

Guitar Hero: Fast Fourier Edition

A 6.111 Final Project by Mitchell Gu and Ryan Berg

The Guitar Hero Sensation

- Harmonix founded in 1995 at the MIT
 Media Lab and eventually developed the first Guitar Hero game
- The genre became wildly popular, resulting in a wide array of games.

Limitations of the old Guitar Hero model

- Lacking in realism
- Lacking in song flexibility
- Limited education value

Why our idea solves these problems

- Uses an actual guitar, rather than a guitar-shaped controller
- Actual guitar tablature (a common form of writing music for guitar) is played, instead of an arbitrary 5-note model of music.
- The only difference between our game and actually playing a guitar is the addition of a graphic interface and scoring.

The interface for rhythm-based guitar games

Motivation

The two of us both love playing guitar and want to build on the entertainment value of current guitar-based rhythm games while also making guitar accessible to more people.

This project is also a great opportunity for us to learn about working in the frequency domain, developing concurrently, and integrating many systems together.

High-level Project Design

Low-level Implementation

Audio Processing + Note Recognition on the labkit

Target range: E2 to E5 (3 octaves, 12 half-step each for 37 total notes) Corresponding frequencies: 87 Hz to 659 Hz

Serialization and Deserialization: Labkit to Nexys4

Note matching on the Nexys 4

Graphics modules on the Nexys 4

Game Control Logic on the Nexys 4

Timeline

	11/2/2015	11/9/2015	11/16/2015	11/23/2015	11/30/2015	12/7/2015
1) Scoring Module	M	M				
2) FFT/Note Recognition	M	M	M			
3) Functional AV		R	R			
4) Serialization/deserialization			M			
5) Game Control Logic			R	R		
6) Integration, testing				A	Α	
7) Completed SD Card Song/Metadata					R	
8) Buffer Time/ Stretch Goals					A	
9) Project demo, final checkoff						АААННН

Testing

Since we are using both a labkit and a Nexys 4, we can concurrently develop modules and test each of them to be more time-efficient.

Resources

We need two 3.5mm male -> 1/4in female audio connectors (~\$3 each on Newegg). We both already have guitars, amps, cables, etc.

We need the prebuilt Verilog for a Labkit FFT, for reading/writing to an SD card with the Nexys4, and for generating PWM audio output with the Nexys4.