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1 Introduction 

 

Robot Unicorn Attack is an “endless running” flash game in which the user controls the 

movement of a unicorn through space. The object of the game is to prolong gameplay without 

falling off the stage, crashing into platforms, or colliding with obstacles. In the original game, 

movements are controlled by keyboard inputs. This project aims to bring the classic game to life 

using a camera to detect a player’s motion to perform the corresponding actions in the game. 

Thus, the need for keyboard inputs is removed and the game relies solely on motion tracking. 

The player flaps her arms up and down to fly a Pegasus sprite, and the speed at which the 

flapping motion is performed controls its height. Additionally, the player can put her hands 

together in the center of her body to perform an “attacking” action on the obstacles to destroy 

them. These movements are predetermined and are the only recognized movements in the game. 

The player uses a remote with IR light emission to allow the camera to track the hand 

movements. The camera data is sent to the game logic in the FPGA on the Nexys 4 board to 

determine the state of the game and control the movement of the Pegasus. The basic 

implementation includes sprite images of the Pegasus and obstacles along with sound effects, 

including the traditional background music of Robot Unicorn Attack (Always by Erasure). The 

stretch goals included dynamically changing background images and complex obstacle 

movement, although these were ultimately not implemented. 

 

2 Overview 

 

The system consists of four major components: motion recognition, game logic, graphics 

rendering, and sound effects. 

 

When a player turns on the FPGA, an opening splash screen displays on the monitor. Players will 

use a remote emitting an IR light as control. Once the game starts, the motion recognition 

module filters the light from the video stream, and determines the coordinates of the center of 

mass. Depending on the type of motion detected after a series of frames, the module sends the 

information of the state (flying or attacking) to the game logic. If the player is flying, the module 

calculates the speed at which the player flaps with the remote. If the player is attacking, the 

module returns the attack signal to the game logic. 

 

All sprite graphics, including ones for the Pegasus and obstacles, are loaded into memory at the 

start of the game. During gameplay, these sprites are loaded from the appropriate memory blocks 

and painted pixel by pixel on each frame. In the basic implementation, sprites representing 

ground blocks and any other dynamically generated images in the background will also be pre-

loaded in this fashion, but as one of the stretch goals, a large and complex background image 

will be loaded from SD card for display during the game. 

 



The game logic also controls the interactions between the Pegasus and the game environment. 

Sound effects are included during the attacks and object destruction. Of course, no Robot 

Unicorn Game is complete without the theme song “Always” by Erasure, so the song is played in 

the background continuously on loop.  

 

 

Figure 1: High-level block diagram 

 

3 Design Decisions and Motivation 

 

Setup 

Figure 2 shows the hardware setup. The Nexys4 is mounted on top of the lab bench and taped to 

the logic analyzer to give the camera additional height so that it is shoulder level with a person of 

average height. The OV-7670 VGA camera is attached to the JA and JB pins and taped to the 

oscilloscope for support. The innards of a floppy disk covers the camera lens to act as an IR 

filter, which is described in further detail in section 4.1.1. 

 

The speaker is attached to the audioPWM jack that is described in section 4.4. 



 

Figure 2: Nexys4 board and camera setup 

 

4 Implementation 

 

The game components were divided such that Tania primarily worked on the game logic and 

graphics, and Yini worked on the motion tracking and sound modules. 

 

4.1 Motion Tracking (Yini) 

 

4.1.1 Camera 

The OV-7670 camera used for motion tracking was more difficult to interface with than 

expected. The goal of the motion tracking module was to store incoming video data into BRAM, 

and then read it out to display to VGA. There existed a module to configure and read from the 

camera, but it was not well documented and we spent a long time debugging the various pin 

connections as it turned out that there was only one pin that could accept the camera clock. It is 

important to note that the pclk of the camera can only be connected to the JB[7] pin on the board.  

 



The biggest challenge was storing and reading the video stream to BRAM. There was no sample 

code for this task and it was difficult to test because reading and writing must happen at the same 

time, so we did not know if it was the reading or writing that was the problem. When the camera 

output could finally be displayed, it was large nonsense due to BRAM addressing errors. The 

camera’s video stream was 640x480 pixels at 16 bits each, but the BRAM only had 4,800Kbits 

of storage, so we needed to downsample the incoming video to 320x240. As a result, we only 

took every other pixel in every other row in each frame, and displayed it in the upper left 

quadrant (320x240) of the screen (Figure 3). 

 

 

Figure 3: Camera output with 16-bit pixels 

 

After properly displaying the camera video stream, we realized that the given configuration file 

did not support different colors very well. There existed a greenish tint over the whole frame so 

we could not accurately detect red and green (or any other color) gloves like we originally 

planned. Since the configuration registers were not documented at all, we decided to use a filter 

with an IR light instead of spending more time testing different configurations. We used a floppy 



disk as the filter which worked well in blocking out everything except the IR light. Later, we 

realized that by using the light we did not need 16 bits of color, so we downscaled the video data 

again to only store 8 bits and save BRAM space which we used for sprites and sound (Figure 4). 

 

 

Figure 4: Camera output with 8-bit pixels 

 

 

 

 

 

 

 

 

 



4.1.2 Light Filtering and Tracking 

To track the location of the IR light, the rest of the frame was filtered out. The light showed up 

on the camera as a white-ish color, so we used the RGB2HSV module to convert each RGB pixel 

to its HSV values in order to widen the available range of color detection. Since the background 

was a solid color with the filter on, the HSV values of the light pixels were much different from 

the background, making it easy to filter out the light. Then, we displayed the filtered light on the 

upper right quadrant of the screen for debugging purposes (Figure 5). 

 

 
Figure 5: IR light-filtered camera output  

 

 



4.1.3 Flight 

We set a threshold on the bottom 1/5th of the screen, so that a flight signal would be activated 

whenever the player moves the remote below that threshold, imitating a flapping motion. The 

flight signal pulses for one cycle and does not turn on again until the player moves the remote 

back above the threshold.  

 

4.1.4 Attack 

We set the attack threshold in the middle of the screen, so that when the player moves the remote 

to the left side it will send an attack signal. The attack signal pulses for one cycle and does not 

turn on again until the player moves the remote back to the right side.  

 

4.2 Game Logic (Tania) 

 

Prior to integration with the motion tracking, the fundamental aspects of gameplay were 

developed such that the player could control sprite behavior using button and switch controls on 

the Nexys4 board. This required sufficient modularization of the game logic so that integration 

involved only connecting the output signals from motion tracking modules to the input signals of 

the game logic modules. 

 

4.2.1 Physics 

The physics of the game mimic real life behavior, but with different parameter values. A 

constant gravitational acceleration acts upon the Pegasus, providing a 1 pixel increase in 

downward velocity every eighth of a second. Taking the downward direction to be positive 

displacement, this is equivalent to an acceleration of 8 pixels/s2. Each time the physics module 

receives a flight signal pulse, it is as if the Pegasus “flaps” once, so each pulse triggers an 

upward thrust that increases upward velocity by 2 pixels, or an instantaneous acceleration of -2 

pixels/s2. 

 

After some testing, a “terminal velocity” of 3 pixels/frame, or 180 pixels/s with the 60Hz refresh 

rate was implemented. Without this limit, the Pegasus would fall extremely quickly and be 

nearly impossible to control. This also seemed to be a more realistic world, since objects also do 

not accelerate infinitely on earth. We arrived at all of these velocity and acceleration values 

through trial and error, since we wanted the game to be challenging but not impossible to play.  

 

4.2.2 Controller 

On every clock cycle, the controller performs calculations on the potential pixel values at a 

particular (hcount, vcount) coordinate. It receives these pixel values as input signals from all 

distinct game objects, which it uses to detect collisions and signal specific modules to react 

correspondingly. In particular, the controller determines when the Pegasus dies and when it 

successfully attacks an obstacle. 



The Pegasus can die in one of two ways: falling through gaps in the ground or flying into an 

obstacle. Falling to death can be detected simply when the Pegasus sprite reaches the lowest row 

of pixels on the screen. An overlap of the Pegasus sprite and any one of the obstacle sprites 

would also trigger death. In either case, the controller module outputs a game-over signal in 

order to switch the display to the splash screen. 

 

The other key collision is between the attack beam and an obstacle. The controller itself does not 

know where any of the obstacles or located and relies on the general obstacles module to provide 

the appropriate obstacle pixel values. Therefore, when a collision is detected, the module outputs 

a signal indicating this hit. It also outputs the identity of the obstacle that has been attacked, 

which it receives as an input signal on the same clock cycle. 

 

4.2.3 Game Objects 

 

Pegasus 

The Pegasus is the object directly controlled by the player during the game. It moves only 

vertically on the screen, naturally falling due to gravity and sometimes flying upwards as a result 

of the player’s flapping motions. Additionally, it can “see” when it is flying above a block of 

ground versus over a gap, i.e. it receives an indicator input signal, which allows it to land on top 

of the ground. This block was implemented simply with a basic blob, with the variant of 

displaying pixels from a sprite image rather than a uniform color. 

 

Ground 

Throughout the game, the ground moves 1 pixel to the left every frame refresh, or 60 pixels per 

second, and loops continuously over the screen. The block is shorter than the full 1024-pixel 

width of the screen, so gaps are effectively created between pieces of the ground. This module 

also determines whether the ground lies “below” the Pegasus, which is possible because the 

Pegasus object has a fixed x-axis location. This signal is outputted to Pegasus, as mentioned 

above. The implementation of this block required a small variation on the original blob module, 

since it loops around continuously. 

 

Obstacles 

The obstacles module holds a set of nine blobs, each representing an individual obstacle. These 

blobs are positioned in a 3x3 array that moves horizontally across the screen and scrolls in a 

similar manner as the ground does. Whenever a blob enters the display on the right side, it is 

randomly “turned on” or “off”. If it is enabled, it becomes visible on the screen and can be 

interacted with, whether by colliding with the Pegasus or by being attacked. On the other hand, if 

it is disabled, it will not appear for the duration of the loop. In order to implement this enabling 

and disabling feature, however, instead of looping directly to the right edge of the screen, the 

array loops over a total width of 1536 pixels. This provides a buffer zone where the blobs can be 



reset and prepared for the next loop. These blobs are another variation on the original blob 

module, with the added features of looping (like the ground) and being turned on or off. 

 

Figure 6: 4-bit linear-feedback shift register 

 

For the random enabling of obstacles, we originally hoped to use the random number generating 

function built into Verilog, but soon realized that it can only be used in testbenches. Therefore, 

we implemented a pseudo-random number generator using a linear-feedback shift register 

(LFSR) instead. As seen in Figure 6, this 4-bit LFSR uses four flip-flops to propagate the bits 

and an XOR between the first and last bit values to pseudo-randomize. With a seed of 4’b1001, 

the LFSR cycles through all 16 possible values before repeating itself. Since we wanted to enable 

at most one of the three obstacles in a column of the array each loop, we needed only the lower 

two bits to determine which obstacle would be enabled each time. We could have implemented a 

higher bit LFSR for longer cycles, but we felt that 16 was sufficiently large that players would 

not recognize or remember the pattern of obstacle appearances. 

 

4.3 Graphics (Tania/Yini) 

 

Images were generated to replace the generic squares for game objects. JPG files were converted 

into COE files with RGB values with the MATLAB script from the course website. The images 

we incorporated were used in displaying the splash screen as well as sprites for the Pegasus and 

obstacles.  

 

4.3.1 Splash Screen  

The splash screen was displayed upon game start (Figure 7). Whenever the player dies by 

crashing into an obstacle or falling through the ground, the splash screen would display again 

until the game is reset. The original image we wanted to use was the poster we created for our 

presentation, which was at 1280x720 pixels with 16 bit color. Similarly to the camera video, the 

full image was too large to fit into BRAM. Thus, we reduced it to a 320x240 pixel image with 8 

bits. However, we wanted to display the splash screen across the entire monitor, so we replicated 

each pixel four times, duplicating every other pixel and every row.  



 

Figure 7: 640x480 upscaled splash screen 

 

4.3.2 Sprites 

The original “blobs” for the Pegasus and obstacle objects were replaced with sprites (Figure 8). 

All of the images were 8 bit color, with the Pegasus sprite at 100x64 pixel resolution and the 

obstacles at 150x100 pixel resolution. We wanted the obstacles to be larger than the Pegasus to 

pose a threat but not impossible to avoid. 

 

We encountered a problem with drawing the sprites in that the left column of the pixels would be 

wrong due to the delay in reading from BRAM. To compensate for this delay, we delayed the 

read address calculation by five cycles because there was a two cycle delay each in reading the 

image pixel and corresponding color from the color table, and one cycle delay in determining 

whether that pixel should be on for the given hcount. 

 

 



 

Figure 8: Gameplay with sprite images for Pegasus and obstacle objects 

 

Another crucial issue with the sprites was memory allocation. Initially, we read the obstacle 

sprites from BRAM in the blob module, which needed to be instantiated once for each obstacle 

for a total of nine. As a result, Vivado created nine instances of the sprite BRAM even though 

they all stored the same data, causing the memory to overflow. We solved this issue by 

instantiating the BRAM read in the main obstacles module and developing logic to choose which 

address to read from. Each blob is responsible only for calculating the appropriate read address 

and determining whether it is present and enabled at the given pixel location. The obstacles 

module instead uses the output signals from all nine blobs to read and output the appropriate 

image pixel from memory. Thus, we were able to reduce memory usage to one BRAM per 

unique sprite like we originally planned and fit everything into memory, as seen in Figure 9.  

 

 

 

 

 



Content Percentage (%) 

Camera video 14.07 

30-second background music 47 

Laser sound effect 4.81 

Splash screen 14.07 

Sprites 7.77 

Total 87.72 

 

Figure 9: BRAM allocation 

 

4.4 Sound (Yini) 

 

4.4.1 Background Music 

Throughout the game, the audio module plays the background song from the Robot Unicorn 

Attack game -- “Always” by Erasure. Originally we wanted to use the SD card to store the whole 

song, but the SD controller module was quite complex so we decided to first play audio through 

BRAM, and use the SD card as a stretch goal. Since we did not have enough BRAM left to store 

the whole song, we downsampled the audio to 8KHz at 8 bits, which allowed us to store and play 

a 30 second clip of the chorus. We outputted the audio through the PWM jack on the Nexys4, 

and used the sample audioPWM module on the course website. Unlike the camera, this module 

was easy to use and we were able to get the audio playing quickly. However, there was the 

problem of noise overlaying the audio clip that we could not solve. We first theorized that the 

noise was due to the downsampling at 8KHz, but even after playing a test clip with the original 

32KHz rate at 16 bits, the noise was still there. Ultimately, we did not have time to implement 

the stretch goal with the SD card, so the 30 second clip from BRAM was maintained. 

  

4.4.2 Attack Sound Effect 

Whenever the attack signal is sent to the sound effect module, a laser sounds. The sound effect 

lasts approximately 1.2 seconds, and is overlaid on top of the background music. We took the 

music data read out from BRAM from the sound effect and the music data read out from the 

background music and added the signals together. The signal is then sent to the audioPWM 

module which plays the total combined music signal. If another attack pulse is activated before 

the first laser sound finished player, the laser would restart from the beginning.  

 

 

 



5 Review and Recommendation 

 

We experienced many issues related to external devices such as the OV-7670 camera and sound 

outputs of the Nexys4 board. Since the Nexys4 board is relatively new, there did not exist much 

support for interfacing with these devices and as a result we spent a lot more time getting the 

basic camera to work than expected. The camera interfacing in particular took over a week 

longer than planned, which was a crucial hindrance to our project. Because of this delay and the 

bad camera quality, we had to simplify some of the modules in our initial design, such as using a 

remote with an IR light instead of gloves which would have provided a more realistic flying 

experience. We also changed the attack module to calculate signals based on one hand’s 

movement instead of both hands.  

 

In hindsight, we would have chosen to use the labkit instead as it provides more support for basic 

video and audio modules so we could have spent more time with more complex game logic 

instead. We originally chose the Nexys4 because it had an SD card slot, and one of our stretch 

goals was to include large color background images and audio. However, we did not end up 

implementing our stretch goal so the labkit’s memory would have sufficed for the tasks we 

needed. There is also existing infrastructure for using the labkit’s ZBT memory, which is much 

larger than the Nexys’ BRAM. 

 

6 Conclusion 

 

The Flying Pegasus Ground Attack game successfully transformed the Robot Unicorn Attack 

game to a live interactive version. We faced many challenges including interfacing with the 

camera, noise in background music, and synchronizing between various BRAM reads. We were 

able to solve most of these challenges, save for the noise in background music. If we were to 

revisit the project, we would much like to figure out the audio problem, and find a way to play 

decent quality music. Although there are certainly improvements to be made, the current version 

of the game is fun and more challenging than the original.  


