
An Image Perspective
Correction System

Matt Hollands, Patrick Yang

Problem Statement + Motivation

● Digitization of objects can be
done via smartphone camera

● To correctly produce a
rectangular object, we must
correct for perspective

● We implement a system that
solves this problem in
hardware.

Source:http://opencv-code.com/tutorials/automatic-perspective-correction-for-
quadrilateral-objects/

Design Overview

● Store a camera frame in ZBT memory

● Use algorithmic feature recognition techniques to identify the corners of a
rectangular object in the camera view, OR let the user specify the corners
using a human-interface module

● Compute a transformation that will rectify the perspective

● Save the perspective-corrected rectangle in another bank of ZBT memory

Block Diagram

Camera, VGA modules

● Camera module loads single frame into a ZBT memory bank.
● VGA module reads from a ZBT memory bank and displays on the screen along

with sprites.
● Must be synchronised with any other module accessing memory.
● The VGA module will be tested by reading an image from memory onto the

display.

Corner finding components

● Image processing algorithms required:
○ Canny edge detection for finding edges in the image
○ Hough Transform to find long lines representing the edges on the document

http://docs.opencv.org/2.4.9/modules/imgproc/doc/feature_detection.html

Image transformation components

● A perspective transform is defined by a 9-parameter non-linear map

● Given four corners of the screen mapping to four corners of the skewed-
perspective object, we have 8 equations.

● We can use these to compute the parameters

● Given the parameters and any pixel on screen, we can find the pixel in the
original (skewed) image that it maps to

Integration (Main FSM, human interface)

● Hold the state of the overall system.
● Some high level states may include:

○ Camera Viewfinding
○ Image Capture
○ Image Processing/Transformation
○ Processed Image

● Transitions between states will controlled by the user.
● Tested by using test benches to stimulate the inputs

Timeline

● Week of Nov 2: Read camera data to ZBT memory, replicate a stored image
from ZBT memory to VGA

● Week of Nov 9/16: Human interface module, image transformation module

● Week of Nov 16/23: Algorithmic edge and corner detection

● Week of Nov 30: Integration and end-to-end testing

