistor opens and closes according to the light emitted from
the diode. This isolates the FPGA pins from potentially damaging voltage bursts and
electromagnetic interference.

Inside the FPGA, the MIDI module is responsible for deserializing and synchronizing the
processed MIDI signal and outputting an index corresponding to the frequency to the game logic
module. The keyboard input module will be responsible for parsing inputs that do not conform to
the game rules like simultaneous keypresses.

3.3 Physics Engine

The function of the physics engine is to translate the full waveforms created by the wave
logic module into a path that the player will follow. Part of this is to ensure a smooth transition
between different frequency waveforms; this will be effected with a blending coefficient that
decays exponentially.

The physics engine will receive the two waveforms from the wave logic module and a
player offset from the game logic module; it will output (to the game logic module) the player
sprite’s current vertical position (10 bits), where the top of the screen will have the 0 value.

3.4 Wave / Signal Logic

The wave logic module’s function is to calculate the vertical profile of the player’s
projected path (a 1024-position array with an 10-bit signed value at each position). The center of
the screen will have the 0 value. Two profiles (the current and previous frequencies) will be
calculated and output to the physics engine and game logic. This module receives a frequency
from the game logic module; this will likely be a 5-bit value, but may vary depending on the
number of input frequencies.

Two options are being considered for this module’s function. The first is to create a
256x10-bit ROM containing the values of sin(x*pi/512) for x from 0 to 255. Reading from this
memory, the module can easily and quickly fill in the profiles for any frequency. The second is
to utilize a Taylor series to calculate the profiles. The first provides simplicity and rapid
calculation for the case of a simple sine wave. The second is a more interesting solution and
could make the calculation of different types of waveforms (triangle wave, etc) easier; with the
first solution, more values would need to be read from memory, but with the second, only the
coefficients of the Taylor series would change. The initial implementation will use a ROM to

allow for early testing of other modules; if we reach the point of implementing several different
kinds of powerups, Taylor series calculation will be substituted at that point.

3.5 Sound Logic

The sound logic module will control the sound output of the game. Multiple options are
being considered for this module. A basic output for this module could be a square wave
corresponding to the current frequency input. A more complex option would be to play music
from memory; the most fancy option, given time, would be to compose simple music (such as
counterpoint or four-voice) based on the current frequency using a state machine. This module
will take in the current frequency and output an audio level to the DAC.

3.6 Audio DAC
The DAC module will convert the audio levels it receives from the sound logic module to
an audio signal that will go to the headphones or speaker using PWM.

3.7 Display Logic

The display logic module will receive information on the game state from the central
game logic module and output one pixel at a time. The number of entities will correspond to the
maximum number of collectables and/or enemies that may be on the screen at one time. The
basic version of this module will produce a background of two solid colors, divided by the sine
wave, and render sprites; potential bells and whistles include loading images that slowly move in
the background and/or noise (such as perlin or 1/f noise) that represent a cloudy sky. Introducing
these features might require additional modules for noise generation, etc. This module will run
on a 65MHz clock in order to display at 60fps and will work with a XVGA module that produces
the necessary count and sync signals for encoding.

4. Testing

We plan to build the system from the outside in to facilitate the testing process. Testing
will occur in stages, as each module is completed. We are starting with the most important
peripheral modules, the keyboard and the display modules. These modules will be connected
during early stages of testing with a primitive game state machine, which will grow in
complexity to accommodate the modules developed later. Many stages of testing will involve
producing some form of VGA output. Initial display testing will require rendering an animated
sprite both standing still at the left of the screen and moving left across the screen. Waveform
generation will be tested by rendering the sine wave background for several input frequencies.
For the testing of the physics module, a sprite (or a square) will switch between frequencies and

be shown to follow a reasonable path. Audio output will be tested in stages, and used for testing

MIDI input; for this, square wave output will be used. Later features, as well as bells and

whistles, will be tested in their planned places, as the framework of the game should be reliable

at that point. Early tests of game logic and FSMs will be controlled by the buttons on the Nexys

4; later on, standard playtesting will be used.

5. Timeline
Week Modules Tested and working | Tested and working | Writing
ending (Sam) (Valerie)
with
11/7 Display/VGA; | Begin writing game | Character sprite Proposal draft;
MIDI state machine displays; background | block diagram
deserialization. | Verilog. and collectable proof | draft; proposal
of concept. presentation draft.
11/14 Wave logic, Frequencies read Display shows a Give proposal
MIDI correctly from wave profile for presentation, revise
deserialization. | keyboard. several test project proposal.
frequencies; this
profile moves left
smoothly.
11/21 Physics Collectables move | Player character None.

engine, audio
modules, game

smoothly along the
screen; player and

moves smoothly
between frequencies.

stretch room.

logic. display are Audio outputs
controlled by frequency tones.
keyboard.

11/28 Display and Game logic Goals for this week Project status
audio bells and | interfaces with to be determined report, start on
whistles, game | audio; FSM dependent on what final report.
logic. functional. seems achievable.

(Bells and whistles!)
12/5 Bug fixes / (..n) (...) Final report.

6. Resources

The required hardware for this project is fairly minimal; resources will include a MIDI
keyboard (borrowed from Gim), the MIDI breakout circuit built on a breadboard, MIDI cables
and adapters, a monitor, and the Nexys 4.

7. Conclusion

In summary, our project will be a video game where the goal is to collect coins and avoid
enemies. Single-keystroke input from a MIDI keyboard will control the oscillation rate of the
on-screen character. This character will remain at the left side of the screen, and move upwards
and downwards at the input frequency. Collectables and enemies will move left, towards the
character, continuously. Prominent challenges include the real-time calculation of waveforms in
response to input frequencies and the difficulty of making the game not only playable, but
enjoyable and aesthetically pleasing. Our goal is to create a game that is complex, functional,
and demonstrates our ability with the FPGA, but is also fun for players.

