Portable Function Generator

6.111 Final Project Report - Fall 2014

Brandon Vasquez
Ciara Kamahele

Abstract (Both)

A function generator is a universal tool used by every electrical engineer at some point in their
career. Sine, square, and triangle waves of different periods, duty cycles, and amplitudes are
required as input to many digital and analog circuits. A function generator creates these input
signals which can then be amplified and used in a variety of applications.

There is currently a wide range of commercial function generators available to choose from,
many of them fetching a high price. For our final project, we constructed a function generator
using a Nexys 4 FPGA. Using buttons and switches built into the Nexys 4, users are able to
select a frequency and have the Nexys 4 generate the corresponding waveform on one of two
output channels. Our device produces a VGA signal of the waveforms which is displayable on
any VGA monitor. This way, users can view the waveform they are generating without having
to verify with a scope.

We hope that our function generator will be useful for other fellow electrical engineers,
especially students, who would rather purchase a device with a multitude of uses such as an

FPGA rather than buying a device that can only work as a function generator.

Implementation Overview (Both)

Waveform
Ganearalor

Real-lime WIEA Pixeal
waveform Out

samples y
Pixels for the Pixels for the GUI
waveform

Gl
Pixals in Mesdushe

Text
Sprites

Real-time
wavaform

[Waveform Buffer }
samplas

Waveform
sampling window

¥ Wavefarm
points for) the waveform
Drawing State Machine drawing DLum_a Frame
raning Buffar

Module

Figura 1: Cwvarall system diagram.

Our project is comprised of three major base modules. The first module, the waveform
generator, generates square waves, triangle waves, and sine waves. Using two 8-bit DACs,
we implemented dual channel outputs which should be able to display independent
waveforms simultaneously. The user is able to control the duty cycle of the square and
triangle waves as well as the amplitude and frequency for all three types of waves. The two

output channels also have a variable phase shift relative to each other which can be arbitrarily
assigned by the user.

The second module, the sampling window, chooses an appropriate scaled sample of the
current waveforms to be displayed. The window can be varied to display more or less of the
waveform as well as scaled for viewability. This module is tasked with mapping the real-time
waveform generated by the waveform module to a format that can be displayed using the
third module, the display module.

The display module interfaces with a VGA display. It communicates directly with the sampling
window module to acquire the information it needs to display. As an extension to the base of
the project, this module could also be capable of displaying the waveforms using
galvanometers. The display module would take the input of the window and translate it into
motion for the galvanometers. This way, with a low power laser, the waveforms would be able
to be viewed on a flat surface like a wall. The square and triangle waves would be drawn from
point to point. For sine waves, we would most likely use a precomputed sine wave table with a
reasonable resolution, and draw the signal continuously between discrete points taken from
the sine wave table.

Modules
Waveform Generating Module (Ciara):

A The waveform generating
period module creates a waveform in
real-time based on several
parameters set by the user. The
waveform generating module
amplitude’y, I first takes into account a stall bit
> to decide whether or not to
compute during the current
clock cycle. If the stall bit is
high, the waveform module
goes on to recompute duty cycle
and step rate information for

phase shift ! "
g — each possible type of waveform
if the user made a change to
Figure 2: Components of a waveform. amplitude, frequency, or duty

cycle during the previous cycle.

Finally, the waveform module
accepts user input to adjust amplitude, frequency, duty cycle, or wave type, and then outputs
a single sample of the current waveform in real-time.

The stall bit of the waveform module can be used by an outer module to implement phase
shifting between multiple instances of waveform generating modules. If there is only one
waveform generating module in use, the stall bit is intended to always remain low. If there are
two waveform modules with a variable phase shift in between them, as implemented in our
top-level module, the phase shift can be implemented using the stall bits of each waveform. In
order to increase the phase shift, the stall bit of the first of the waveforms can be set high. The
number of clock cycles the stall bit is held high for, or the phase shift multiplier, can be used to
calculate the current phase shift by multiplying this number by the clock period. To decrease
the phase shift, the stall bit of the second waveform can be set high. The phase shift multiplier
is decreased accordingly by the amount of clock cycles that the stall bit of the second
waveform is held high for.

User Parameters (Ciara):

The waveform generating module has an adjustable amplitude resolution of 8-12 bits, in order
to be compatible with the DACs we chose to use for our project. The waveform amplitude
begins at 50% of the maximum amplitude, and can be adjusted up or down by
user-accessible buttons. Assuming an output supply voltage of 5V, the amplitude can be
changed in increments of approximately £0.2V, 1V, 1.5V, and 2.5V, capping out at 0V and 5V.
This resolution is approximate because it was much more hardware and time efficient to
adjust the amplitude by rough addition and subtraction, rather than by exact multiplication and
division. The current amplitude is output from the module in approximate millivolts by shifting
the current amplitude left by one bit.

The waveform generating module has a variable frequency resolution between 1MHz and
1KHz. We implemented several schemes for user frequency adjustment, and eventually
settled on the simplest one due to timing issues. Internally, the period of the current waveform
is stored as a period multiplier. The period multiplier measures the number of clock cycles
contained in the current period. We worked with a 100MHz clock, so a period multiplier of 1
would correspond to a 10 ns period. We made the minimum period multiplier 100,
corresponding to a minimum frequency of 1MHz, so that there would be sufficient clock cycles
in each period to prevent aliasing of the sine waves.

One of the possible schemes we implemented for changing the frequency allowed an
adjustment resolution of £+1Hz, 10Hz, 100Hz, 1KHz, 10KHz, or 100KHz. In order to allow such
flexibility and fine adjustment of the frequency, we used multipliers and dividers to convert the
period into the representation of the same frequency that the period was being adjusted by.
Then, we multiplied the frequency by a fraction, to adjust it up or down to the next level. In the
case of an upward adjustment, the calculated frequency would be multiplied by n/ (n + 1),
and in the case of a downward adjustment, the calculated frequency would be multiplied by
(n+1) / n. Finally, the frequency would be converted back to a period multiplier and stored.

The waveform generating module stores the current duty cycle as a number representing
percent duty cycle between 1 and 100. The duty cycle begins at 50%, and the user can
change the duty cycle up or down in increments of £5%, 10%, 20%, or 50%. The duty cycle
can easily be incremented up or down internally in this representation with simple addition
and subtraction.

Finally, the currently displayed wave type can be toggled once during each cycle. A single
user button press cycles between square, triangle and sine waves. In order to prevent toggles
from happening too quickly, each user button is latched when it goes high for a single clock
cycle, and not unlatched until it goes low again for at least a full clock cycle. For simplicity, the
user buttons are assigned a priority and only a single button press is handled at a time, using
this pre-set priority to break ties.

Waveform Generation (Ciara):

In order to display a square wave, a duty cycle maximum count is computed by taking the
period multiplier and multiplying it by the current duty cycle percent. To create a square wave,
a counter begins and zero and counts up to the period multiplier. If the current duty cycle
count is below the duty cycle maximum count, the output waveform sample is equal to the
current maximum amplitude. Otherwise, the output waveform sample is equal to zero. Each
time the duty cycle or the frequency of the wave is changed, the maximum duty cycle count is
recomputed during the next cycle.

In order to display a triangle wave, the duty cycle maximum count computed for the square
wave is also necessary. Additionally, a triangle step up and step down size are computed so
that points on the sides of the triangle can be interpolated simply by adding on the way from
0V to the peak of the triangle and subtracting on the way from the peak of the triangle to 0V to
compute the current waveform sample to output. We used fixed-point arithmetic to make the
interpolation work better than it would with simple floor division of integers. In order to do this,
we added an extra eight fractional bits onto the low end of the step sizes and current triangle
height count. Each time the height count was incremented, the augmentation would also
include the fractional amount. When the height of the current sample was computed, the
fractional bits would be removed to produce a sample of the correct bit length.

0000000100000001

15 14 13 12 11 10 89

1 o

256

Figure 3: Fixed-peoint arithmetic. This image demonstrates breaking a binary number up
int an integral part and a fractional part.

In order to create sine waves, we used a sine lookup table with 1024 samples. The skip size
through the table was calculated with 14 fractional bits, and downsized in the same way as
the fixed-point arithmetic described earlier when determining the index of the sine table. The
current sine table value is multiplied by the overall waveform amplitude to determine the
waveform sample to output.

Each time the user makes an adjustment to amplitude, frequency, or duty cycle, new internal
information specific to each type of waveform is computed in the following cycle. An
adjustment to amplitude requires the step up and step down sizes for the triangle wave to be
recomputed. An adjustment to the duty cycle or frequency requires the sine table skip rate
and the duty cycle maximum count to be recomputed, and thus requires the triangle step up
and down sizes to also be recomputed.

Sampling Window Module (Ciara):

The sampling window module takes the continuous time waveform created by the waveform
generating module as input, and chooses 1024 specific samples to fill a buffer, e.g. to use for
display or other purposes. In order to produce a consistent sampling window, the module
waits until it detects the start of an increasing waveform. This way, the sampling window will
always contain a wave starting from a rising edge. The module then takes 1024 selected
samples and writes them to internal BRAM. Finally, the module writes the contents of the
BRAM to an external memory and signals that they are ready to be read.

The sampling window module has to interface with two different clocks. One of the clocks
determines the rate at which it receives real-time samples from the waveform generator, and
one of the clocks determines the rate at which it can write the external memory so that
connected modules have enough time to read the memory before it is overwritten again. In
order to accomplish this, we effectively used two separate state machines within the same
module. One state machine governs the loop that writes waveforms to BRAM, and one state
machine governs the loop that writes the buffered samples in the BRAM to an external
memory source. The state machines interface with each other by reading each other’s internal
states and occasionally changing their own states based upon the current state of the other.

8 00

% GTKWave - out.ved

File Edit Search Time Markers View Help

@e ‘_‘Tj'l

QaQ

Kol <

From:|0 sec

To: 1000110 ns

Marker: -- | Cursor: 360 ns

< 55T

Signals

B test

Type | Signals

wire reset

reg statel[2:0]
reg statez2[2:0]
wire waveform[9:0]
wire waveform_clk
reg we

req wr_ready

reg write_addr[9:0]

Time
addra[9:0]
data_clk
dinal[g:0]
1ndex[9:0]
ready
reset
statel[2:0]
statez[2:0]
waveform[9:0]
we
wr_ready
write addr[9:0]
waveform clk
x1[9:0]
x2[9:0
x3[9:0

x5[9:0

]
]
x4[9:0]
]
]

x6[9:0
x[9:0]
x1000[9:0]

‘Waves

[e]e]6]

Figure 4: An example output from the testing module for the sampling window showing the
two state machines (state1 and state2) and how they interface with each other before
writing to external memory (x1,x2,x3 etc).

Display Module (Brandon):

The display module is responsible for taking the waveform provided by the waveform
generating module and displaying it on a VGA monitor along with the frequency, amplitude
and duty cycle of said waveform. It is comprised of several sub modules. These submodules
work together to produce the correct VGA control signals and display for a 1024x768 60Hz
monitor. These submodules include the VGA driver module, the Bresenham line drawing
module, and the GUI module, along with an overall drawing state machine.

Top Layer: GUI
Froquency: 1234K
Amplioe .?.3'.-'/

Bottom Layer: Frame Buffer

Figure 5: An illustration demonsirating the two rendered layers. The top layer, the GUI,
constructs the readouts which are updated in real-time. The bottom layer, which contains the
waveform, is generated by reading from a frame buffer.

The display is generated by rendering an upper layer, which is controlled by the GUI module,
and a lower layer, which is read from a framebuffer.

The lower layer is where the waveforms that are being generated are displayed. Since we
only care about whether or not a pixel is part of the waveform, the frame buffer can be
constructed out of BRAM with a width of one bit and a depth of the number of pixels in our
display. In our implementation, a single BRAM generated using the LogiCore™ is used for the
frame buffer. Since the display is 1024x768, we only need one bit for each pixel, so the total
size of the BRAM block is 786432 bits (approximately 768Kbits).

On each positive edge of the 65MHz VGA clock, both the output of the frame buffer as well as
the GUI module are sent over VGA directly to a monitor. Since our design uses a single frame
buffer, writing to the buffer can only occur when the monitor is not drawing anything, i.e. when
vsync is low. In this time, if there are any lines to draw, the Bresenham line drawing module
will write to the frame buffer memory at the locations which correspond to pixels that are part
of the line.

Bresenham Module (Brandon):

The Bresenham line drawing module is a module that implements the Bresenham line
algorithm to determine what pixels should be on a line between two points. We chose this
algorithm because of its simplicity. It is well-suited for implementation in hardware due to all
calculations being integer arithmetic. This module is used to draw the lines between adjacent
points in the waveforms that are displayed on the screen.

To draw a line between points, the algorithm
determines the x and y deltas as well as in
what direction the line is being drawn. If
pixels were infinitesimally small, then a
perfect line could be drawn between two
points. Since physical pixels are not
infinitesimally small, lines appear rastered. If
we were to draw a perfect line from the
center of one pixel to the center of another,
Figure &: An illustration demaonstrating how to draw a line on a pixel we might not be able to find pixels whose
display centers lie on the line. Starting at one point,
a state machine chooses the initial point to
begin drawing the line based on what direction the line was being drawn in. From the first
point, the state machine determines the next point in the line by keeping a running error which
is used to determine whether or not a pixel should be colored above or below the theoretical
line. During this process, the input address of the frame buffer is controlled by the line drawing
module such that each pixel that is determined to be on the line is written into a frame buffer.

Display State Machine (Brandon):

[Waveform Buffer} VGA Display
&
/' / Amplitude 'y
Addrf 10 Elf, P o
/_ “ \ /— ‘\ xAdd UNN
r
draw_line f; >
- yAddr Frame
] 0 11
Line ® /s .| Bresenham [7 | B™®
; '{ . write_enable
Drawing w7 . Line —
State x1 W | Drawing
Machine a0 Module
f -
< done

N / o J

Figure 7: Inputs and outputs within the display module. Contains the display state machine,
the Bresenham line drawing algorithm, the GUI module, and the frame buffer.

To actually draw the entire waveform into memory, a state machine in the display module
feeds the line drawing module with points on the generated waveform. These points are
stored in BRAM which is shared between the display and the waveform generation modules.
When it is time to draw a waveform, the waveform generation module tells the display module
that a waveform has been loaded and that it should be drawn. The display state machine
clears the current frame buffer and then feeds the points of the waveform to the Bresenham
module. First, it provides a pair of points to the line drawing module and tells it to draw that
line segment into memory. Once the line drawing module is finished, it reports back to the
display module state machine that it is ready to receive the next pair of points. At this time, the
display state machine loads the next pair of points into the line drawing module. This cycle
continues until the display state machine determines that all pairs of points in the waveform
have been drawn.

GUI Module (Brandon):

The GUI module, given an x and y coordinate (hcount and vcount), is responsible for telling
whether or not a pixel should be colored if it is part of an alphanumeric readout or the
background grid. In the GUI module, a designer can state where they want a letter or number
to appear by creating an instance of a text module. A text module contains a large case block

9

which has subcases for each letter. This allows for multiple text sprites to be dynamically
loaded in different locations. This process is necessary for dynamic readouts. An instance of a
dynamic readout that our system supports is automatically adjusting the frequency and
amplitude display to be easily human-readable. For example, a frequency of 1000Hz would

veaunt = 4

l

Figure 8: An example of the representation of a
sprite. Here hcount and vcount are both equal to 4.
This point is represented by a zero, so the pixel at
that point would be black (it is not part of the F).

be automatically be displayed as 1.00KHz, and an amplitude of 1234mV would be displayed
as 1.23V. The text sprites were hand made using a Python script which would generate the
appropriate case block given an array of 1s and 0s, which represents pixels in an 8 by 11
sprite container.

BCD, Amplitude, and Frequency Logic (Brandon):

The BCD, amplitude, and frequency modules are responsible for determining what values to
display and how to display them. The BCD module takes raw frequency (in Hz) and amplitude
(in 10mV) and converts them to binary coded decimal format (BCD). This is done using the
double dabble algorithm which is easy to implement in hardware. Given an input of n bits, the
BCD module copies it into a register that is n + 4*n bits wide. The first n bits are reserved for
the input while the next n*4 bits are used for the BCD representation: each set of 4 bits
corresponds to one digit. The register is then shifted left n times. Each time it is shifted, if a
digit is equal to or greater than 5, 3 is added to that digit to preserve the carry. The BCD we
implemented supports numbers up to 2”20, or 1,048,576, which is plenty for our display.

The amplitude and frequency modules are necessary because both of these parameters are
modifiable by the user. These modules take the raw amplitude and frequency, along with their
BCD representations, and decide what to display given a certain value. For example, if we
were trying to display an amplitude of 1234Hz, the frequency logic determines that it is more
readable to show “F:1.23KHz” rather than showing “F:1234Hz".

10

sprite_8§

I/"—"-\I ;/ o 1.000,000 5: -
5 sprile_7
raw_input ;/ S * Amp 'J‘ —
. . . GUI
-~ BCD . Freg .
: d 10 LOQ|C 5 Sprite_1
Fd — -
- J 7 ___ —

Figure 8: The connection between the BCD module, display logic module, and the GUI
module.

Laser Galvanometer Module (Both):

_—

Galvanorneter Scanner 2

Galvanometer Scanner 1

e

Figure 10: The above image demonstrates the general operation of a laser galvanometer
display. The bottom scanner {mirror) is responsible for horizontal positioning and the top
scanner (mirror) is responsible for the vertical positioning.

The laser galvanometer module would be responsible for drawing a waveform on a wall using
lasers and galvanometers. To draw an image on a surface, a laser beam is shone on two
mirrors. The position of the mirrors determines the termination position of the beam against a
wall. The angle of these mirrors is controlled by galvanometers, which maintain a fixed angle

11

given a certain voltage. A mapping can be made between the input voltages of the
galvanometers and a cartesian coordinate for the point on a projected surface. This mapping
could be stored in BRAM so that the laser galvanometer module could produce the correct
voltages to make the laser beam seek to different positions on the wall. To make this
mapping, we would assume that the mirrors are close enough together that we can consider
them to be a point source. With a point source originating some distance away from the wall,
we can use basic trigonometry to determine the angle of the beam relative to the normal, or
resting position.

In the figure to the left, we can see a
situation where the laser origin is 10 ft

121t away from a projectable surface. If we

\ wanted to deflect the beam from the
- origin of our viewing plane to 3 feet to the
right, we would need to introduce an
angle of arctan(z%) which is around 16°.
By rotating the mirror responsible for the
horizontal positioning by 16°, we could
10ft make the laser beam seek to the right by
/ approximately 3 feet. This same
L technique could be used to move the
Lﬂsg:ﬁﬁﬂm beam in the vertical direction, the only
difference being the mirror which moves.

Horzontal Positioning

Beam at rast

3
gff - Beam at (3,0)

Figure 11: lllustration of galvanometer
projection.

Unlike the VGA display which generates images by coloring pixels, galvanometers create
persistent images by sweeping a laser beam faster than the human eye can perceive the
movement. Since physical limitations prevent the galvanometers from updating their position
as fast as a monitor can update pixels, the effectiveness of the galvanometers relies on their
ability to interpolate between fewer sampled points. Rather than giving a list of pixels to the
galvanometer and turning the laser beam on and off at each pixel, a smaller collection of
points can be given to the galvanometer and the laser can trace in between the points without
ever being turned off. For example, in order to draw a sine wave which would be encoded for
display on VGA as 1024 distinct samples, we would down sample by carefully selecting 100
points on the sine wave for the galvanometer to sequentially update its position.

DAC Modules (Brandon):

Since our project is designed to produce a waveform that can be used not only for a VGA
display, but also drawn using laser galvanometers, digital to analog converters (DACs) are

12

necessary to convert the digital representation of a voltage to an analog voltage. DACs have
many specifications; the ones most important to us for our project were resolution, settling
time, or how long it takes for a digital input to become a stable analog output, and the number
of inputs needed to control the chip.

The DAC which produced the waveform would need to have a very small settling time to
produce clean waveforms at high frequencies. For example, in order to produce a sine wave
at 10KHz, we would need to vary our output voltage at a rate far faster than 10KHz. Assuming
we wanted to have 100 samples per period of a 10KHz sine wave, we would have to update
the output voltage at 1MHz, which is quite fast for a DAC. As a result, we ended settling on a
DAC with parallel inputs. This way, we would be able to use a DAC with a fast settling time to
produce high frequency waveforms. The DAC we selected was the 12-bit DAC902 by Texas
Instruments. This DAC has an impressive sampling rate of 165 mega samples per second,
which makes it great for producing high frequency waves. However, it requires fourteen
inputs. Twelve inputs were already needed for the 12 bits of input, while the other two were
for control input and reference select. Additionally, one of the applications listed on the data
sheet is a function generator, so we thought it would be an appropriate choice.

The DAC used for the galvanometers did not have to be nearly as fast as the DAC used for
the waveform generation. This is because the galvanometers have a physical limitation that
results in a slow maximum update rate of around 30KHz per 8° of shaft rotation. With such a
slow output frequency, we could use a slower DAC with serial input which would require far
fewer inputs overall. The MCP4822 by Microchip is a small 12-bit dual channel DAC that can
be programmed using SPI and has a update rate of about 200KHz. Being an SPI controlled
DAC, only 3 inputs are needed: one for the serial clock, one for the data line, and one to latch
the input register values to the output voltage. Since the serial clock can not be as fast as the
system clock, we generated a new clock using the Logicore clock wizard. Because the system
clock works off a 100MHz clock, but the serial clock can be at most 20MHz, synchronization is
needed between the input and output of the slower DAC module.

o5\ /

... 01 2 3 4 5 6_7_8 9 10 11 12 13 14 15 (Mode 1,1)
SCK|||||||||H||||||||| ||| (Mode 0,0)
|l «—— config bits 12 data bits

soi A) — [GA[SHDN D11XD10XDQXDSXEXDBX%XMXEXD.?XmXDO'
[DAC /o

V,
ouTt /

FIGURE 5-1: Write Command for MCP4822 (12-bit DAC).

13

Signals

[Time

din[11:0] =xoooooo] |
sclk=0

sout =0

latch=1

done =1

Figure 12: The image on top is taken out of the MCP4822 datashesl. It shows the serial
protocol for sending information to the DAC, The first bit selects the output channel, the
second is low, the third is the gain (which is set to 1), and the fourth bit is the output enable.
The next 12 bits are the bits that control the output valtage, Once the 16 bits are serialy shifted
in, the output is latched with a low signal on the latch input. The image on the bottom shows a
simulation of the DAC driver implemeantad in Vearilog. A input of 1100711001100 (4 volts) is
being sent to the DAC,

Integration and Testing (Both):

Figure 13 The first ever waveform praduced by our function generator

Before connecting separate modules, we created dedicated test benches for each
independent module. Each independent module was tested and verified completely
separately in simulation, using iVerilog for compilation and GTKWave for simulation analysis.

In order to test the waveform generating module, various patterns of control signals were
generated in a series of tests and the output waveforms were verified manually. To test the
sampling window, a two-dimensional array was substituted for BRAM and the contents of the
array were verified manually in simulation.

14

The line drawing was tested by inputting line segments that spanned in between all eight
cardinal directions. We verified the line drawing modules performance by monitoring the
addresses it was writing to. This module was then added to the hardware and tested with
BRAM and the VGA display. The GUI was also tested directly on the display.

The DAC modules were tested by comparing the output control signals with the timings and
protocols described in their respective datasheets. They were then hooked up to the Nexys 4
and small state machine modules were used to increment and decrement the output voltages
based on user input.

Once we determined that all initial module worked by themselves, we slowly integrated
modules together and tested them as larger units. The first integration we worked on was
combining the display module with all of its subunits, because the display was necessary to
test and debug all other components. When the display system could successfully draw a
precomputed sine wave, we worked on connecting the waveform generating module to the
display system. When we could successfully draw a real-time generated square wave, we
worked on integrating the other types of waves and accepting and responding to user input.
Finally, we worked on integrating the DAC drivers into our system.

Challenges (Both):

The biggest challenge we faced throughout the project was timing issues. These manifested
themselves in the display and caused strange display artifacts. The exact cause for the timing
issues was never discovered, but several attempts to remedy artifacts in the display were
made. Using the ISE timing reports we were able to find some obvious poor design choices.
Unfortunately, there were also other reports which pointed out things that didn’t make sense.
An example is a path which included inverters, even though the signal was never inverted.
For some of the timing issues that made sense to us, we were able to add delays and some
pipelining to reduce the critical path. Another we made attempt at fixing the issue was
explicitly creating buffers on the clocks. We had assumed that these had already existed, and
after attempting to add them and noticing a drop in performance, we came to the conclusion
that they did not need additional buffering.

Another problem that was amplified by the latent timing issues was performing complex
mathematical operations. While our original scheme for allowing the user to manipulate the
waveform frequency very precise and gave the user fine resolution tuning in regards to the
output waveform, the hardware produced to do all the multiplications and divisions would
interact negatively with the timing constraints and produce surprising outputs. The frequency
shifting worked perfectly in simulation but did not work in practice. We tried breaking up the
computation of the new frequency over several clock cycles to reduce the amount of
necessary hardware and to interact better with the timing constraints, but it didn’t help much.
In the end, we ended up implementing several constant fixed-frequency adjustments instead.

15

The math required for these increments was much simpler, and was able to work within the
physical timing constraints of our system.

Another fix to we attempted to implement was a double frame buffer drawing scheme. We
hoped that using a secondary frame buffer would improve the timing of the display module
and potentially solving some of our persistent timing issues. In our implemented double buffer
scheme, one buffer could be continuously written to while the other buffer was being
displayed. Once the waveform was written to memory, the display could switch to the buffer
with the new waveform while the buffer it was previously displaying could be cleared and have
a new waveform loaded into it. This would have also improved flickering that resulted from a
single buffer being viewed during the drawing of a line segment. Ultimately, we used single
buffer for simplicity, and our attempts at implementing a double buffer scheme were halted
due to more pressing issues and project time constraints.

Another considerable challenge we faced was integration of separate modules. While our
modules appeared to work well in simulation, it was difficult to put them together in such a
way as to not break the display. Because of the timing issues previously mentioned, when we
would add computationally difficult modules to the overall project, such as the multipliers and
dividers required for fine frequency shift resolution, the display would become significantly
distorted. Additionally, attempting to duplex two copies of the waveform generator to
implement dual channel output with a phase shift worked in simulation, but did not work in
practice due to the hardware requirements and interaction with timing problems. Since we
were unable to find the primary source of the timing issues, we had to make several design
choices that involved simplifying the control flow and arithmetic.

We also faced issues integrating the DACs with our module. We were able to generate analog
voltages using the DACs independent of our module. We tested this by using buttons to
increment and decrement the output voltage. We were also able to generate a sine wave by
directly reading out of BRAM at a slow rate, but unable to generate a sine wave with a varying
frequency. We believe this was due to the update rate of the DACs being greater than their
theoretical maximum. We attempted to reduce the update rate while preserving the shape of
the waveform but were unable to determine whether the bug was in the Verilog generating the
waveform or elsewhere.

16

APPENDIX A:
Glossary

bitmap - A data structure that contains information about every single pixel in an image. This
information can include things like color, hue and saturation.

block random-access memory (BRAM) - Block RAM is dedicated memory which is allocated
on demand.

digital to analog converter (DAC) - A chip that takes a digital representation of an analog
voltage and produces either a proportional analog voltage or current.

fixed point arithmetic - A representation for a number that includes a fixed number of digits
after the decimal point.

frame buffer - A piece of memory that contains a bitmap of an entire frame of the screen
which is to be displayed.

function generator - An electrical engineering tool that produces waveforms of differing
shapes, amplitudes, and frequencies; also commonly referred to as signal generator.

galvanometer - An instrument that sets the angle of a small mirror proportional to the input
voltage or current.

GUI - A graphical user interface.

hcount, vcount - The horizontal and vertical positions of the current pixel being drawn to the
monitor.

look up table - A table consisting of precomputed values normally associated with complex
arithmetic, making it easier to to calculations. For example, a sine look up table would contain
precomputed values of sine for given angles, making it easy to “calculate” the sine of an angle
in hardware.

raster graphics - A method of storing an image as a bitmap as opposed to as a vector.
SPI - A synchronous communication scheme that uses few wires. The minimum is a two wire
scheme where communication is only in one direction. A serial clock and data line are needed

to transmit information. At every pulse of the serial clock, the value on the data line is shifted
into a register on the receiving end.

17

bcd.v Page 1

“timescale 1lns / 1lps
“default nettype none
/*

This Module was created by Brandon

BCD Module:

This module takes in a number and outputs the binary coded decimal version of it.
It utilizes the double dabble algorithm which is very fast an efficient.

This module supports numbers up to 220 = 1,048,576

*/

module bcd(input wire [19:0] number,
output reg [3:0] d1_000_000,
d100_000,d10_000,d1_000, d100,
d10, dil);

// Double dabble algorithm
reg [47:0] shift;
integer 1i;

always @ (number)

begin
shift[47:20] = 0;
shift[19:0] = number;

for (i=0; i<20; i=i+1) begin
if (shift[23:20] >= 5)
shift[23:20] = shift[23:20] + 3;

if (shift[27:24] >= 5)
shift[27:24] = shift[27:24] + 3;

if (shift[31:28] >= 5)
shift[31:28] = shift[31:28] + 3;

if (shift[35:32] >= 5)
shift[35:32] = shift[35:32] + 3;

if (shift[39:36] >= 5)
shift[39:36] = shift[39:36] + 3;

if (shift[43:40] >= 5)
shift[43:40] = shift[43:40] + 3;

shift = shift << 1;

end
dl_000 000 = shift[47:44]; // Millions
d100_000 = shift[43:40]; // Hundred Thousands place
d10_000 = shift[39:36]; // Tens Thousands Place
dl_000 = shift[35:32]; // Thousands Place
d100 = shift[31:28]; // Hundreds place
d10 = shift[27:24]; // Tens place
dl = shift[23:20]; // Ones place
end

endmodule

seg_encoder.v Page 1

“timescale 1lns / 1lps
//

// Company :

// Engineer: Brandon

//

// Create Date: 19:32:12 10/11/2014
// Design Name:

// Module Name: seg_encoder

// Project Name:
// Target Devices:
// Tool versions:
// Description:

// Dependencies:

// Revision:
// Revision 0.01 - File Created
// Additional Comments:

//
VI N N A A A A A N N AV NV NV S S N N S N S N VN N N NN N VI VI I V4
module seg_encoder (

input wire [3:0] in,

output reg [6:0] out

’

always @(*) begin

case(in)
0: out = ~7'b0111111; // 0
1: out = ~7'b0000110; // 1
2: out = ~7'b1011011; // 2
3: out = ~7'b1001111; // 3
4: out = ~7'b1100110; // 4
5: out = ~7'b1101101; // 5
6: out = ~7'bl1111101; // 6
7: out = ~7'b0000111; // 7
8: out = ~7'bl111111; // 8
9: out = ~7'bl1100111; // 0
10: out = ~7'b1110111; // A
11: out = ~7'b1111100; // b
12: out = ~7'b0111001; // C
13: out = ~7'bl011110; // d
14: out = ~7'b1111001; // E
15: out = ~7'b1110001; // F default: out <= 8'b11111111;
default: out = 7'b1111111;
endcase
end

endmodule

display.c Page 1

“timescale 1lns / 1lps
// default nettype none
L1177 7 7777777777 /77 7SS S

// Company:

// Engineer: Brandon

//

// Create Date: 14:33:50 12/06/2014
// Design Name:

// Module Name: display

// Project Name:
// Target Devices:
// Tool versions:
// Description:

// Dependencies:

// Revision:

// Revision 0.01 — File Created
// Additional Comments:

//
VN A A A N A A A A A A A A A A A A A N A N S N N S S A N I I I S I I I I VI I S I S I S I I I I 4
module display(input wire clk, reset, center, right, left, up, down,

input wire [8:0] douta,
input wire [19:0] freq,
input wire [8:0] amp,

input wire [6:0] duty_cycle,
output wire [11:0] rgb,

output wire hsync,

output wire vsync,

output wire vclk,

output reg [9:0] addra,
output reg ready,

output reg current frame buf

):

parameter SCREEN_WIDTH =

parameter SCREEN_HEIGHT =

wire [10:0] hcount;

wire [9:0] vcount;

wire blank;

// Produces the vga signals needed

VGADriver vga(.clk(clk),.hcount(hcount), .vcount(vcount),
.hsync(hsync), .vsync(vsync), .blank(blank), .vclk(vclk));

~e o

reg debug;
wire mem out,mem outl;

wire write out;

reg clear = 0;

reg [10:0] cursorX;
reg [9:0] cursoryY;
wire [10:0] xAddr;
wire [9:0] yAddr;

// Creates a pulse when vsync goes low

reg pre_vsync = 0;

wire sync_pulse;

assign sync_pulse = ((pre_vsync == 1) && (vsync == 0));

// When pressing clear we dont want to display
// things from memory (since its being cleared)
wire d;

assign d = clear ? : mem_out;

// Output of the GUI module
wire text_out;

assign rgb = {12{(hcount==0 | hcount== | vcount== vcount==)|
{12{(hcount == cursorX && vcount == cursorY)}}
{12{text_out}} | {12{d}};

// Addresses used for looking up values in video frame buffer

// Cursor controllable with the buttons,
always @ (posedge vclk) begin

display.c

wire [19:0] vga_address;

wire [19:0] line_address;

wire [19:0] a,al;

assign vga_ address = hcount + (SCREEN_WIDTH * vcount);
assign line address = xAddr + (SCREEN _WIDTH * yAddr);

clear ? clearcount

assign a :(vsync ? vga_address :

wire mem in,mem inl;

assign mem in = clear ? : 1;//clear ? 1'b0 1'b1;
assign mem_inl = clear ? 2 1;

wire we;

assign we = clear? : (vsync?0:write_out);

wire wel,we2;

//assign wl = we 2 1 : 0;

assign wel current_frame buf ? (clear ? :
// Logicore BRAM

vbuffl video buffl(vclk, we, a, mem_in, mem out);

Page 2

line address);

write out): 0;

//vbuffl video buff2(vclk, wel, al, mem inl, mem outl);

// bresenham line drawing algorithm
reg line_enable;
wire bresenham ready;

reg [10:0] x0;
reg [10:0] x1;
reg [10:0] yO0;
reg [10:0] y1;

bresenham line(vclk, reset, vsync, line_ enable,
x0, yO[1s
x1, yl[1s
bresenham ready,
xAddr, yAddr, write out);

pre_vsync <= VSync;
if((pre_vsync == 1) && (vsync ==
if (~reset) begin
cursorX <= SCREEN_WIDTH/2;
cursorY <= SCREEN_HEIGHT/2;
end
else begin
cursorX <= right ? (cursorX +)
cursorY <= up ? (cursorY -)
end
end

))begin

(left ?
(down ? (cursorY

cursorX - H

used for debugging

cursorX);

+) : cursorY);

end

reg [2:0]

parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter

reg [H

parameter
parameter
parameter
parameter

1

WAITING
SETUP
CLEAR
LOAD_WAVE_STATE_
LOAD_WAVE_STATE_
SEND_TO_LINE
WAIT FROM LINE
RESET "d7;

- o

smalldelay;
DELAY = 40;
SAMPLESIZE = ;
xstepsize
HALF_MAX_ AMP

Il ~e

~e

reg newvsync;

reg [19:

reg upbutton, rightbutton,
] xscale;

reg [5:

1

clearcount ;

leftbutton, downbutton;

display.c Page 3
reg [5:0] yscale;
reg new_slate = 0;

always @ (posedge vclk) begin
if (~reset) begin
addra <= 'do;
clear <= 1;
smalldelay <= DELAY;
newvsync <= 0;
Xscale <=
yscale <=
upbutton <= 0;
clearcount <= 0;
display_state <= CLEAR;
current_frame_buf <= 0;
end
else begin
case(display state)
RESET: begin
// Reset default values and clear the display
addra <= 'do;
clear <=
debug <=
smalldelay <= DELAY;
display_ state <= CLEAR;
newvsync <= 0;
upbutton <= 0;
end

~e ~e

~e ~e

CLEAR: begin
// We can clear memmory
if (clearcount <) begin
clearcount <= clearcount + 1;
end else begin
clearcount <= 0;
clear <= 0;
if (new_slate) begin
new_slate <= 0;
display state <= LOAD WAVE_STATE 0;
end else begin
display_ state <= WAITING;
end
end
end

WAITING: begin
if (center) begin
// begin drawing a line
new_slate <= 1;
clear <= 1;
display_ state <= CLEAR;
end else begin
addra <= 0;
end
if(right) begin
if (~rightbutton) begin
// Increase the number of periods
xscale <= xscale + 1;
rightbutton <= 1;
dac_in <= (dac_in +);
end
end
else if(left) begin
// change the horizontal scale
if(~leftbutton) begin
if(xscale > 0) begin
xscale <= xscale -
end
leftbutton <= 1;
dac_in <= (dac_in -)
end
end
else if (up) begin

~e

display.c Page 4

if (~upbutton) begin
// change the vertical scale

if(yscale > 1) begin
yscale <= yscale - 1;
end
end
upbutton <= 1;

end

else if (down) begin
// change the horizontal scale
if (~downbutton) begin

yscale <= yscale + 1;

end
downbutton <= 1;

end else begin
upbutton <= 0;
rightbutton <=
leftbutton <=
downbutton <=

end

end

~e

~e ~o

LOAD_WAVE_STATE_0: begin
// Now we can draw whats in the waveform buffer
// Load up initial x0,x1,y0,yl

debug <= 1;

x0 <= 'do;

x1l <= 'do;

y0 <= SCREEN_HEIGHT/2 - douta/yscale;//HALF MAX AMP/yscale + douta/yscale;

smalldelay <= DELAY;

addra <= addra + (l<<xscale);

display_ state <= LOAD WAVE_ STATE 1;
end

LOAD WAVE_STATE_1: begin
// Loads up the x1 and yl coordinates
dac_send <= 0;
if (smalldelay > 0) begin
x1l <= x1 + 'dl;
yl <= SCREEN_HEIGHT/2 - douta/yscale;//HALF MAX AMP/yscale + douta/yscale;
smalldelay <= DELAY;
display_state <= SEND_TO_LINE;
end else begin
smalldelay <= smalldelay - 1;
end
end

SEND_TO_LINE: begin
// Send the pair to the line drawing algorithm
if (smalldelay > 0) begin
smalldelay <= smalldelay - 1;
end else begin
if(~vsync) begin
newvsync <= 1;
line enable <= 1;
smalldelay <= DELAY;
display state <= WAIT FROM LINE;
end
end
end

WAIT _FROM LINE: begin
// wait until the line drawing algorithm is done
line enable <= 0;
if (bresenham ready) begin
if(xl ==) begin
display state <= RESET;
current frame buf <= ~current frame buf;
end else begin

x0 <= x1;
y0 <= yl;
addra <= addra + (1 << xscale);

display_state <= LOAD WAVE_STATE 1;

display.c Page 5

end
end
end

default: begin
display state <= RESET;
end
endcase
end
end

gui g(hcount,vcount, freq,amp,duty cycle,text out);

endmodule

buffer fill.v

//Ciara
module buffer fill (

)

~e

’

reg [2:0] statel =
reg [2:0] state2 = waiting;

input wire reset,

input wire waveform clk,
input wire data_clk,

input wire [9:0] waveform,
input wire ready,

output reg wr_ready,
output reg [9:0] addra,
output reg we,

output wire [9:0] dina

parameter waiting = 3'd0;
parameter checking = 3'dl;
parameter collecting = 3'd2;
parameter wait ready = 3'd3;
parameter writing = 3'd4;
parameter disable we = 3'd5;
parameter disable wr ready = 3'd6;
parameter delay = 3'd7;

waiting;

reg [9:0] delay _count = 10'd0;
parameter max delay count = 10'd200;

reg [9:0] index = 10'd0;
reg [9:0] write addr = 10'd0;

wire wave_clk;
assign wave_clk = (state2 == writing) ? data clk : waveform clk;

wire [9:0] a;
assign a = (state2 == writing) ? write_addr : index;

wire we_bram;
assign we bram = (state2 == writing) ? 0 : 1;

mybram #(.LOGSIZE(10), .WIDTH(10))

Page 1

waveform buffer(.addr(a),.clk(wave_clk), .we(we_bram), .din(waveform), .dout(dina))

always@ (posedge waveform clk) begin

if (~reset) begin
statel <= waiting;
index <= 10'd0;
end else if (state2 == waiting) begin
statel <= waiting;
// wait until we get a zero sample
end else if (statel == waiting) begin
if (waveform == 0) begin
index <= 10'dl;
statel <= checking;

end
// make sure waveform is increasing
end else if (statel == checking) begin

// waveform is increasing
if (waveform > 0) begin
index <= index + 1;
statel <= collecting;
// waveform is decreasing
end else if (waveform < 0) begin
index <= 10'd0;
statel <= waiting;

end
// collect waveform samples
end else if (statel == collecting) begin

index <= index + 1;
// all samples have been collected
if (index == 10'd1023) begin

buffer fill.v

statel <= wait_ready;
end
end
end

always@ (posedge data_clk) begin
if (~reset) begin
state2 <= waiting;

wr_ready <= ;

we <= ;
delay count <= ;

end else if (statel == waiting) begin
state2 <= wait_ready;

end else if (statel == wait ready) begin
// wait for ready to be asserted
if (state2 == wait ready) begin

if (ready) begin
state2 <= writing;

write addr <= 0;

end
// write to memory
end else if (state2 == writing) begin
we <=

addra <= wrlte _addr;
write_addr <= write_addr + 1;
if (write_addr ==) begin
state2 <= disable_we;
end
// disable we and wr_ready
end else if (state2 == disable_we) begin
we <= H
wr_ready <— ;
state2 <= dlsable _wr_ready;
end else if (state2 == disable wr_ready) begin
wr_ready <= ;
state2 <= delay;
delay count <=

’

end else if (state2 == delay) begin
delay count <= delay count + 1;
if (delay_count == max_delay count) begin

delay count <= ;
state2 <= waiting;
end
end
end
end
endmodule

Page 2

waveform_gen.v

//Ciara
module waveform gen(
input wire clk,
input wire reset,
input wire toggle wave_type,
input wire [1:0] incr_res,
input wire param,
input wire up, // param = 0 -> frequency, 1 —> amplitude
input wire down,
input wire left, // param = 0 -> duty cycle, 1 -> phase
input wire right,
input wire stall,
output reg [19:0] frequency, // Hz

output reg [] amplitude, // 0 —> 255
output reg [9:0] waveform,
output reg [] duty cycle

parameter max height
parameter min height

/]
~

parameter clk period = ; // 100 MHz = 10 ns

parameter min period mult = ; // 1 MHz

parameter max period mult = ; // 1 KHz

reg [39:0] period mult = ; // must be a multiple of 10

parameter min_duty_cycle ;
parameter max_ duty cycle ;
reg [39:0] duty_cycle max count;
reg recalculate_wave_info = ;

reg [1:0] wave_type = ; // cycles between square (0), triangle
reg [39:0] duty_cycle count = ;

reg [19:0] triangle_ height_count;

reg [19:0] triangle step up size;

reg [19:0] triangle_step_down_size;

reg recalculate triangle step size = ;

wavegen sine lut sine table(clk, 0, sine index, 0, sine out);
reg [23:0] sine index long = ;

reg [23:0] sine_skip = ;

wire [9:0] sine index;

assign sine index = sine_index long[23:14];

wire [7:0] sine out;

reg [39:0] sine count = ;

reg toggle_ button = ;
reg up_ button =
reg down_button
reg left button
reg right button = ;

~e

~e ~eo

reg [15:0] height; // 0 —> 255

always@ (posedge clk) begin
if (~stall) begin
// set amplitude
amplitude <= (height[7:0] << 1);

// reset initial values
if (~reset) begin
height <= ;

period mult <=

~e

duty cycle <= ;
duty_cycle count <= ;
recalculate wave_info <= ;

wave_type <= 7
duty cycle count <= ;
triangle height count <= ;

Page

(1), sine (2)

waveform_gen.v

recalculate_triangle step_size <=

sine_index long <= ;
sine skip <= ;
sine_ count <= ;

toggle_button <=
up_button <= ;
down_button <= H
left button <= ;
right_button <= ;

~e

end else begin

~e

// recalculate duty cycle and triangle step size

if (recalculate wave info) begin

Page 2

duty cycle max_count <= (period mult * duty cycle / max_duty cycle);

triangle step up size <= ((height <<

duty_cycle));

triangle step down size <= ((height <<

duty cycle / max duty cycle)));

duty_cycle count <= ;

triangle height count <= ;
sine skip <= (<<
recalculate wave info <= ;

recalculate triangle step_size <=
// recalculate triangle step size

) / period mult;

’

end else if (recalculate triangle step size) begin

triangle step up_size <= ((height <<
triangle step_down_size <= ((height <<

count));

)i
)i
)i

duty cycle count <= ;
triangle height count <= ;

recalculate triangle step size <=
end

// cycle through wave types
if (toggle wave type) begin
if (~toggle button) begin
wave_type <= ((wave_type + 1) <
end
toggle button <= 1;
end else begin
toggle button <= 0;
end

// handle up/down/left/right
if (up) begin
if (~up_button) begin
if (param) begin
// amplitude up
case (incr res[1:0])
: height <= ((height +

// ~0.2 V
// =1V

: height <= ((height +

: height <= ((height +

// ~1.5V

)i

: height <= ((height +
// ~2.5V

endcase

recalculate_triangle step size <=

end else begin
// 1 clk = 10 ns

)? (wave_type + 1) :

~e

) > max_height) ? max height
) > max_height) ? max height
) > max_height) ? max height

) > max_height) ? max height

~e

// period in ns = period mult * 10;

// 1 s = 1000 000 000 ns
// Hz =1/ s
// 1000 Hz = 1
// 1 KHz =1 /
// 1 Hz =

KHz =

1000 / s
1_000 000 ns
1/ 1.000 000 000 ns

) / duty_cycle max count);
) / (period _mult - duty cycle max_

) / (period mult * duty cycle / max_

) / (period mult - (period mult *

(height +
(height +
(height +

(height

waveform_gen.v Page 3

1000 000 000 / (period mult * 10)
100 _000_000 / (period mult * 10)
10 _000_000 / (period mult * 10)

1 000 000 / (period mult * 10)

100 000 / (period mult * 10)

10 000 / (period mult * 10)

1 000 / (period mult * 10)

// freq in Hz

// freq in 10 Hz
// freq in 100 Hz
// freq in KHz

// freq in 10 KHz
// freq in 100 KHz
// freq in MHz

// frequency up, period down

/*case (period mult)
// 100 —> 200 KHz
1 000: period mult <= 500;
// 200 —> 400 KHz
500: period mult <= 250;
// 400 -> 800 KHz
250: period mult <= 125;
endcase*/

case (incr_res)
// +1 Hz
// n =1 000 000 000 / (period mult * 10)
// period mult = period mult * n / (n + 1)

period mult <= (((period mult * (/ (period mult
*)) /7 ((/ (period mult *)) + 1)) > period mult) ||
((period_mult * (/ (period_mult
*)) /7 ((/ (period mult *)) + 1)) < min period mult)) ?
min period mult : (period mult * (
/ (period_mult *)) /7 ((/ (period_mult *)) + 1));
// +10 Hz
// n = 100_000_000 / (period mult * 10)
// period mult = period mult * n / (n + 1)
period mult <= (((period_mult * (/ (period_mult *
)) /7 ((/ (period mult *)) + 1)) > period mult) ||
((period_mult * (/ (period_mult *
)) /7 ((/ (period mult *)) + 1)) < min period mult)) 2
min period mult : (period mult * (
/ (period mult *)) /7 ((/ (period mult *)y) + 1));
// +100 Hz
// n = 10_000_000 / (period mult * 10)
// period mult = period mult * n / (n + 1)
period mult <= (((period mult * (/ (period mult *
)) /7 ((/ (period_mult *)) + 1)) > period mult) ||
((period mult * (/ (period mult *
)) /7 ((/ (period_mult *)) + 1)) < min period mult)) ?
min_period mult : (period mult * (/
(period_mult *)) /7 ((/ (period_mult *)) + 1));
// +1 KHz
// n =1_000_000 / (period mult * 10)
// period mult = period mult * n / (n + 1)
period mult <= (((period mult * (/ (period mult *
)) /7 ((/ (period mult *)) + 1)) > period mult) |
((period mult * (/ (period mult *
)) /7 (« / (period mult *)) + 1)) < min period mult)) ?
min_period mult : (period mult * (/
(period mult *)) /7 ((/ (period mult *)y) + 1));
// +10 KHz
// n = 100_000 / (period mult * 10)
// period mult = period mult * n / (n + 1)
period mult <= (((period mult * (/ (period mult *))
/ ((/ (period mult *)) + 1)) > period mult) |
((period mult * (/ (period mult *))
/7 ((/ (period_mult *)) + 1)) < min period mult)) °?
min period mult : (period mult * (/ (p
eriod mult *)) /7 ((/ (period mult *)) + 1));
// +100 KHz
// n =10 000 / (period mult * 10)
// period mult = period mult * n / (n + 1)
period mult <= (((period mult * (/ (period mult *))
/7 ((/ (period mult =)) + 1)) > period mult) ||
((period mult * (/ (period mult *))
/7 ((/ (period _mult *)) + 1)) < min _period mult)) 2

waveform_gen.v

Page 4

min_ period mult (period_mult * (/ (pe
riod mult * y) /7 ((/ (period mult *)) + 1));
endcase
recalculate wave info <= ;
end
end
up_button <= 1;
end else if (down) begin
if (~down_button) begin
if (param) begin
// amplitude down
case (incr res[1:0])
: height <= ((height - 1) > height) ? min_height (height - 1);
// ~0.2 Vv
height <= ((height - 5) > height) ? min height (height - 5);
// =1V
height <= ((height - 8) > height) ? min height (height - 8);
// ~1.5V
height <= ((height -) > height) ? min height (height -
y:; // ~2.5V
endcase
recalculate triangle step size <= ;
end else begin
// frequency down, period up
/*case (period mult)
// 800 —> 400 KHz
125: period mult <= 250;
// 400 -> 200 KHz
250: period mult <= 500;
// 200 -> 100 KHz
500: period mult <= 1_000;
endcase*/
case (incr_res)
// -1 Hz
// n =1 000 000 000 / (period mult * 10)
// period mult = period mult * n / (n - 1)
period mult <= (((/ (period mult *))— 1) ==
) ? period mult
((((period mult * ((period mul

to*)) 7/ («
to*)) /(!
/ (period_mult
//
//

//

? period mult

*)) /o ((
*)) /o ((
/ (period mult *
//
//
//

period mult

)) /o ((
)) /o ((
/ (period_mult *
/7
//
//

period mult

/
/ (period_mult *)) — 1)) < period mult) ||
((period mult * (/ (period mul
/ (period_mult *)))) > max_period mult)) ?
max_period mult (period mult * (

/ (period mult *))))) i

*)) /((
-10 Hz
n 100_000_000 / (period mult * 10)
period mult = period mult * n / (n — 1)
period mult <= (((/ (period mult *

))— 1) == 0)

((((period_mult * (/ (period_mult

/ (period_mult *)))) < period mult) ||

((period mult * (/ (period mult
)))) > max_period mult)) ?

max_period mult (period mult * (

/ (period_mult *

)) /7 ((/ (period_mult *)) = 1)));
-100 Hz
n = 10_000_000 / (period mult * 10)
period mult = period mult * n / (n — 1)

/ (period mult *))—

/ (period_mult *

period _mult <= ((() == 0) ?

((

((period mult * (
/ (period_mult *))
(

)) < period mult) ||

(period_mult * (/ (period _mult *
)))) > max_period mult)) ?

max_period mult (period_mult * (

/ (period_mult *

)) 7/ (« / (period_mult *)) — 1)));
-1 KHz
n =1 000 _000 / (period mult * 10)
period mult = period mult * n / (n - 1)

period mult <= (((/ (period mult *))—

waveform_gen.v

)) /7 ((/ (period mult *

((((period_mult * (

)) — 1)) < period mult) ||
((period_mult * (

)) > max_period mult)) ?

Page 5
/ (period_mult *
/ (period_mult *

(period_mult * (

)) — 1))

)) /7 ((/ (period mult *)) —
max_period mult
/ (period mult *)) /7 ((/ (period mult *
// =10 KHz
// n = 100_000 / (period mult * 10)

// period mult = period mult * n / (n — 1)

period mult <= (((/
riod_mult

(CC(

)) 7/ ((/ (period_mult *)y) — 1))
((

)) /7 ((

(period_mult *

/ (period_mult *)) —
)) /7 ((

// =100 KHz

// n =

/ (period_mult *

period mult * (
< period mult) ||
period mult * (

)) > max_period mult)) ?
max_period mult

10 000 / (period mult * 10)

(period mult * y)— 1) == 0) ? pe

/ (period mult *
/ (period mult *

(period mult * (/

)) = 1))

// period mult = period mult * n / (n — 1)

//3'd5: period mult <= 1;

period mult <= (((/
iod mult
((
)y /7 ((/ (period_mult *) — 1))
)y /7 ((/ (period_mult *)) -

period mult *)) /7 ((/ (period_mult *
endcase
recalculate wave_info <= :
end
end

down_button <= 1;
end else if (left) begin
if (~left_button) begin
// duty cycle down
case (incr_res)

duty_cycle <= ((duty_cycle -
(duty_cycle - 5);
duty_cycle <= ((duty_cycle -
(duty_cycle -);
: duty cycle <= ((duty _cycle -
(duty_cycle -);
duty cycle <= ((duty_cycle -
(duty_cycle -);
endcase
recalculate_wave_info <= ;
end

left button <= 1;
end else if (right) begin
if (~right_button) begin
// duty cycle up
case (incr_res)

(period mult *

((period mult * (

))-— 1)

/ (period_mult *)

== 0)

? per

< period mult) ||
((period mult * (
)) > max_period mult)) ?
max_period mult

)) —

/ (period mult *)

(period mult * (/|
))) i

) > duty cycle) ? min duty cycle
) > duty cycle) ? min duty cycle
) > duty cycle) ? min duty cycle

) > duty cycle) ? min duty cycle

duty cycle <= (((duty _cycle + 5) > max duty cycle) || ((duty_cyc
le + 5) < duty_cycle)) ? max_duty cycle (duty_cycle + 5);
duty cycle <= (((duty cycle +) > max_duty_cycle) || ((duty cy
cle +) < duty cycle)) ? max duty cycle (duty_cycle +)
duty cycle <= (((duty cycle +) > max_duty_cycle) || ((duty cy
cle +) < duty cycle)) ? max duty cycle (duty_cycle +)
duty cycle <= (((duty cycle +) > max_duty_cycle) || ((duty cy
cle +) < duty cycle)) ? max duty cycle (duty_cycle +)
endcase
recalculate wave_info <= :
end

right button <= 1;
end else begin

up_button <= 0;

down_button <= 0;

left _button <= 0;

right button <= 0;
end

waveform_gen.v

// calculate frequency
frequency <=

// generate waveform
// square wave

if (wave_ type == 0) begin

/ (period_mult *

Page 6

y; // Hz

if (duty_cycle count < duty cycle max _count) begin

waveform <= height[7:0];
end else begin

waveform <= 0;
end

duty cycle count <= ((duty cycle count +

ount + 1) : 0;
// triangle wave

end else if (wave_type == 1) begin
// beginning of triangle
if (duty _cycle count == 0) begin

waveform <= 0;

) < period mult) ? (duty cycle c

triangle height_count <= triangle_step up size;

// before triangle peak

end else if (duty cycle count < duty cycle max count — 1) begin
waveform <= (triangle height count > (height << 8)) ? height] 1 ¢ (tri
angle height count >> 8);
triangle height count <= (((triangle height count + triangle step up siz

e) > (height << 8)) T

((triangle height count + triangle step up siz

e) < triangle_height count)) ?

(height << 8) : (triangle height count + triang
le step up size);
// triangle peak
end else if (duty cycle count == duty_cycle max_count) begin

waveform <= height[7:07];

triangle height count <= (height <<
// after triangle peak
end else begin

)i

waveform <= ((triangle height count - triangle step down size) > triangl

e _height count) ?
min height :
ze) >> 8);

((triangle _height count - triangle step down si

triangle height count <= ((triangle height count - triangle step down si

ze) > triangle height count) ?

min height : (triangle height count - triangle step down siz
e);
end
duty cycle count <= ((duty cycle count + 1) < period mult) ? (duty_cycle c
ount + 1) : ;
// sine wave
end else if (wave_type == 2) begin
if (sine_count == 0) begin
sine index long <= 0;
end else begin
sine index long <= sine index long + sine skip;
end
waveform <= sine out * height[7:0] / max_height;
sine count <= ((sine_count + 1) < period mult) ? (sine count + 1) : 0;
end
end
end
end

endmodule

gui.v Page 1

“timescale 1lns / 1lps
// default nettype none
L1177 7 7777777777 /77 7SS S

// Company:

// Engineer: Brandon

//

// Create Date: 15:02:40 12/04/2014
// Design Name:

// Module Name: gui

// Project Name:
// Target Devices:
// Tool versions:
// Description:

// Dependencies:

// Revision:

// Revision 0.01 — File Created
// Additional Comments:

/7
VA A A A A N A A A A N A A N N A A S S N N AN AN S A N A A N S N A N A N I I VI 4

module gui(

input wire [:0] hcount,
input wire [9:0] vcount,
input wire [19:0] freq,
input wire [8:0] amp,

input wire [6:0] duty cycle,

output wire pixel

)i
parameter = ;
parameter

parameter
parameter ;

wire pixF, pixFl, pixF2, pixF3, pixF4, pixF5, pixF6, pixF7,
pixA, pixAl, pixA2, pixA3, pixA4, pixA5, pixA6, pixA7,
pix0,
pixl, pix2,
pix3, pix4,
pix5, pix6,
pix7, pix8,
pix9;

wire [3:0] £1_000_000, £100_000,
£10_000, £1_000, £f100,
f10, f1;

wire [4:0] pixF2_in, pixF3_in,
pixF4_in, pixF5_in,
pixF6_in, pixF7_in,
pixF8 in, pixF9 in,
PixF1l0_in;

// Turns the binary representation of the freqg into BCD format
bcd bed_freq(freq, f£1_000_000, £100 000, £10 000, f1 000, £100, f10, £f1);

// Handels the logic for displaying
freq_logic f_logic(freq, {£f1_000_000, £100_000, f10_000, f£1_000, f100, f10, f1},
{pixF10_in,pixF9_in,pixF8_in,pixF7_in,pixF6_in,pixF5_in,pixF4_in,
pixF3_in,pixF2_in});

//Used to create the text overlay

// freq

text F(, ,hcount,vcount, 10,pixF);

text (*2, ,hcount,vcount,20,pixFl);

text (*3, ,hcount,vcount,pixF2_in,pixF2);
text (*4, ,hcount,vcount,pixF3 in,pixF3);
text (*5, ,hcount,vcount,pixF4 in,pixF4);
text (*6, ,hcount,vcount,pixF5 in,pixF5);
text (*7, ,hcount, vcount,pixF6_in,pixF6);
text (*8, ,hcount,vcount,pixF7_in,pixF7);

gui.v Page 2

wire [3:0] al_000_000, al00_000,
al0_000, al_000, aloO,
al0o, al;

wire [4:0] pixA2_ in, pixA3_in,
pixA4 in, pixAS5 in,
pixA6_in, pixA7 in,
pixA8_in, pixA9_in,
pixAl0_in;

// Turns the binary representation of the amp into BCD format
bcd bcd_amp(amp, al_000_000, al00_000, al0_000, al_000, al00, alO, al);

// Handels the logic for displaying
amp logic a_logic(amp, {al_000_000, al00_000, al0O_000, al 000, al00O, alO, al},
{pixAl0_in,pixA9 in,pixA8 in,pixA7 in,pixA6_in,pixA5 in,pixA4 in,
pixA3_in,pixA2_in});

// amplitude
text A(’ ,hcount,vcount, ,PixA);

text (*2, ,hcount, vcount, ,pixAl);

text (*3, ,hcount,vcount,pixA2 in,pixA2);
text (*4, ,hcount,vcount,pixA3_in,pixA3);
text (*5, ,hcount,vcount,pixA4 in,pixA4);
text (*6, ,hcount,vcount,pixA5 in,pixA5);
text (*7, ,hcount,vcount,pixA6_in,pixA6);
text (*8, ,hcount,vcount,pixA7 in,pixA7);

// duty cycle

wire [3:0] d1_000_000, d100 000,
dlo 000, d1_000, d100,
dio0, di;

wire pixD, pixDl, pixD2, pixD3, pixD4;

bcd bed duty(duty cycle, d1_000_000, d100_000, d10 000, d1_000, d100, d10, dl);

text D(, ,hcount,vcount, ,pixD);
text (*2, ,hcount,vcount, ,pixD1);
text (*3, ,hcount,vcount,d100,pixD2);
text (*4, ,hcount,vcount,d10 ,pixD3);
text (*5, ,hcount,vcount,dl ,pixD4);
/*

text p0(30,10,hcount,vcount,0,pix0);

text pl(40,10,hcount,vcount,1,pixl);

text p2(50,10,hcount,vcount,2,pix2);

text p3(60,10,hcount,vcount,3,pix3);

text p4(70,10,hcount,vcount,4,pix4);

text p5(80,10,hcount,vcount,5,pix5);

text p6(90,10,hcount,vcount,6,pix6);

text p7(100,10,hcount,vcount,7,pix7);

text p8(110,10,hcount,vcount,8,pix8);

text p9(120,10,hcount,vcount,9,pix9);

*/

assign pixel = pixF|pixF1l|pixF2|pixF3|pixF4|pixF5|pixF6 |pixF7|
pixA|pixAl|pixA2|pixA3|pixAd |pixA5 |pixA6|pixA7|
pixD|pixD1 |pixD2 |pixD3 |pixD4;

endmodule

text.v

“timescale 1lns / lps
/*

This module was created by Brandon

Text Module:

Page 1

This module consists of several sprites for the numbers 0 - 9 as well as some symbol

s and
letters

*/

module text(
input [10:0] x,
input [9:0] vy,
input [10:0] hcount,
input [9:0] vcount,
input [5:0] character,
output pixel out
)

/*

LONSNLKNWNRKRO

CEONAUIRWN RO
N RS E (SRR

“wge

~
(o)
Se 84 Se Se Se se se se se se ee e

NOTHING
*/

// 8 by 10 pixel sprte boxes
parameter WIDTH = 8;
parameter HEIGHT = 10;

reg out;

// Checks if hcount and vcount is within the current sprite box
wire in_bounds;

assign in bounds = ((hcount >= x && hcount < x+WIDTH) &&
(vecount >= y && vcount < y+HEICGHT)) ?
1 : 0;

// Calculates the offset of hcount and vcount from the sprite origin
wire [3:0] xoff;

wire [3:0] yoff;

wire [7:0] in;

assign xoff = hcount - x;

assign yoff = vcount - y;

assign pixel out = in_bounds ? out : 1'b0;

assign in = xoff + WIDTH*yoff;

always @(*) begin
case(character)

0: begin
case(1in)
l: out = 1;
2: out = 1;

text.v Page 2

3: out
4: out
: out
: out
8: out
: out
10: out
11: out
12: out
13: out
14: out
15: out
16: out
17: out
22: out
23: out
24: out
25: out
30: out
31: out
32: out
33: out
38: out
39: out
40: out
41: out
46: out
47: out
48: out
49: out
54: out
55: out
56: out
57: out
62: out
63: out
64: out
65: out
66: out
67: out
68: out
69: out
70: out
71: out
73: out
74: out
75: out
76: out
77: out
78: out
default:
endcase

end

LI T 1 (I
—
.

RFRRRRERRRERRRRPRRERRERRRRRRERRRERRRRERERERRRRRRERRRRRR 22228 8RS

(F ~o e ~¢ ~o e No Ne ~e Ne e Ne me we Ne e Ne Ne e Ne e Ne Ne e Ne Ne Ne Ne e Ne Ne e No Ne we No e Ne No ~e ~e e ~e ~o ~o

(o}

c
1

o

1: begin

case(in)
3: out
4: out
10: out
11: out
12: out
17: out
18: out
19: out
20: out
24: out
25: out
27: out
28: out
32: out
35: out
36: out
43: out

=

R e e
Ne Ne Ne Ne me e e Ne Ne N6 me we e e Ne

text.v Page 3

44: out
51: out
52: out
59: out
60: out
64: out
65: out
66: out
67: out
68: out
69: out
70: out
71: out
72: out
73: out
74: out
75: out
76: out
77: out
78: out
79: out
default: out = 0;
endcase
end

I 0w
=
~

2: begin
case(in)

2: out
3: out
4: out
5: out
6: out

: out

: out
10: out
11: out
12: out
13: out
14: out
15: out
16: out
17: out
22: out
23: out
24: out
25: out
29: out
30: out
36: out
37: out
43: out
44: out
50: out
51: out
57: out
58: out
64: out
65: out
66: out
67: out
68: out
69: out
70: out
71: out
72: out
73: out
74: out
75: out
76: out
77: out
78: out
79: out
default: ou

RFRRREERERERRRPRERRRR R R R R R R R R R R b Ne Ne ~e ~e ~e Se e

(F ~¢ e No ~e e Ne Ne Ne e N6 Ne Ne Ne N6 Ne Ne Ne e Ne Ne Ne N6 Ne Ne Ne e Ne Ne Ne e Ne No ~e e wo ~o ~¢ ~o

]
o
~e

text.v Page 4

endcase
end

3: begin
case(in)
3: out
4: out
5: out
6: out
10: out
11: out
12: out
13: out
14: out
15: out
17: out
18: out
22: out
23: out
30: out
31: out
35: out
36: out
37: out
38: out
43: out
44: out
45: out
46: out
54: out
55: out
57: out
58: out
62: out
63: out
66: out
67: out
68: out
69: out
70: out
71: out
75: out
76: out
77: out
78: out
default:
endcase
end

e e

RPRRERERERRRRRRERERRRRRBRRRR B R R N e e ~e

(F ~¢ ¢ Ne Ne Ne N6 Ne Ne N6 N6 Ne Ne Ne e Ne Ne Ne e N6 No Ne Ne N6 Ne Ne Ne Ne Ne ~e ~e e No ~o ~¢ wo wo

[o}

c
I

o

4: begin
case(in)

0: out
l: out
6: out
7: out

: out

: out
14: out
15: out
16: out
17: out
22: out
23: out
24: out
25: out
30: out
31: out
32: out
33: out
34: out
35: out
36: out
37: out

e e e e e e e e e e L L LI DI TR

Ne Ne Ne Ne Ne Ne Ne Ne Ne Ne Ne Ne e e ~e ~o

text.v Page 5

38: out
39: out
40: out
41: out
42: out
43: out
44: out
45: out
46: out
47: out
54: out
55: out
62: out
63: out
70: out
71: out
78: out
79: out
default: out = 0;
endcase
end

L (| (| | | (| Y | 1 I 1
—
~

5: begin
case(in)

0: out
1: out
2: out
3: out
4: out
5: out
6: out
7: out

: out

: out
10: out
11: out
12: out
13: out
14: out
15: out
16: out
17: out
24: out
25: out
32: out
33: out
34: out
35: out
36: out
37: out
38: out
40: out
41: out
42: out
43: out
44: out
45: out
46: out
47: out
53: out
54: out
55: out
61: out
62: out
63: out
64: out
65: out
66: out
67: out
68: out
69: out
70: out
71: out

R el el e e e e N N e e i e e e e e e e e e R L LI L LI LI DR TR PRE Y

Ne Ne Ne Ne Ne N6 N6 N6 N6 N6 N6 N6 Ne Ne Ne Ne Ne Ne Ne MO MO N6 Ne Ne Ne Ne Ne Ne Ne Ne Ne Ne Ne Ne Ne Ne No ~o ~o

text.v Page 6

72: out
73: out
74: out
75: out
76: out
77: out
78: out
default: out = 0;

endcase

end

LI | I B 1}
[
~

6: begin
case(in)

1: out
2: out
3: out
4: out
5: out
6: out
7: out

: out
9: out
10: out
11: out
12: out
13: out
14: out
15: out
16: out
17: out
24: out
25: out
32: out
33: out
34: out
35: out
36: out
37: out
38: out
39: out
40: out
41: out
42: out
43: out
44: out
45: out
46: out
47: out
48: out
49: out
54: out
55: out
56: out
57: out
62: out
63: out
64: out
65: out
66: out
67: out
68: out
69: out
70: out
71: out
72: out
73: out
74: out
75: out
76: out
77: out
78: out
79: out
default: ou

RFRRRRERRERRRRRRERRERRRRRRERRRRRR [R R b b R b 2 2 S RN Se e e ~e ~e Se ~e e

(F ~¢ e No Ne e N6 Ne Ne e N6 Ne Ne N6 N6 Ne Ne Ne e Ne Ne Ne Ne N6 No Ne Ne e Mo Ne Ne e Ne No Ne e No No ~e e No No ~o e Ne No ~e ¢ wo wo ~o

]
o
~e

text.v Page 7

endcase
end

7 :begin
case(in)
0: out
1l: out
2: out
3: out
4: out
5: out
6: out
7: out
: out
9: out
10: out
11: out
12: out
13: out
14: out
15: out
22: out
23: out
29: out
30: out
37: out
38: out
44: out
45: out
52: out
53: out
59: out
60: out
67: out
68: out
75: out
76: out
default:
endcase
end

L ({1 Y 1 Y A
e e e e e e e e e e e e D LR LI DI DD PR PR PRC PR PR

(F ~o ~e ~¢ ~o ~e¢ No e Ne Ne e Ne me ~e Ne e Ne Ne ~e Ne Ne ~e we

(o}

c
1

o

8: begin
case(in)

1l: out
2: out
3: out
4: out

: out
6: out

: out

: out
10: out
11: out
12: out
13: out
14: out
15: out
16: out
17: out
22: out
23: out
24: out
25: out
30: out
31: out
32: out
33: out
34: out
35: out
36: out
37: out
38: out
39: out

e el e e

el el e e e e e e e e el = D LI TIC TEE PEE PR PR PR VY
Ne Ne Ne Ne N6 e e Ne Ne Ne me e Ne Ne Ne Ne Ne N e ~e ~e we

text.v Page 8

40: out = 1;
41: out = 1;
42: out = 1;
43: out = 1;
44: out = 1;
45: out = 1;
46: out = 1;
47: out = 1;
48: out = 1;
49: out = 1;
54: out = 1;
55: out = 1;
56: out = 1;
57: out = 1;
62: out = 1;
63: out = 1;
64: out = 1;
65: out = 1;
66: out = 1;
67: out = 1;
68: out = 1;
69: out = 1;
70: out = 1;
71: out = 1;
73: out = 1;
74: out = 1;
75: out = 1;
76: out = 1;
77: out = 1;
78: out = 1;
default: out = 0;

endcase

end

9: begin

case(in)
l: out = 1;
2: out = 1;
3: out = 1;
4: out = 1;
5: out = 1;
6: out = 1;

: out = 1;
: out = 1;

10: out = 1;
11l: out = 1;
12: out = 1;
13: out = 1;
14: out = 1;
15: out = 1;
16: out = 1;
17: out = 1;
22: out = 1;
23: out = 1;
24: out = 1;
25: out = 1;
30: out = 1;
31: out = 1;
32: out = 1;
33: out = 1;
34: out = 1;
35: out = 1;
36: out = 1;
37: out = 1;
38: out = 1;
39: out = 1;
41: out = 1;
42: out = 1;
43: out = 1;
44: out = 1;
45: out = 1;
46: out = 1;
47: out = 1;

text.v Page 9

54: out
55: out
62: out
63: out
65: out
66: out
67: out
68: out
69: out
70: out
71: out
72: out
73: out
74: out
75: out
76: out
77: out
78: out
default: out = 0;
endcase
end

L (| (| | | (| Y | 1 I 1
—
~

10: begin
// F
case(in)
0: out
1: out
2: out
3: out
4: out
5: out
6: out
7: out
: out
9: out
10: out
11: out
12: out
13: out
14: out
15: out
16: out
17: out
24: out
25: out
32: out
33: out
34: out
35: out
36: out
37: out
38: out
40: out
41: out
42: out
43: out
44: out
45: out
46: out
48: out
49: out
56: out
57: out
64: out
65: out
72: out
73: out
default:
endcase
end

1 (| (| (O (| (| | | (O I T
el e e e e e e e R e e R R e e T e R T T R D DR TY

(F ~¢ o ~¢ ~o o ~o No ~e Ne Ne Ne Ne e Ne Ne we No e Ne No e No Ne ~e Ne e ~e No e ~o wo ~o

]

o
1

o

11: begin
// E

text.v Page 10

case(in)
0: out
1: out
2: out
3: out
4: out
5: out
6: out
7: out

: out
: out

10: out
11: out
12: out
13: out
14: out
15: out
16: out
17: out
24: out
25: out
32: out
33: out
34: out
35: out
36: out
37: out
38: out
40: out
41: out
42: out
43: out
44: out
45: out
46: out
48: out
49: out
56: out
57: out
64: out
65: out
66: out
67: out
68: out
69: out
70: out
71: out
72: out
73: out
74: out
75: out
76: out
77: out
78: out
79: out
default:

endcase

end

L ([| (| | (| | | (e (O (| | {1
HERE R RRREREERERRRRRERRRRRR R R R R b b 2 S R Ne N6 Se e e ~e ~e ~e ~e e

(F ~¢ e ~¢ ~o e Ne Ne N Ne Ne Ne Ne e Ne Ne ~e Ne e Ne No N Ne e Ne Ne e Ne Ne N No e Ne No e No e ~e No e ~o ~o ~o ~o ~o

]

c
1

o

12: begin

// A

case(in)
3: out
4: out
10: out
11: out
12: out
13: out
17: out
18: out
21: out
22: out
24: out

o
=

R e e
Ne Ne Ne Ne me N N e e

text.v Page 11

25: out = 1;
30: out = 1;
31l: out = 1;
32: out = 1;
33: out = 1;
38: out = 1;
39: out = 1;
40: out = 1;
41: out = 1;
42: out = 1;
43: out = 1;
44: out = 1;
45: out = 1;
46: out = 1;
47: out = 1;
48: out = 1;
49: out = 1;
50: out = 1;
51l: out = 1;
52: out = 1;
53: out = 1;
54: out = 1;
55: out = 1;
56: out = 1;
57: out = 1;
62: out = 1;
63: out = 1;
64: out = 1;
65: out = 1;
70: out = 1;
71: out = 1;
72: out = 1;
73: out = 1;
78: out = 1;
79: out = 1;
default: out = 0;

endcase

end

13: begin

// D

case(in)
0: out = 1;
l: out = 1;
2: out = 1;
3: out = 1;
4: out = 1;
8: out = 1;

: out = 1;

10: out = 1;
11: out = 1;
12: out = 1;
13: out = 1;
14: out = 1;
16: out = 1;
17: out = 1;
21: out = 1;
22: out = 1;
24: out = 1;
25: out = 1;
30: out = 1;
31: out = 1;
32: out = 1;
33: out = 1;
38: out = 1;
39: out = 1;
40: out = 1;
41: out = 1;
46: out = 1;
47: out = 1;
48: out = 1;
49: out = 1;

text.v Page 12

54: out = 1;
55: out = 1;
56: out = 1;
57: out = 1;
61: out = 1;
62: out = 1;
64: out = 1;
65: out = 1;
66: out = 1;
67: out = 1;
68: out = 1;
69: out = 1;
70: out = 1;
72: out = 1;
73: out = 1;
74: out = 1;
75: out = 1;
76: out = 1;
default: out = 0;

endcase

end

14: begin

//Hz

case(in)
32: out = 1;
35: out = 1;
40: out = 1;
43: out = 1;
48: out = 1;
49: out = 1;
50: out = 1;
51: out = 1;
53: out = 1;
54: out = 1;
55: out = 1;
56: out = 1;
57: out = 1;
58: out = 1;
59: out = 1;
62: out = 1;
64: out = 1;
67: out = 1;
69: out = 1;
72: out = 1;
75: out = 1;
77: out = 1;
78: out = 1;
79: out = 1;
default: out = 0;

endcase

end

15 : begin

// M

case(in)
0: out = 1;
7: out = 1;
8: out = 1;

: out = 1;

14: out = 1;
15: out = 1;
16: out = 1;
17: out = 1;
18: out = 1;
21l: out = 1;
22: out = 1;
23: out = 1;
24: out = 1;
25: out = 1;
26: out = 1;
27: out = 1;
28: out = 1;

text.v Page 13

29: out
30: out
31: out
32: out
33: out
35: out
36: out
38: out
39: out
40: out
41: out
46: out
47: out
48: out
49: out
54: out
55: out
56: out
57: out
62: out
63: out
64: out
65: out
70: out
71: out
72: out
73: out
78: out
79: out
default: out = 0;
endcase
end

L (| | | (| | (| (| (| | A [
—
~

16: begin

// K

case(in)
0: out
1: out
6: out
7: out
8: out
9: out
13: out
14: out
16: out
17: out
20: out
21: out
24: out
25: out
27: out
28: out
32: out
33: out
34: out
35: out
40: out
41: out
42: out
43: out
48: out
49: out
51: out
52: out
56: out
57: out
60: out
61: out
64: out
65: out
69: out
70: out
72: out

e el el e e e e e e e N e N e e e e e T T PR P PR TR

Ne Ne Ne Ne N6 Ne N6 N6 N6 N6 N6 Ne Ne Ne Ne Ne Ne Ne Ne Ne Ne Ne Ne Ne Ne Ne Ne Ne No No No

text.v Page 14

73: out
78: out
79: out
default: out = 0;
endcase
end

mnu
—
~

17: begin
// v
case(in)
0: out
1: out
6: out
7: out
g: out
: out
14: out
15: out
16: out
17: out
22: out
23: out
24: out
25: out
30: out
31: out
32: out
33: out
38: out
39: out
40: out
41: out
46: out
47: out
48: out
49: out
54: out
55: out
57: out
58: out
61: out
62: out
66: out
67: out
68: out
69: out
75: out
76: out
default:
endcase
end

RFRRRERERERRRRERRRR R R R R Ne Se e e

(F ~¢ o ~o ~¢ ¢ Ne No Ne e N6 Ne Ne Ne N6 Ne Ne Ne e Ne Ne Ne e Ne No ~e e Ne No ~o wo wo ~o

[o}

c
]

o

18: begin
// .
case(in)
50: out
51: out
52: out
53: out
58: out
59: out
60: out
61: out
66: out
67: out
68: out
69: out
74: out
75: out
76: out
77: out
default: out = 0;
endcase

LI | | (| [| | 1 | | A
—
~

text.v Page 15

end

19: begin

// m

case(in)
18: out = 1;
21l: out = 1;
25: out = 1;
26: out = 1;
27: out = 1;
28: out = 1;
29: out = 1;
30: out = 1;
32: out = 1;
33: out = 1;
35: out = 1;
36: out = 1;
38: out = 1;
39: out = 1;
40: out = 1;
41: out = 1;
43: out = 1;
44: out = 1;
46: out = 1;
47: out = 1;
48: out = 1;
49: out = 1;
51l: out = 1;
52: out = 1;
54: out = 1;
55: out = 1;
56: out = 1;
57: out = 1;
59: out = 1;
60: out = 1;
62: out = 1;
63: out = 1;
64: out = 1;
65: out = 1;
67: out = 1;
68: out = 1;
70: out = 1;
71: out = 1;
72: out = 1;
73: out = 1;
75: out = 1;
76: out = 1;
78: out = 1;
79: out = 1;
default: out = 0;

endcase

end

20: begin

// e

case(1in)
10: out = 1;
11l: out = 1;
12: out = 1;
13: out = 1;
18: out = 1;
19: out = 1;
20: out = 1;
21: out = 1;
26: out = 1;
27: out = 1;
28: out = 1;
29: out = 1;
50: out = 1;
51: out = 1;
52: out = 1;
53: out = 1;

text.v

default:
endcase

end

out
out
out
out
out
out
out
out

out

default: begin
out = 0;

end
endcase
end

endmodule

Page 16

main.v Page

Tt

imescale 1lns / 1lps

“default nettype none

//

//

SIS S S S S S S S S S S S S
Company :

Engineer:

Create Date: 03:27:01 10/10/2014

Design Name:

Module Name: main

Project Name:
Target Devices:
Tool versions:
Description:

Dependencies:
Revision:
Revision 0.01 — File Created

Additional Comments:

L1117 7777 7777777777777 7777777777777 77/77777

module main(

wi
wi
wi
wi
wi
wi

//

input wire clk, btnC, btnL, btnR, btnU, btnD, btnCpuReset,

input wire [7:0] sw,
output wire [1:0] led,
output wire [6:0] seg,
output wire dp,

output wire [7:0] an,

output wire ampPWM,
output wire ampSD,
output wire [7:0] ,
output wire [7:0] ,

output wire [3:0] vgaRed,
output wire [3:0] vgaBlue,
output wire [3:0] vgaGreen,

output wire Hsync,
output wire Vsync
)i

re reset, up, down, left orig, right orig, center, vclk;
re ciara;

re param;

re [1:0] incr res;

re phase_shift;

re switch waveform;

Debouncing Block

debounce #{(. ()) db_cpuReset(sw[7], vclk, btnCpuReset,¢

reset);

debounce #(. ()) db_up(sw[7], vclk, btnU,¢
up) ;

debounce #(. ()) db_left(sw[7], vclk, btnL,¢
left orig);

debounce #{(. ()) db_center(sw[7], vclk, btnC,¢
center) ;

debounce #(. ()) db_right(sw[7], vclk, btnR,¢
right orig);

debounce #{(. ()) db_down(sw[7], vclk, btnD,¢
down) ;

debounce #(. ()) db_sw5(sw[7], clk, sw[5],¢

switch_waveform);

2

debounce #(. ()) db_swé(sw[7], clk, sw[4],¢
ciara);
debounce #(. ()) db_sw3(sw[7], clk, sw[3],¢
param) ;
debounce #{(. ()) db_sw2(sw[7], clk, sw[2],¢
phase shift);
debounce #(. ()) db_swl(sw[7], clk, sw[l],¢
incr res[1]);
debounce #{(. ()) db_swO(sw[7], clk, sw[0],¢
)

incr_res[0]

main.v Page 2

assign ampPWM = 1;
assign ampSD = 1;

//assign JA 8'b0001_0000;
//assign JB 8'b0000_0000;
assign [7:2] = 0;

wire [11:0] rgb;

wire hsync, vsync;

assign vgaBlue = rgb[3:0];
assign vgaGreen = rgb[7:4];
assign vgaRed = rgb[11:8];

assign Hsync = hsync;
assign Vsync = vsync;
wire [9:0] dina;

wire [9:0] douta;

wire [9:0] addra;

wire [9:0] read_addr;
wire [9:0] write addr;
wire [9:0] waveform;
wire [19:0] frequency;
wire [8:0] amplitude;
wire draw;

wire we;

wire done_drawing;
wire draw_line;

wire left, right;
assign left = phase shift ? : left orig;
assign right = phase_shift ? : right orig;

wire phase left, phase right;
assign phase left = phase shift ? left orig : 0;
assign phase right = phase_shift ? right orig : 0;

wire c_up, c_down, c_right, c_left;
wire b up, b down, b _right, b left;

assign c_up
assign b _up

= ciara ? up : 0;
= ciara ? : up;
ciara ? down :
ciara ? : down

assign c_down
assign b_down

I
’

assign c_left

ciara ? left : 0;
assign b _left ;

ciara ? : left;

assign c_right ciara ? right :

assign b _right ciara ? : right
wire dac_send;
wire dac_done;
wire [6:0] duty cycle;
dac7528 dac(clk, 0, 1, amplitude,
dac_done, [11, [01,)i

assign addra = we ? write addr : read_ addr;
waveform buffer wave(vclk, we, addra, dina, douta);

assign centerl = switch waveform ? center : 0;

assign center2 = switch waveform ? : center;
assign incr_resl = switch waveform ? incr res : 0;
assign incr_res2 = switch waveform ? : incr_res;
assign paraml = switch waveform ? param : 0;
assign param2 = switch waveform ? : param;
assign c_upl = switch waveform ? up : 0;

assign c_up2 = switch waveform ? : up;

assign c_downl = switch_waveform ? down : 0;

main.v Page 3
assign c_down2 = switch _waveform ? : down;

assign c_leftl = switch waveform ? left : 0;

assign c_left2 = switch waveform ? ¢ left;

assign c_rightl = switch waveform ? right : 0;
assign c_right2 = switch waveform ? : right;
assign frequencyl = switch waveform ? frequency : 0;
assign frequency2 = switch waveform ? : frequency;
assign amplitudel = switch waveform ? amplitude : 0;
assign amplitude2 = switch waveform ? amplitude;
assign waveforml = switch waveform ? waveform : 0;
assign waveform2 = switch waveform ? : waveform;

assign duty cyclel
assign duty cycle2

switch _waveform ? duty cycle

wire centerl;

wire [1:0] incr_resl;

wire paraml, c_upl, c_downl, c_leftl, c_rightl;
wire [19:0] frequencyl;

wire [8:0] amplitudel;
wire [9:0] waveforml;
wire [6:0] duty cyclel;

waveform gen wave_genl(clk, reset, centerl,
incr_resl, paraml,
c_upl, c_downl, c_leftl, c_rightl
frequencyl, amplitudel, waveforml

wire clk2, reset2, center2;

wire [1:0] incr_res2;

wire param2, c_up2, c_down2, c_left2, c_right2;
wire [19:0] frequency2;

wire [8:0] amplitude2;
wire [9:0] waveform2;
wire [6:0] duty cycle2;

waveform gen wave_gen2(clk, reset, center2,
incr res2, param2,
c_up2, c_down2, c_left2, c_right2
frequency2, amplitude2, waveform2

. ’

switch waveform ? : duty_cycle;

, phase_right,
, duty_cyclel);

, phase_left,
, duty_cycle2);

buffer fill(reset,clk,vclk,waveform, done drawing, draw line, write_addr, we, dina

);

wire [19:0] test_ freq;
assign test freq = ;

wire current_frame_buf;
// center = start drawing

display disp(clk, reset, draw_line, b right, b left, b up, b_down,
douta, frequency, amplitude, duty cycle, rgb, hsync, vsync, vclk, read_ad

dr, done_drawing,
current_ frame buf);
reg outtt = 0;

always @ (posedge vclk) begin
if (draw_line) begin
outtt <= 1;
end
end

assign led[0]
assign led[1]

draw_line;//clear;
current frame buf;//debug;

// 7 Segment encoding and display begin
wire [6:0] seg_enc_1;
wire [6:0] seg_enc_2;
wire [6:0] seg_enc_3;
wire [6:0] seg_enc_4;
wire [6:0] seg_enc_5;

main.v

seg_encoder
seg_encoder
seg_encoder
seg_encoder
seg_encoder

sg0(
sgl(
sg2(
sg3(
sg4 (

4
14
’
’
’

seg_controller sc(clk, reset,

endmodule

seg_enc_4,
// 7 segment encoding and display en

seg _enc_1,
seg_enc_5,

seg_enc_2, seg_enc_3,

Page 4

vgadriver.v Page 1

“timescale 1lns / 1lps
“default nettype none
L1177 77 7777777777777

// Company:

// Engineer: Brandon

//

// Create Date: 20:50:27 11/22/2014
// Design Name:

// Module Name: VGADriver

// Project Name:
// Target Devices:
// Tool versions:
// Description:

// Dependencies:

// Revision:
// Revision 0.01 — File Created
// Additional Comments:

//
VI AN N N A A N N N N S NV N NV N VI N N VN N SV VN I NI N VI I I V4
module VGADriver(input wire clk,

output wire [10:0] hcount,

output wire [9:0] vcount,

output wire vsync, hsync, blank, vclk);

wire clk_out;
assign vclk = clk_out;
clk gen instance name(. (clk), . (clk_out));

//BUFG vclk2(.0(vsync),.I(vsync _in));

// generate basic XVGA video signals

Xvga vga(.vclock(clk out),.hcount(hcount), .vcount(vcount),
.hsync(hsync), .vsync(vsync), .blank(blank));

endmodule
VAN A A A N A N A A NN A N S A A A N N N N NN NV N S NV S N I N N N N N N AV N S S N N A N A S A N S A V4
//

// xvga: Generate XVGA display signals (1024 x 768 @ 60Hz)
// Taken from lab 3

//
L1111 777 7777777777777 7777777777777 77/77777

module xvga(input wire vclock,
output reg [10:0] hcount, // pixel number on current line
output reg [9:0] vcount, // line number
output reg vsync,hsync,blank);

// horizontal: 1344 pixels total

// display 1024 pixels per line

reg hblank,vblank;

wire hsyncon,hsyncoff,hreset,hblankon;

assign hblankon = (hcount == ;
assign hsyncon = (hcount ==)
assign hsyncoff = (hcount ==)
assign hreset = (hcount ==)

// vertical: 806 lines total

// display 768 lines

wire vsyncon,vsyncoff,vreset,vblankon;
assign vblankon = hreset & (vcount ==)i
assign vsyncon = hreset & (vcount ==);
assign vsyncoff = hreset & (vcount ==)
assign vreset = hreset & (vcount ==);

// sync and blanking
wire next_hblank,next_vblank;

assign next hblank = hreset ? : hblankon ? : hblank;
assign next_vblank = vreset ? : vblankon ? : vblank;
always @ (posedge vclock) begin

hcount <= hreset ? : hcount + 1;

hblank <= next_hblank;

vgadriver.v Page 2

hsync <= hsyncon ? : hsyncoff ? : hsync; // active low
vcount <= hreset ? (vreset ? : vcount + 1) : vcount;
vblank <= next_vblank;
vsync <= vsyncon °? : vsyncoff ? : vsync; // active low
blank <= next vblank | (next_hblank & ~hreset);

end

endmodule

sine_gen.py Page 1

Ciara
import math

length = 2 ** 10
bit width = 8

width = 2 ** bit width
print "MEMORY INITIALIZATION RADIX=10;\nMEMORY INITIALIZATION VECTOR="
for x in range(length - 1):

n = min(255, int(round((width / 2) + (float(width) / 2) * math.sin((float(x) / 1
ength) * (2 * math.pi)))))

print str(n) + ","
print str(min(255, int(round((width / 2) + (float(width) / 2) * math.sin((float(leng
th - 1) / length) * (2 * math.pi)))))) + ";"

dacs.v
// DAC modules were created by Brandon

module dac4822(input clk,
input chan,
input send,
input [11:0] din,
output reg done, latch, dacb,sclk,sout);

reg pause,sending, latching;
reg pulse_sclk;

reg [4:0] count;

reg [3:0] latch_delay;

reg [15:0] packet;
parameter DELAY = 6;

initial begin
pulse_sclk <= sclk;
pause <= 1;
sclk <= 0;
done <= 1;
count <= 16;
sout <= 0;
latching <= 0;
sending <= 0;
dacb <= 0; // 1 = dacb, 0 = daca
latch <= 1; // Latch is active low
latch_delay <= 0;
end

always @ (posedge clk) begin
if (pulse_sclk) begin

sclk <= 1;
pulse_sclk <= 0;
end
if (pause)

pause <= 0;
else if(!sending && send) begin
// load up the packet
packet <= {chan,1'b0,1'bl,1'bl,din};
sending <= 1;
done <= 0;
count <= 0;
end
else if(sending) begin
if (count < 16) begin
sout <= packet[15];
pause <= 1;
packet <= packet << 1;
count <= count + 1;
pulse_sclk <= 1;
sclk <= 0;
end
else begin
// Packet has been sent
// now latch the output
latching <= 1;
sending <= 0;
pause <= 1;

end
end
else if (latching) begin
if (latch_delay == 0) begin
latch <= 0;
latch_delay <= latch_delay + 1;
end

else if(latch delay < 5) begin
latch_delay <= latch_delay + 1;
end
else begin
latching <= 0;
pause <= 1;
latch <= 1;
end

Page 1

dacs.v

end
else done <= 1;
end

endmodule

module dac7528(input clk,
input chan,
input send,
input [7:0] din,
output reg done, wr, dacb,
output reg [7:0] dout);

reg [2:0] count;
parameter DELAY = 6;
initial begin

count <= 0;

dout <= 0;

dacb <= 0; // 1 = dacb, 0 = daca

wr <= 1; // write enable active low
end

always @(posedge clk) begin
if (count < DELAY) begin

if (count == 1) begin
wr <= 1;
count <= count - 1;
end else if (count == 0) begin

done <= 1;
count <= DELAY;
end else begin
count <= count - 1;
end
end else if(send) begin
done <= 0;
dout <= din;
wr <= 0;
count <= count - 1;
end
end

endmodule

Page 2

display_logic.v Page 1

“timescale 1lns / 1lps
//

// Company :

// Engineer: Brandon

//

// Create Date: 22:47:43 12/07/2014
// Design Name:

// Module Name: freq display

// Project Name:
// Target Devices:
// Tool versions:
// Description:

// Dependencies:

// Revision:
// Revision 0.01 - File Created
// Additional Comments:

/7
N A A A A A A A N N A N N A S S N A N AV A S A N S N A N A N VA IV I V4
module freq logic(input wire [19:0] number,

input wire [27:0] decimal,

output wire [44:0] output_control);

14
15
16
18
20
*/

e mEm

parameter DONT SHOW = 22;
parameter HZ = 14;
parameter M = 15;
parameter K = 16;
parameter DOT = 18;
// output control is 5 bits
reg [4:0] t1,t2,t3,t4,t5,t6,t7,t8,t9;

assign output control = {t9,t8,t7,t6,t5,t4,t3,t2,tl};

initial begin

o+
[S)

L (| ([1 [I 1
o

end

always @(*) begin
if (number < 10) begin
t9 = DONT SHOW;

t8 = DONT_SHOW;

t7 = DONT_ SHOW;

t6 = DONT_ SHOW;

t5 = DONT_ SHOW;

t4 = DONT SHOW;

t3 = DONT SHOW;

t2 = HZ;

tl = dec1mal[3.0]-

end else if (number < 100) begin

t9 = DONT_ SHOW;

t8 = DONT SHOW;

t7 = DONT_SHOW;

t6 = DONT_SHOW;

t5 = DONT_ SHOW;

t4 = DONT_ SHOW;

t3 = HZ;

display_logic.v

end

end

end

end

end

end
end

endmodule

decimal[3:0];
decimal[7:4];
if (number < 1000) begin

DONT_SHOW;
DONT_SHOW;
DONT_SHOW;
DONT_SHOW;
DONT SHOW;
HZ;
decimal[3:0
decimal[7:4
decimal[11l:
if (number
DONT_SHOW;
DONT_ SHOW;
DONT_SHOW;
HZ;

K;
decimal[7:
decimal[1l
DOT;
decimal[15:
if (number
DONT_ SHOW;
DONT_ SHOW;
DONT_SHOW;
HZ;

K;
decimal[11:
DOT;

4

]
]
8
<

1

;
10

1
81;

1

8

1

’

decimal[15:12];
decimal[19:16];
if (number <1000000) begin

DONT_ SHOW;
DONT_ SHOW;
DONT_ SHOW;
DONT_ SHOW;
HZ;

K;

decimal[15:
decimal[19:
decimal[23:
if (number
DONT SHOW;
DONT_ SHOW;
DONT_ SHOW;
HZ;

M-

r
decimal[19:16];

decimal[23:20];

DOT;

decimal[27:24];

000) begin

21;
<100000) begin

00000) begin

Page 2

L1117 77 7777777777777 7777777777777 7777777777777 777777777777/
/

/ Company:

// Engineer: Brandon

// Create Date:
// Design Name:
// Module Name:

// Project Name:
// Target Devices:

// Tool versions:
// Description:

// Dependencies:

// Revision:

14:02:14 12/08/2014

amp_logic

// Revision 0.01 - File Created

display_logic.v Page
// Additional Comments:

//
L1177 77777777/
module amp logic(input wire [19:0] number,

input wire [27:0] decimal,

output wire [44:0] output control);

/*
17 =V
18 : .
19 : m
20 : =
*/

parameter DONT SHOW = 22;
parameter m = 19;
parameter V = 17;
parameter DOT = 18;
// output control is 5 bits
reg [4:0] t1,t2,t3,t4,t5,t6,t7,t8,t9;

assign output_control = {t9,t8,t7,t6,t5,t4,t3,t2,tl};

initial begin

tl = 0;
t2 = 0;
t3 = 0;
td = 0;
t5 = 0;
t6 = 0;
t7 = 0;
t8 = 0;
t9 = 0;
end

always @(*) begin
if (number < 10) begin

t9 = DONT SHOW;
t8 = DONT SHOW;
t7 = DONT_SHOW;
t6 = DONT_ SHOW;
t5 = DONT_SHOW;
t4 = V;
t3 = m;
t2 = 0;
tl = decimal[3:0];
end else if (number < 100) begin
t9 = DONT_ SHOW;
t8 = DONT_ SHOW;
t7 = DONT SHOW;
t6 = DONT SHOW;
t5 = DONT_ SHOW;
td = V;
t3 = m;
t2 = decimal[3:07];
tl = decimal[7:47;
end else if (number < 1000) begin
t9 = DONT_SHOW;
t8 = DONT_ SHOW;
t7 = DONT_SHOW;
t6 = DONT_ SHOW;
t5 = V;
t4 = decimal[3:0];
t3 = decimal[7:4];
t2 = DOT;
tl = decimal[11:8];
end
end

endmodule

bresenham.v Page 1

// Module created by Brandon. Used previous works by Don Goldin and Mark Sullivan (6
.111 previous projects)

// as well as from Stephen A. Edwards (Columbia University Presentation http://www.c
s.columbia.edu/~sedwards/classes/2012/4840/1ines.pdf)

/*

Bresenham Line Drawing Module

This module takes as an input a clock, reset, vsync ready and a pair of points (x0,y
0),(x1,yl). With this

it chooses the correct addresses to write to bram to create a line segment between t
he two points.

*/

module bresenham (
input wire vclock,
input wire reset,
input wire vsync,
input wire shape ready,

input wire [10:0] x0_in,
input wire [9:0] yO0 in,
input wire [10:0] x1_in,
input wire [9:0] vyl in,
output reg bresenham ready,
output reg [10:0] write x,
output reg [9:0] write y,

output reg write enable);

reg | :0] x0,y0,x1,y1;
wire [10:0] abs_deltax;
wire [10:0] abs_deltay;
assign abs_deltax = (x0 < x1) ? (x1 - x0) : (x0 — x1);
assign abs deltay = (y0 < yl) ? (yl — y0) : (y0 — yl);

// the sign in the change in x is always positive since I

// switch them

wire signy;

assign signy = (yl > y0) ? : 1; // 0 = positive, 1 = negative

wire steep;
assign steep = (abs_deltay > abs_deltax);

// If the slope is steep, we are going be calculating
// the error by inc in x and dec in y

wire [10:0] einc,edec;

assign einc steep ? abs_deltax

= abs deltay;
assign edec = steep ? abs deltay

abs deltax;

// i is incrememnted by one each time, j is fitting the line

wire [10:0] iinc, jinc;
assign iinc = steep ? (signy ? (-1) : (1)) = 1;
assign jinc = steep ? : (signy ? (—1): (1));

// finish indicates when line is finished drawingé
wire finish, xfinish, yfinish;

assign xfinish (i > x1);

assign yfinish signy ? (i < yl):(i > yl);

assign finish = steep ? (yfinish) : (xfinish);

reg [1:0] state;
parameter = ;
parameter = 7
parameter = ;
parameter = 7

reg signed [10:0] dy, dx, e, j, i;

always @ (posedge vclock) begin
if(~reset) begin
state <= ;
write enable <= 0;

bresenham.v

write x <= 0;

write y <= 0;

bresenham ready <= 1;
end

else if(state == WAITING && shape ready)begin

// We are ready to load up the new line
if(x0_in > x1_in) begin
x0 <= x1 in;

y0 <= yl in;
x1 <= x0_in;
yl <= y0_in;

end else begin

// lets force drawing form left to right

// to simplify things
x0 <= x0_in;

y0 <= y0 in;
x1l <= x1 _in;
yl <=yl in;

end
state <= SETUP;
bresenham ready <= 0;
end
else if(~vsync) begin
// The actual line drawing
case(state)
SETUP: begin
dy <= abs_deltay;
dx <= abs_deltax;

e <= steep ? (abs_deltax—abs_deltay)

i <= steep ? y0 : x0;
j <= steep ? x0 : yO0;
state <= DRAW;

end

DRAW: begin

if(finish) begin
write enable <= 0;
write x <= 0;
write y <= 0;
bresenham ready <= 1;
state <= WAITING;

end else begin
//steep drawing
write x <= steep ? j[10:0]
write y <= steep ? i[9:0]
write enable <= 1;

end

if(e >= 0) begin
i <= 1i + iinc;
j <=3 + jinc;
e <= e - edec + einc;
end else begin
i <= 1i + iinc;
e <= e + einc;
end
end

WRITE: begin
write enable <= 0;
state <= DRAW;

end

default: begin
state <= WAITING;
end
endcase
end

endmodule

Page 2

: (abs_deltay—-abs_deltax);

i[10:07;
jr9:01;

