6.111 Project Proposal

Real-time Auto-Tune

[shwarya Ananthabhotla , Trevor Walker

1 Background

In today’s contemporary music produced by vocal artists, live recordings are almost
necessarily subjected to improvement or correction by means of a process known as auto-
tuning. Auto-tuning is a process that involves taking individual notes that are sung by
a performer and digitally transposing them by minor increments to match the series of
notes originally intended to form the melody. This type of system typically exists in the
form of software that can be used to enhance vocals after live recordings have been taken,
and is usually operated by recording engineers in professional studios. On an abstracted
level, these tools operate by classifying and altering each recorded note as required in the

frequency domain to match (or at least come closer to) the intended note in the song.

2 Motivation

In this particular project, we aim to design, implement, and test a system that is capable
of performing auto-tuning in real-time. While signal processing, computation, and shift-
ing in the frequency domain are concepts that have traditionally been approached from
a software perspective, this project will focus on a complete hardware implementation.
As a result, we seek to gain a better understanding of the design decisions and trade-offs
required to build a comparatively robust hardware system. We are also hoping to use
this project as an opportunity to explore the realm of digital audio processing, a field in
which both student authors have an active interest. Finally, we would like to implement

some additional features that are non-traditional in an auto-tuning system, and evaluate

the output sound quality of the reproduced audio in response to these added features

from a qualitative standpoint.

3 System Overview

On a high level, our system can be represented by the system diagram shown in Figure 1.

User Input: Scale

I
AudioIn 1
(from '
Codec) 2
> FFT > Look-up Table
|
User Input: l
Tuning Correction
Parameters >
Factor
_________________________)
v
Real-time Auto-tune System
Inverse FFT
v
Audio Out
(to Codec)

Figure 1: Block diagram of our auto-tune system

The core of the system will be restricted to one or more Xilinx FPGA boards, along
with the use of a few minor peripheral devices (such as microphones and speakers) for
the purpose of capturing and delivering audio. As shown in Fig. 1, audio will be input
into the system via a microphone, filtered, sampled, digitized by the AC97 Codec with
which we have already experimented in this class. Then, for a pre-determined window of
data points, we will use the CoreGen module to perform an FFT on this data in order to

obtain a spectrum of frequency distribution for that particular sample. The system will

identify the fundamental frequency from this spectrum, and compare it to an “a priori”
spectrum which represents the allowable frequencies for this particular sample (where a
series of such samples form the song). This spectrum will be generated offline by a user
specifying which notes are allowed to belong in this song. The system will then compare
the song data spectrum with the a priori spectrum to identify the note in the latter which
is closest to the one that has been sung, and the degree of correction that is required. This
is portion is executed via a lookup table. The entire spectrum of the song data will then
be shifted by this degree, a parameter which can be tuned slightly by a user to influence
the amount of naturalness that is preserved in the output. Additionally, the user will
have the opportunity to tune the rate of correction, another factor which will determine
the naturalness of the sound output. Finally, the system will perform the inverse of FF'T
of this newly shifted spectrum, outputting the time-domain waveform back through the

Codec and out to speakers or headphones that will be connected to the board.

4 Modules

4.1 FFT

The FFT, or Fast Fourier Transform module, is the most crucial part of the system.
Its responsibility is to take the discrete Fourier transform of incoming audio samples,
to transform them from the time domain to the frequency domain. There are severial
design tradeoffs to be considered in the design of this system’s FFT - a larger sample
increases the system’s ability to distinguish adjacent pitches, but requires more resources
on the FPGA. Because pitch is a logarithmic function of frequency, the difference in
frequency between adjacent pitches increases with frequency, so higher pitches are easier
to distinguish from each other. The pitch discrimination capability of the FFT, therefore,
determines the lowest pitches that the system will be able to accurately identify. The
size of the module can also be decreased in exchange for an iterative structure, though
this introduces greater latency and lowers the module’s throughput. Because the FFT is
complex to design in Verilog, we will use a generator like Xilinx’s CoreGen to produce

the Verilog source code. Ishwarya will implement this module.

4.2 LUT

The lookup-table (LUT) module is likewise essential to the system’s operation. For
the base-level (“B”-level) system’s implementation (pitch detection and display), the
structure of the lookup table is relatively simple, and its function is simply to map
frequency to a musical note. For example, a detected frequency of 440Hz corresponds to
the note A, (the A above middle C) in this table.

In the case of the higher-level (“A”-level) implementation, the table is more complex.
Its index is still the detected fundamental frequency, but its outputs are now given by
LUT[i| = f./fi, where LUTYi] represents the LUT value for the FFT result at i, f.
represents the closest frequency to the detected frequency, and f; represents the actual
frequency of the FFT sample at i. This table is generated at startup based on the user-
selected set of permissible pitches. The output of this table is the ratio between the
desired pitch and the pitch the user has sung; therefore, it is the factor that the FFT
result must be multiplied by to bring the user’s singing to the correct note.

Finally, for the most difficult level of implementation, the table is generated anew with
every sample based on the changing set of permissible pitches. Trevor will implement

this module.

4.2.1 Peak Finder

Between the FF'T and the look-up table itself, it is necessary to determine the fundamental
frequency being sung; this is accomplished by iterating over the result of the Fourier
transform and determining the component with the largest amplitude. It is the frequency

of this component that is used as the index of the LUT.

4.3 Pitch Display

This component is fairly simple; it consists of capturing the output of the (simpler)
LUT, and converting that information into a display for the user. This display will be
implemented on the labkit’s 5x7 LED array with a version of the 6.111 hex_display module
modified to display the letters from A to G,f, and b. Trevor will implement this module.

4.4 Corrector

The function of the corrector module is to perform the appropriate shift on the FFT

result, as determined by the LUT. This is accomplished by multiplying the FFT result by

the pitch correction factor from the LUT. Additionally, the user controls two parameters
affecting this component: the degree of correction and the rate of correction. The degree
of correction ranges from 0 to 1 (scaled to an integer for compatibility with the FPGA’s
fixed-point computation), by which the pitch correction factor is multiplied before the
correction is applies. The correction rate parameter allows the user to control how natural
the corrected audio sounds by controlling how aggressively the correction is applied -
the slower the rate of correction, the more natural the sounds. This control will be
implemented by the inclusion of memories in this module, to store the current correction
factor and allow it to change over time as a sung note continues. Trevor will implement

this module.

4.5 IFFT

The inverse Fast Fourier Transform will be very similar to the forward transform described
previously; it will have the same value for N, and many of the calculations necessary are
the same. All the same trade-offs apply too, and it is likely that the parameters for this
module will be the same as those for the FFT. The function of this module is to transform
the frequency-domain sound representation produced by the FFT and modified by the
corrector to a time-domain representation suitable for loading into the AC97 codec and

played on the speakers. Ishwarya will implement this module.

5 Extra Features

For the “A+"-level implementation, the system gains an addditional feature which was
briefly discussed in the LUT section: the ability for the user to provide a sequence of
pitches in real time and have those pitches used as the target pitch for correction. This
mode would allow a user to indicate the notes that they should be singing, and will permit
interesting effects such as warping pitch to target notes very far from what is actually
being sung. It will also eliminate the potential for harsh jumps between frequencies while

singing, as only one note will be targeted at a time.

