A Hardware-based Image Perspective Correction

System

Matt Hollands, Patrick Yang

6.111 - Fall 2015 - Final Report

Contents

1 Introduction
1.1 Main Challenges
1.2 External Components
1.3 Goals
1.4 Results. o

2 Design and Dataflow
2.1 Block Diagram,
2.2 Dataflow Overview
2.3 Detail

3 Perspective Transformation
3.1 compute_parameters (Patrick)
3.1.1 Motivations and Challenges
3.1.2 Module Details 0L
3.2 pixel_transform (Patrick)
3.2.1 Motivations and Challenges
3.2.2 Module Details 0000

4 Memory and IO
4.1 human_interface_corners (Matt)
4.2 cornmer_sprite (Matt)o
4.3 vram display and bram display (Matt)

4.4 main fsm (Patrick and Matt)

5 Image Processing
5.1 gaussian blurrer (Matt)
5.1.1 Motivations and Challenges
5.1.2 Module Details 0oL
5.2 edge.detector (Matt)
5.2.1 Motivations and Challenges
5.2.2 Module Details o000
5.3 sin_lookup and cos_lookup (Patrick and Matt)
5.4 Hough Transform Block
5.4.1 hough transform coordinate (Matt)
5.4.2 hough transform_calculate (Matt)
5.4.3 houghmem (Patrick)
5.4.4 hough transform find highest (Matt)
5.5 corners_from lines (Patrick)
5.5.1 Motivations and Challenges
5.5.2 Module Details 000

6 Teamwork, Timeline, and Logistics

7 Conclusion

11
11
11
12
13
13
14
14
14
14
15
15
16
16
16
17

18

19

1 Introduction

As the ability to collaborate and share digital documents becomes increasingly
important both to social life and work, the ability to digitize a photograph,
memo, or other document is critical. Nowadays, most people’s smartphones are
actually capable of this digitization process simply by pointing the phone’s cam-
era at a document. This would not be possible without the ability to detect and
correct the perspective of an object, so that it appears as though one were look-
ing at it head-on even if the photo is taken at a skewed perspective. Normally,
such systems are implemented in software. For our project, we aimed to build
a perspective-correction system on an FPGA, which has strict computational,
memory, and timing constraints. Due to these constraints, the project carried
with it a significant degree of risk.

1.1 Main Challenges

First of all, both perspective correction and image processing (for identifying
edges and corners) are inherently very mathematically intensive processes. Since
an FPGA has a hard limit on the number of mathematical resources available,
especially multipliers, it was necessary for us to optimize our computations as
much as possible to reduce the quantity of mathematical resources and ensure
that we would not run over the limits.

Secondly, we chose to attempt the perspective-correction without sacrificing
resolution (640 x 480) or color depth (30 bits from NTSC). This choice was
made with the intent of replicating as close as possible the behavior of similar
software-based systems, which generally do not sacrifice image fidelity. As a
result, each frame takes up 307k x 30 bits of memory. Due to the fact that we
had to compute a perspective transform, we in fact needed to store two frames
in memory simultaneously. Add on the fact that image processing operations
require some scratch space, and ultimately we had to manage both banks of
ZBT memory on the FPGA as well as a substantial portion of the available
block memory, all in tandem.

Lastly, we wanted to produce a system with decent usability, so we needed
to ensure that the large number of computations being performed would not
force the user to wait an egregious amount of time.

1.2 External Components

This system interfaces with the staff-provided NTSC camera as an input. The
camera provides 640 x 480 resolution frames at 60Hz, each pixel having 30 bits
of YCrCb color.

The output is to a VGA monitor with 1024 x 768 resolution.

1.3 Goals
Baseline goals for our system included:

e The ability to store an image from the NTSC camera into memory

e A graphical user interface allowing a user to point out the locations of the
corners of an object

e The ability to perspective-transform the object and display it as if one
were looking at it with direct perspective.

Ideal goals included (see below, in the Design and Dataflow section, for
descriptions of these computer-vision processes):

e Automatic corner detection, consisting of the following individual compo-
nents:

— A Gaussian blur module, to reduce the noise inherent in the NTSC
camera’s input image

— An edge-detection module, to find points on the source image likely
to be edges of an object

— A line-detection module, utilizing the output of the previous module
to compute the locations of strong linear edges in the image

— A corner-computing module, capable of determining the corners of a
quadrilateral given four edges.

Stretch goals included:

e An upgrade to the graphical user interface, allowing the user to adjust
corners with a mouse

e The ability to write the transformed image to an SD card

1.4 Results

We accomplished our baseline goals, as well as most of our ideal goals. Of the
ideal goals, all the desired modules are working except for the line-detection
module. The main obstacle we ran into which we could not overcome was that
the side of the quadrilateral closest to the camera would register as several long
lines nearly parallel to each other. We were unable to determine a satisfactory
way to guarantee choosing lines that were substantially different from each other.

Nevertheless, the human interface and perspective transform work with very
high performance, the transformation taking less than half a second. Further-
more, we have proven the viability of three modules we did implement from au-
tomatic corner detection, namely the Gaussian blur, edge-detection, and corner-
computing.

The Verilog code can be found online

2 Design and Dataflow

2.1 Block Diagram

human inputs

automatic corner

|, corner coordinates coordinates
€

compute._| human_interface_corners

perspective_transfor
perspective fransform

parameters Zbt2 writg data

corners_from_lines

line equations

bram read data

Hough Transform
Block

bram address

zbt1 write data zbt read data

Camera Block

Camera input

o

t2 read data

edge_detector

ZBT bank 1

ZBT bank 2

gaussian_blurrer)
bram write data

I [
zZbtl address Zbt2 address

Figure 1: Block diagram illustrating main modules as well as memory and
external interfaces.

2.2 Dataflow Overview

The dataflow of the system can be approximately seen as beginning in the lower
left hand corner with the Camera Block, and proceeding anti-clockwise through
the gaussian_blurrer and ending at the pixel_transform module. The clarity
of the dataflow is somewhat obscured by the fact that the gaussian blurrer
module, the Hough Transform Block and the pixel_transform module all write
to the second ZBT memory bank at different stages of the process.

The trapezoids represent signal multiplexers. For example, the multiplexer
in the lower left hand corner labelled ”zbt1 address” allows the Camera Block,
gaussian blurrer module and the perspective_transform module to all set
the address of the first bank of ZBT memory. This is necessary so that each
module can choose where data is written to or read from. Which channel is
selected by the multiplexer is specified by the state of the main_fsm module
which is not shown in this image.

https://github.com/mhollands/6.111-final-project/tree/master/Final_Submission/6.111_final_project_final/6.111_final_project_final

2.3 Detalil

In the starting state, the Camera Block is continuously loading image frames
into the first bank of ZBT memory. The image is stored in the YCrCb format
with 30 bits per pixel at a resolution 640x480.When the user presses the enter
button on the lab kit, this prompts the main_fsm module to move to the next
state.

In this state, the Camera Block no longer has access to the first bank of
ZBT memory and so whichever image was in the bank at the time the button
was pressed remains there. The gaussian blurrer module now has read access
to the first bank of ZBT memory and write access to the second bank of ZBT
memory. It applies a Gaussian blur to the luminosity channel of the image
in ZBT bank 1 and stores the result in ZBT bank 2, disregarding the two
chrominance channels as they are not required for the next steps. The original
image in ZBT bank 1 is not affected. When this module has completed the
Gaussian blur, it asserts a DONE signal which moves the main_fsm module into
the next state.

In this state, the edge_detector module has access to ZBT bank 2 instead of
the gaussian blurrer module. The edge_detector module reads the blurred
image from ZBT bank 2 and performs edge detection on the image, saving the
result in BRAM. The BRAM has one bit of memory per pixel which indicates
if that pixel represents an edge or not. When this module has completed its
process, it asserts a DONE signal to force the main_fsm module to move to the
next state.

In this state the Hough Transform Block controls both the BRAM and the
ZBT bank 2. Possible lines are calculated by reading all of the edge points
from BRAM. In order to operate, the Hough Transform Module requires some
temporary memory for which it uses ZBT bank 2. This is acceptable as the
blurred image that is currently stored in ZBT bank 2 is no longer required.
When this module has completed it will have produced four sets of lines which
are described by their angle and offset from the origin. It will then assert a
DONE signal to indicate to the main_fsm module that it should proceed to the
next state.

These four lines are then passed via wires to the corners_from_lines module
which then proceeds to calculate the coordinates of each of the four coordinates.
When completed this signal asserts a DONE signal in order to tell the main_fsm
module that it should proceed to the next state.

As the state changes, the human_interface_corners module is signalled to
latch in the new automatically detected corner locations. These corner locations
can now be modified by the user if they are incorrect by using the buttons on
the lab kit. When the user is satisfied with the location of the corners, the user
can then press the enter button to proceeed to the next state.

In this state, the compute_parameters module takes the specified corner
locations and computes the parameters necessary to transform the perspective

of the image. It asserts a DONE signal when complete.

In this last stage, the pixel _transform module has access to the first and
second banks of ZBT memory. It reads the original image from the first bank
of ZBT memory, performs the image transformation, and saves the resulting
image into the second bank of ZBT memory. A DONE signal is asserted when
complete.

The final result is a transformed image in the second bank of ZBT memory
which can be displayed on the monitor.

3 Perspective Transformation

The perspective transform block consists of two modules, compute_parameters
and pixel_transform. The former takes in four corners of a perspective-skewed
rectangle and produces the parameters for a transformation needed to recover a
perspective-corrected version. The latter iterates over the pixels in a 640 by 480
grid, applying the previously computed transformation to find the corresponding
pixels from the source image.

3.1 compute parameters (Patrick)
3.1.1 Motivations and Challenges

compute_parameters is a key module for the image transformation phase that
happens after corners are identified. If we can compute the transformation that
takes a direct-perspective rectangle to a skew-perspective one, then applying
this transformation to individual pixels of the screen gives us the pixel from the
source image that corresponds to it. The primary challenge is that the required
transformation is non-linear, and furthermore, it has 9 parameters that may
be very large relative to the coordinates. As a result, the module potentially
requires many mathematical resources, a precious and limited commodity on any
FPGA system. We have optimized the computations over

, improving accuracy
and greatly reducing required resources.

3.1.2 Module Details

A general perspective transformation is defined by the following equations,
where the p; are 9 parameters:

(@) = <p1x+p2y+p3 p4x+p5y+pe) 1)
' P7x + psy + P’ prx + psy + po

In our use case, what we wish to do is actually find the mapping from the

http://web.mit.edu/6.111/www/f2014/projects/gajjanag_Project_Final_Report.pdf
http://web.mit.edu/6.111/www/f2014/projects/gajjanag_Project_Final_Report.pdf

direct-perspective rectangle to the skewed rectangle. In other words, (z,y) takes
on the four pairs of values (0,0), (0,480), (640,0), and (640,480). Meanwhile,
(2, y") takes on the corresponding four corners of the object in the source image.
Since each coordinate pair gives us two equations, and we have four coordinate
pairs, we have eight equations. Since the p; can be scaled without affecting the
transform, there are effectively only eight unknowns. This means that with the
four corners, we have a system of eight equations and eight unknowns - exactly
enough information to recover the p;.

The reason we chose to map the direct-perspective rectangle to the skewed
rectangle, and not the other way around, is that the solutions to the above
equations are much nicer when (z,y) takes on four known constant values. If
we were to map the skewed rectangle to the direct-perspective rectangle, we
would have to then compute the inverse of the transformation, which would
require significant additional resources (indeed, this was the primary source of
optimization over the aforementioned previous work).

The solutions to the equations are as follows. In the below equations, x;, y;
are the coordinates of the ith corner of the object in the source image. ¢ =
g (Y2 —y3) + 2 - (ys — ya) + 23 - (2 — y2) is a factor that appears in several
of the solutions (incidentally, it is twice the area of the triangle made up by the
2nd, 3rd, and 4th corners of the rectangle). The p; are listed below in the order
in which the module computes them, as some p; are computed based on others.

p3=1920-c-

pe =1920-c -y

pg =1920 - ¢
pr=3-((x1 —24) - (Y2 — y3) + (¥3 — 22) - (y1 — ya))
ps =4 ((x1 —22) - (y3 — ya) + (x2a — 3) - (Y1 — ¥2))
p1=pr - Ta—3-(T1—24) C
p2=ps-x2—4-(r1—12)C
pa=pr-ys—3-(y1 —ya) ¢
ps=ps Y2 —4- (1 —y2) ¢

This module is NOT pipelined. Pipelining would require a massive number
of registers, due to the large bitwidths of the computations being performed.
The largest p;, which is p3, can be up to 42 bits long, not to mention intermediate
computations. Furthermore, pipelining was deemed to introduce unnecessary
development risk, as a single incorrect pipelining stage could introduce insidious
and inconsistent errors. As a result, this module is allowed to run its combi-
national path, with the FSM guaranteeing a generous 100 clock cycles for the
propagation delay to complete. In fact, we believe the propagation delay should
be less than 10 clock cycles, but due to the very high clock speed giving this

module extra time to complete safely was deemed to have hardly any usability
cost, since this module only needs to run once per image.

As for optimizations, many common intermediate values are computed ex-
plicitly to prevent redundant additions and subtractions. ¢ and 1920c are among
these common values, as are all of the direct subtractions between x; and y;.
Also, all constant multiplications are performed using a minimal number of bit
shifts and addition, to further cut down on the multiplications necessary.

The result of optimization of the computations is that this module uses only
20 of the 144 multipliers available on the FPGA, leaving plenty of leeway for
the other math-intensive functionality.

3.2 pixel transform (Patrick)
3.2.1 Motivations and Challenges

This module computes the actual pixel transformation, given in equation (1)
above, iterating through z values from 0 to 639 and y values from 0 through
479. As there are several mathematical operations in the equation, there is again
room for optimization to reduce resource usage. Furthermore, this module needs
to pipe data from one ZBT memory bank to the other, owing to the fact that
one ZBT bank is only large enough to hold a single frame buffer with full color
and resolution. As a result, we also have to time the signals to both memories
in sync, accounting for any delays required in the signals.

3.2.2 Module Details

Due to optimization, this module’s implementation does not use a single mul-
tiplier. We achieved this result by making use of the fact that we iterate pre-
dictably over the z and y values. We iterate in reading order, meaning that we
finish a 'row’ of x values before moving on to the next y value. As a demon-
stration, consider the numerator of (1) above, p1x + pay + p3. We maintain two
accumulators, one for the p;xz component and one for the poy + p3 component.

When the start signal is first pulsed, the first accumulator is initialized to 0
and the latter is initialized to p3. This also saves an addition per pixel, since
the +p3 is never explicitly computed. Then, for every new pixel, we add p; to
the p1x accumulator; thus, the value of the p;x accumulator will always be p;x,
even though we never compute that multiplication. If x hits 639, we then reset
the p1x accumulator to 0 and increase the poy + p3 accumulator by po, again
obviating multiplication. In this way, without any extra overhead, we eliminate
all multiplication from the computations of the numerator and denominator for
the two divisions.

Despite these optimizations, the very wide additions required still cause the
combinational paths to be rather long. As a result, the module is run on a slow

(1/4 speed) clock. However, some of its components run on the original full-
speed clock; in particular, the dividers used run on the full-speed clock, and any
output signals must be pulsed for only one clock cycle, so the output controllers
also run on the original clock.

Lastly, we will cover the timing required to correctly perform the transfor-
mation. Once the two divisions complete, we know what x’, %’ coordinates in the
source image (ZBT bank 0) map to the given x, y coordinates in the destination
image (ZBT bank 1). No image processing is required at this stage, so we wish
to directly transfer data from the appropriate address in ZBT bank 0 to ZBT
bank 1. The ZBT driver provided by staff has the quirk that when reading, the
read data arrives 2 cycles later than the read address, but when writing, the
write data, write-enable signal, and write address must all be presented on the
same cycle. As a result, the write data, write-enable, and write address signals
are delayed by two cycles, and the data output from ZBT bank 0 is tied directly
to the data input to ZBT bank 1. Determining the correct set of signals to delay
was somewhat challenging due to the complex timing specifications.

Future work in this area would involve pipelining the divider and the ad-
ditions needed to generate the numerators and denominator of the divisions.
While this wouldn’t produce a very perceptible increase in speed with the ex-
isting design, it would be a critical step towards using this system for any sort
of real-time application.

4 Memory and 10

4.1 human_ interface _corners (Matt)

The human_interface_corners module provided the ability to manually specify
the four corners of the document of interest. It took input from the four direc-
tional buttons and the four numbered buttons of the labkit in order to allow the
user to select a corner and move it to a desired location. On top of this, it had
to allow the automatic corners to override the manual corners when a new set of
automatic corners were calculated. This module was important from the early
stages of the project as it was key in allowing the perspective transformation
block to be tested. It was also a critical module as it meant that, in the event of
incorrectly detected corners, the user could specify the location of the corners
and still produce a useful result.

4.2 corner_sprite (Matt)

This module was an implementation of a sprite that drew a simple cross at a
given location on the screen. A colour for the cross could be specified. By telling
the module which pixel on the display was currently being sent to the display,
the sprite could determine and return whether or not this pixel lay on the sprite

10

and hence whether or not it should be coloured in.

4.3 vramdisplay and bram display (Matt)

The vram_display and bram display modules take as input the coordinates of
the current pixel being drawn to screen. From this they could then calculate
the memory address of the given pixel in ZBT or BRAM memory such that the
correct image would be displayed to screen.

The only difference between the vram_display and bram display modules
is that the vram_display module had to forecast which pixel would be drawn
next in order to access the ZBT memory in time (due to the two cycle access
time), whereas the bram_display module did not.

4.4 main fsm (Patrick and Matt)

The main_fsm module controlled how the entire system operated. Inputs for
this module were the enter button and switch[7] of the labkit as well as DONE
signals from all of the image processing and perspective transform modules. This
allowed states to be changed when the user pressed the enter button (e.g. to
begin edge detection), or when one module finished and another one should start
(e.g. after the compute parameters had completed, the state should change to
start the perspective_transform module). Output from this module were the
5 bit state number as well as START signals for all of the image processing and
perspective transform modules. Overall the system uses 27 states.

5 Image Processing

5.1 gaussian blurrer (Matt)
5.1.1 Motivations and Challenges

The first stage in the image processing step was to perform a Gaussian Blur
on the image. This had the effect of removing spurious noise from the image,
allowing the edge detection steps to find cleaner edges. Originally it was at-
tempted to run the edge detection module directly on the unprocessed camera
image, however the result was lots of "edges” that were actually due to noise in
the image.

The main challenge of this module was a result of the inherent delay in the
ZBT memory. The final value for each output pixel is a linear combination the
24 input pixels bordering it and itself. As a result, at each point in time, 25
pixel values had to be held in registers. Each time the x-coordinate of the pixel
being processed increased, 5 new values had to be loaded into registers from

11

ZBT memory, and each time the y-coordinate increased by one, 25 new values
had to be loaded into registers from ZBT memory.

Another timing issue arose from the fact that this process required 25 mul-
tiplications per pixel, which could not be achieved in a single clock cycle due to
the propagation delay of the multipliers available. Furthermore, the weights of
each neighbouring pixel were not an integer which meant that normal integer
binary representation would not be sufficient.

5.1.2 Module Detalils

Originally a 3x3 Gaussian kernel with a standard deviation of 1.4 was used,
however it was found that a 5x5 kernel with standard deviation of 2 gave a
better result due to the high level of noise in the image.

The module read data from the first bank of ZBT memory and wrote data
to the second bank of ZBT memory. This was necessary because the original
image in the first bank of ZBT was need for the perspective transformation step
and so it could not be overwritten.

In order to overcome timing challenges due to ZBT memory access delays
and multiplication propagation delays, the module consumed 26 clock cycles per
pixel calculation. This resulted in approximately one multiplication per clock
cycle and also gave plenty of time for the 5 ZBT memory reads required for the
next pixel.

The module did not reload all 25 pixel values from memory each time the
module moved to the beginning of a new row of pixels and instead used whatever
values were already in memory. This meant that the first 5 pixels in each row
were incorrectly calculated, however it was decided that this was insignificant
as it was unlikely that the edges of the document lay in this region of the image.

The pixel weights were approximated as a fraction with denominator 1024.
This meant that the calculation could executed as a multiplication by the nu-
merator, followed by a 10 bit right shift. The inaccuracies introduced by this
approximation were very small, on the order of 1%.

12

0.023528 0.033969 0.038393 0.033969 0.023528
0.033969 0.049045 0.055432 0.049045 0.033969
0.038393 0.055432 0.062651 0.055432 0.038393
0.033969 0.049045 0.055432 0.049045 0.033969

0.023528 0.033969 0.038393 0.033969 0.023528
35 _35_ 24

24 39
e

1gg4
o |13 o g 12 g
S A

g Iy gt g g

1024 1024 1024 1024 1024

Figure 2: The 5x5 Gaussian kernel with standard deviation 2 can be approxi-
mated as fractions with denominator 1024

5.2 edge detector (Matt)
5.2.1 DMotivations and Challenges

After the Gaussian Blur, it was necessary to identify pixels in the image which
represented edges - these would likely indicate the edges of the document of
interest and therefore could be used to find the corners of the document.

In order to achieve this, the Canny Edge Detection algorithm was used.
This algorithm relies on convolving the luminosity channel of the image with
the Sobel operator to calculate the luminosity gradient of each pixel in the
horizontal and vertical directions.

-1 0 +1
Go=|-2 0 +2[=xA
-1 0 +1
(-1 -2 -1
Gy=10 0 0]|=xA
|+1 +2 +1

G

Figure 3: The Sobel Operator applied to 3x3 matrix A which represents the
pixel of interest and 8 bordering pixels

A pixel is considered an edge if the magnitude of the gradient, G, is greater
than a certain threshold.

13

5.2.2 Module Detalils

Similarities can be seen between this module and the gaussian_blurrer in
that they both convolve an image with a two dimensional kernel. Therefore
this module shares many implementation details with the gaussian_blurrer
module. Each pixel requires 8 clock cycles for processing. During 6 of these
cycles, the Sobel operator is applied to the local pixel to calculate G and G,,.
In the next two cycles G2 Gz are calculated and in the final cycle the sum of
the two squares is compared to a threshold to decide whether or not the pixel
is an edge. Interspersed throughout these cycles are the ZBT memory reads to
acquire the next three pixel values.

To store the results of these calculations, one bit of BRAM memory is used
where a 1 represents that this pixel is an edge and a 0 represents that this pixel
is not an edge.

5.3 sin_lookup and cos_lookup (Patrick and Matt)

These two modules were simply used as sine and cosine look-up tables. They
took an input of an 8 bit unsigned integer representing an angle and would
return the sine or cosine of that angle. Because these functions would return a
number between -1 and +1, the result was scaled by a factor of 4096 so that
the result would be a 13 bit signed number.

Due to the nature of our calculations, the look-up tables only needed to
return valid results for angles that were multiples of four between 0 and 176
degrees.

5.4 Hough Transform Block

The Hough Transform Block consisted of four modules which, between them,
performed the Hough Transform algorithm. These modules are:

e hough _transform_coordinate
e hough transform_calculate
e hough mem

e hough _transform_find_ highest

5.4.1 hough transform_coordinate (Matt)

The Hough Transform algorithm is split into a number of parts, and as a result
it is necessary to ensure that each of these parts occur in the correct order.
Therefore it was required to have a coordinating module which manipulated
START and DONE signals in order to control the other three Hough Transform

14

modules. The first step was to use the hough mem module to clear a space in
ZBT bank 2 memory in order to store the strength of each possible line in the
image.

The next step was to go through every pixel in the image and, if it was an
edge pixel (as detected by the edge_detector module), increment the strength
of each possible line that passed through that point using the hough _mem module.

Finally, the last step was to go through every possible line and find the four
strongest lines by finding which lines had been incremented the most number of
times. This was achieved using the hough_transform find highest module.

5.4.2 hough transform_calculate (Matt)

One major part of the algorithm requires calculating all possible lines through
a given point. In our case, we grouped lines into buckets of similar slope, with
buckets of size 4 degrees (resulting in 45 possible lines: 0 degrees, four degrees,...,
176 degrees). This module would take as input the x and y coordinate of a
point. It would then calculate the parameters p and 6 to describe each of the
45 possible lines that could pass through the pixel. These line parameters are
then outputted on wires to the hough mem module at a rate of one per two clock
cycles.

3 90°

15 p

Figure 4: An illustration of the p, § parametrization of a line.

5.4.3 hough mem (Patrick)

This module controlled manipulation of the second bank of ZBT memory in
order to keep track of the strength of each possible line. Given the parameters

15

of a given line, it could load the strength of that line from the ZBT memory,
increment the value by one and rewrite the new value to memory. This update
action was pipelined, enabling 45 updates to be processed in just over 90 clock
cycles. The timing turned out to be very specific and tight, and often this
module juggles two actions (read and write) at different stages simultaneously.

Furthermore, given a particular start signal it was able to clear the second
ZBT memory bank in order to initialize its values to 0.

5.4.4 hough transform find highest (Matt)

This module was the final step of the Hough Transform. It passed over every
possible line in memory and selected the four lines with the highest strength.
Ideally, these four lines would represent the four edges of the original document.

In practice it was found however that four very similar lines were selected.
This was likely due to the fact that the edge detector found multiple ”edge
pixels” at each point along an edge which resulted in a thick line of ”edge
pixels”. As a result, multiple lines that were very similar but with slightly
different slopes or offsets were selected.

This could potentially have been fixed by using a thinning algorithm after
the edge detection in order to thin the number of edge pixels found at each point
along the edges of the document and hopefully produce thinner edges, however
time restrictions did not allow this to be completed in time.

5.5 corners_from lines (Patrick)

5.5.1 Motivations and Challenges

This module takes four lines identified by a Hough Transform and outputs the
four corners of a convex, non-self-intersecting (i.e. normal) rectangle defined by
those four lines. The need for this module was recognized relatively late during
our implementation process, due to the fact that often software implementations
abstract out, or otherwise implicitly perform this computation.

16

Figure 5: An illustration of the complexity behind extracting four sensible cor-
ners from four lines.

Given four lines as in the figure above, there are actually three ’quadrilater-
als” which might be extracted. ABCD is the desired quadrilateral, but AFDFE
and CF BE are also quadrilaterals, and there is no immediate way to distinguish
between them. Thus this module not only needs to perform line intersection
computations, it needs to algorithmically rule out invalid quadrilaterals.

5.5.2 Module Details

First, we will cover line intersection. The Hough Transform produces lines in
Hesse Normal Form, which means that the equations of the lines are given by
r = zcos(f) + ysin(h). With two lines of this form (or more specifically, the
parameters rg, 0, 71,01), the and y may be derived as follows:

(@,y) = (r1s8in(6y) — rosin(6q) rocos(61) — ry cos(fp) >
Y cos(61) sin(fy) — sin(61) cos(6g)* cos(fy) sin(fg) — sin(f1) cos(fg)’

We optimize this computation by noting that the denominators are actually
the same value, and that furthermore this value is equal to sin(6y — 61) by the
sine sum-of-angles formula. For all trigonometric computations, this module
reuses the lookup tables described above. For division, this module utilizes the
staff provided divider.

As there are six intersections to be computed, this module utilizes six copies
of the line-intersection submodule to compute them simultaneously. This is very

17

resource-intensive, and the choice was made for simplicity due to the lateness
of this module’s creation. Resource use could easily be improved by computing
the six intersections sequentially.

Next, we discuss the identification of the ’correct’ rectangle from the six
computed intersections. The algorithm for determining whether a rectangle
ABCD is valid (convex and non-self-intersecting) is as follows.

Let ¢(ABC) be the orientation of triangle ABC, namely whether points
A, B, C would be clockwise around the triangle. Then, ABCD is valid if
¢(ABC) = ¢(BCD) = ¢(CDA) = ¢(DAB). The algorithm for computing
¢(ABC) is as follows, and is sourced from

c(ABC) = (B, — Aw)(Cy - Ay) —(C; — Aw)(By - Ay)'

Four copies of the orientation-computing submodule comprise a submodule
that checks a rectangle for validity; this validator submodule is used sequentially
on the three candidate rectangles to find one that works.

6 Teamwork, Timeline, and Logistics

Initially, the work was approximately distributed between team members such
that Patrick would do most of the perspective transformation work and Matt
would do most of the human interface and image processing work. This was
generally the case throughout the project.

The largest deviation from the original timeline was due to the image pro-
cessing requiring more steps than expected. A good example of this is that we
did not expect to have to perform a Gaussian blur on the image, however after
seeing the high noise levels produced by the camera we found that this was
absolutely necessary. Implementing this module took a reasonable amount of
time.

Both team members agree that we spent approximately equal durations of
time working on the project and communication was effective.

GitHub was used in order to allow simultaneous development; however it
was found that as each branch was developed, naming conventions and memory
handling architectures were quite different in each, resulting in all integration
and merging having to be done entirely by hand. This resulted in some time
penalty. In the future, we would recommend teams to set up a framework
within which to build modules as one of the first actions (i.e. do ’integration’
first rather than last). At the very least, having things like common top-level
connection naming, for things like memory wires, would be highly beneficial.

18

http://algs4.cs.princeton.edu/91primitives/
http://algs4.cs.princeton.edu/91primitives/

7 Conclusion

The product fulfilled all of the baseline goals laid out at the start of the project.
It provided the user with an interface with which she could take an image
of a document at a skewed perspective, manually select the four corners and
automatically correct the perspective of the image.

The ideal goals were very nearly completed, with most steps in the im-
age processing chain demonstrably working correctly. The project is left in
a state where, given more time, the Hough Transform could be perfected in
order to detect the correct lines in the image. With this step complete, the
corners_from lines module could calculate the correct corner locations and
then the whole process could become automated.

The stretch goals were not completed.

This project was known to be ambitious from the start and we are proud
of what we have achieved. Some disappointment is found in being close to
completing the ideal goals, but not quite there. However, overall the process
has been an educational and enjoyable one and we would like to thank Professor
Gim Hom and all of the teaching and laboratory assistants from their help in
making the project a success.

19

	Introduction
	Main Challenges
	External Components
	Goals
	Results

	Design and Dataflow
	Block Diagram
	Dataflow Overview
	Detail

	Perspective Transformation
	compute_parameters (Patrick)
	Motivations and Challenges
	Module Details

	pixel_transform (Patrick)
	Motivations and Challenges
	Module Details

	Memory and IO
	human_interface_corners (Matt)
	corner_sprite (Matt)
	vram_display and bram_display (Matt)
	main_fsm (Patrick and Matt)

	Image Processing
	gaussian_blurrer (Matt)
	Motivations and Challenges
	Module Details

	edge_detector (Matt)
	Motivations and Challenges
	Module Details

	sin_lookup and cos_lookup (Patrick and Matt)
	Hough Transform Block
	hough_transform_coordinate (Matt)
	hough_transform_calculate (Matt)
	hough_mem (Patrick)
	hough_transform_find_highest (Matt)

	corners_from_lines (Patrick)
	Motivations and Challenges
	Module Details

	Teamwork, Timeline, and Logistics
	Conclusion

