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A Hardware-Based Music Composition Tool 
 
 
Abstract 
 
Music composition programs are powerful tools for beginning musicians and 
experienced professionals; however, most of these programs are expensive and 
in some cases cost hundreds of dollars. While this may be a worthwhile 
investment for serious musicians, most amateurs do not require the powerful 
features and tools of professional music composition software. Our goal is to 
develop a cost-effective, hardware based music composition platform that is easy 
to use for musicians of all ages and skill levels. Our secondary goal is to include 
expansion capability to potentially include additional features time permitting. 
 

The main feature of our project is the music writing and playback system.  
A user will have the ability to input a melody using a graphical representation of 
sheet music and toolbar to adjust a variety options, such as note duration; he or 
she will be able to playback the melody through the Labkit speakers. Our goals 
were to utilize existing sound files that represent various instruments so the user 
can customize his or her music further.   We also planned to implement a control 
system for the tempo of the music so a user can speed up or slow down his or 
her music.   
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Overview 
 

Digital Debussy is a music composition tool implemented entirely in hardware on 
a Field Programmable Gate Array (FPGA).  The goal of our project was to create 
a music composition tool with simple functionality and at a fraction of the cost of 
professional music software applications.  Digital Debussy involves two major 
components, as shown in Figure 1: 
 

 A graphical user interface with which a user can compose music and 

 A playback system that can produce audio output for a user-composed 
melody. 

 
 

  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1: Overview block diagram with modules and division of labor; image by 
Jordan Addison 

 
A user can interact with the buttons on the 6.111 Labkit to choose parameters 
such as note duration and pitch and then compose his or her unique melody on 
screen.  Once they have composed a melody, a user can then listen to his or her 
melody through the playback module. 
 
 
 
 
 
 The user interface consists of three interactive parts:  
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1. the control finite state machine, 
2. the storage elements including the display storage and the shared note 

Block Random Access Memory (BRAM), and 
3. the draw module, which creates the signal that drives the video output 

(VGA).   
 
The User Interface (UI) control Finite State Machine (FSM) takes information 
from the Labkit buttons as inputs and adjusts accordingly.  The storage modules 
hold notes composed by the user and are read by both the UI control FSM and 
the draw module.  The draw module reads from these storage elements and the 
current state of the UI control FSM to generate an output to send to the VGA 
interface of the Labkit.   
 

User Interface (UI) 
 
Overview 
 
The user interface is composed of a control FSM, a draw module, and memory 
elements.  This section will discuss and analyze each module in detail.  Figure 2 
depicts an overview of the UI system. 
 
 

 
 
 
 
 
 
 
 

Fig. 2: Large overview block diagram of UI modules; image by Erin Ibarra 
 
UI Control FSM: Implementation 
 
The UI control FSM is a simple state machine stimulated by button actuation on 
the Labkit.  In the Digital Debussy system, there are three states of operation: 
staff mode, toolbar mode, and playback mode.  Each operating state has a 
specific set of responses for any given button stimulus.  Relevant music theory 
terms for this project include: 
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1Fig. 4: Layout of buttons; image by Erin Ibarra 

 Accidental: a modifier that alters the pitch of a note by one semitone on 
the classical Western scale; a sharp accidental raises a pitch and a flat 
accidental lowers a pitch. 

 Attribute: a general feature of a note or of the unique composition. 

 Attribute Specific: a specific value of an attribute; for example, an attribute 
specific of pitch would be A. 

 Beat: the basic unit of musical time, analogous to a letter in a word. 

 Dot: when a dot is placed next to a note, half of that note’s duration is 
added to its existing value (a whole note lasting 4 beats with a dot would 
last 6 beats). 

 Duration: length of time of a note (whole note, half note, etc.). 

 Dynamic: the relative loudness or softness in sound of a note. 

 Measure: a subdivision of a piece of music; refers to a group of notes 
whose durations sum to a value dictated by the time signature; analogous 
to a word. 

 Octave: refers to the specific location of a pitch on the piano; as a 
reference, middle C on a piano is C4. 

 Pitch: the letter name assigned to a specific frequency in standard 
classical Western music (A, B, C, D, E, F, G). 

 Rest: a duration of silence in a piece of music. 

 Time Signature: a construct that dictates how many beats are in a given 
measure of music and the specific note duration equivalent to one beat. 

 
A note in the Digital Debussy system is represented as a 16-bit value with bits 
allocated for attributes as listed below.  Attribute specifics were given a 
designated bit width and location in the note representation, referenced in both 
the UI control FSM and the draw module. 
 

 
Fig. 3: Allocation of bits in 16-bit note representation; image by Erin Ibarra 

 
Below are the specific functionalities of each button in its respective mode: 
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Table 1: Description of button functionality by mode 

 
Both staff mode and toolbar mode incorporate extensive button functionality, 
however, in playback mode, buttons only serve to start and stop playback.   
 
 In Verilog, the UI control FSM is composed primarily of case statements, 
triggered by the rising edge of a button push. While the ultimate implementation 
of the FSM was relatively simple, designing and defining possible parameters 
was challenging.  Attributes such as pitch and octave can have a very large 
number of possible attribute specifics, and other attributes like duration and time 
signature have infinitely many possible specifics.  With this in mind, the system 
was designed to restrict the number of possibilities in favor of overall simplicity.  
Additionally, not all pitches were possible in the sound playback module, 
therefore the range of available pitches was restricted to accommodate audio 
playback. The UI control FSM was designed such that these restrictions would 
be automatically enforced for the user.  Table 2 provides an outline of the specific  
restricted values. 

 
Table 2: List of restricted attribute specifics 

 
The control FSM can support all of these features identified in Table 2, 

however, only some were integrated into the draw module due to time 
constraints, also shown in Table 2.  The FSM also supports erasing a note, 
however, this feature was note integrated into the final project.  Instead, the 
erase feature takes a note with a pitch and transforms it into a rest of the same 
duration. 
 
 
 

 Staff Mode Toolbar Mode 

Up/Down None Cycle through attributes 

Left/Right Cycle through composed notes Cycle through attribute specifics 

Enter Switch mode/stop playback Switch mode/stop playback 

0 None None 

1 Compose a note on screen None 

2 None None 

3 Enter playback mode Enter playback mode 

Attributes Planned Range/List of Values Implemented in draw module? 

Pitch C3-C5, rests Yes 

Octave 3, 4, 5 depending on pitch Yes 

Duration Whole Note-Sixteenth Note Yes 

Dot Dot or No Dot Yes 

Accidental Flat, Sharp, Natural No 

Dynamic Piano, Mezzo piano, Forte No 

Time Signature 3/4 or 4/4 Yes 
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UI Control FSM: Debugging 
 

The UI control FSM was debugged primarily using the ModelSim simulator 
to analyze signals and ensure proper operation.  There were, however, subtle 
errors in the FSM that were unnoticed until it was integrated into the overall 
system.  The FSM responded to the entire duration of a button push instead of 
just the rising edge.  This resulted in unpredictable state changes and visibly 
fuzzy transitions of images in the draw module.   
 
UI Control FSM: Analysis and Recommendations 
 

Overall, the implementation of the UI control FSM was effective and 
efficient.  The design of the system is simple enough such that more attributes 
and attribute specifics can be easily integrated into the system.  The FSM was 
designed such that the attribute list and attribute specifics looped once a user 
reached the end or beginning of a specific list, since the FSM supported 
movements forward or backward through a list.  This looping method is 
recommended for anyone attempting to create a similar project.   
 
Draw Module: Implementation 
 

The draw module was built in several successive steps, increasing in 
difficulty and complexity.  I was able to simplify this process slightly because I 
only used two colors: black and white.  While I had to output 24 bits of color to 
the VGA output, I could store images in ROM in binary, representing black and 
white respectively, instead of storing 24 bits of color for each pixel.  First, I 
colored the screen entirely white and placed a black box on the right side.  The 
black box and many other box shaped objects in the module are made by using 
the blob module from the 6.111 course staff and a modified version of the blob 
module, which has a default color of white instead of black.  Next, I created the 
staff lines by setting threshold values that defined the edges of staff lines and 
forcing any pixel within that threshold to be the color black.  These lines were 
each one pixel in height.  I then added white boxes to the black toolbar in which 
each attribute specific would be displayed.  Finally, I made sure that the system 
was able to read an image from a ROM.  The final result of this process is shown 
below in Figure 5. 
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Fig. 5: The first trial of graphics display; image by Erin Ibarra 
 

The next step involved displaying the attributes, attribute specifics, and 
notes on screen.  The draw module takes the state of the UI control FSM as an 
input, so it can display the appropriate attribute specifics in each display box.  
The attributes themselves are unchanging elements read from ROMs.  Each 
necessary letter was created as 24-bit bitmap file, resized, and transformed into 
a coefficient file that could be interpreted and loaded into a ROM; the 
transformation process was completed by a MATLAB script provided by the 
6.111 staff.  After estimating the appropriate positions for each letter, I used 
combinational logic to calculate the addresses of each letter and then continuous 
assignment statements to display the letters on screen.  Originally, each letter 
was black on a white background, so in order to display them as white, I negated 
the output of the letter ROMs.  The treble and bass clef were also created and 
displayed in this fashion because they were unchanging elements of the 
graphical user interface. 

 
Similarly, the ROMs containing the attribute specifics were created by 

acquiring the image, resizing, and transforming them into a coefficient file.   The 
draw module selected which attribute specific to output to the VGA based on the 
input information from the state of the UI control FSM through combinational 
logic.   

 
I found developing the note display portion of the draw module to be the 

most complex and challenging part of the project.  When a user transcribed a 
note, the note’s 16-bit representation was stored in the shared BRAM and in the 
display BRAM.  The draw module read from the note BRAM every clock cycle 
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and collected information on each note sequentially.  Each note was stored in a 
separate register in the draw module from which information about the note could 
be extracted and used for calculations.  The pitch, octave, and duration of a note 
determined the height of a note on the staff; duration was a factor because the 
whole note image was smaller than the other note images, which have stems 
and thus height was adjusted accordingly.  Additionally, the draw module 
differentiated between notes with pitches and rests and displayed images 
accordingly.  The module also selected the appropriate duration to display based 
on the user’s choices.  The pitch and duration attributes of a note drove many 
signals throughout the system and created timing difficulties; after buffering the 
signals and pipelining the system, the timing difficulties were resolved.  Whole 
and half rests, because they were simple rectangles, were instantiated as blobs 
from the 6.111 staff.  

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6: Final output of the draw module; image by Erin Ibarra 
 

Draw Module: Debugging 
 
 Debugging the draw module proved to be incredibly challenging.  Most of 
the bugs I encountered were a result of not checking my Verilog code thoroughly 
after implementing revisions.  For instance, the bug shown in figures 7 and 8 
below was caused by incorrectly setting the default case of the combinational 
logic generating the attributes.  
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Fig. 7, 8: Incorrect output of logic generating the attribute text and incorrect 
display of octave attribute; images by Erin Ibarra 

 
At the time, I had set the default output of the attribute text logic to be “pitch”, 
which caused it to be displayed over the entirety of the toolbar.  A similar error 
occurred later with the octave attribute. 
 
 I also discovered that my system could not match the speed of the 65MHz 
clock that that the project utilized.  I needed to pipeline and buffer signals 
appropriately in order for the system to output clean images to the VGA.  
 
Draw Module: Analysis and Recommendations 
 
 The draw module is a large, complex module that integrates the entirety of 
the display in one location.  As such, it should be approached with care and 
attention to detail.  I could have detected many of my errors sooner had I been 
more careful when changing my Verilog code.  Additionally, I would recommend 
pipelining a system this large from the start.  I did not anticipate a problem that 
affected the overall aesthetics of the project and was unable to find a solution 
until the end of the project period.  Overall, I felt that the drawing module was 
largely successful.  The final module was pipelined and all images appeared 
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clearly on screen.  While a few images were not completely flawless, overall the 
final product looked as I had predicted. 
 
Memories: Implementation 
 
I utilized 3 types of memory for the Digital Debussy system: BRAM and Read 
Only Memory (ROM) generated by the ISE LogiCORE Generator and the 
“mybram” module developed by the 6.111 staff.  The display BRAM and the 
image ROMs were generated by LogiCORE and the shared BRAM utilized the 
“mybram” module. 
 
Memories: Debugging, Analysis, and Recommendations 
 
There was minimal debugging with the memories.  Overall, I felt that the scheme 
I used was effective, but I could have found ways to cut down the amount of 
memory I utilized.  Because the draw module accessed the memory 
continuously, I needed to create a separate BRAM for use by the control FSM 
and the playback module.  I found that the ROMs were a simple way to add 
complex images to the graphical user interface as well. 
 

Playback 
 
Overview 
 
At the heart of the sound playback module is the goal of producing a nice 
sounding audio output that accurately represents the musical decisions made at 
the user end. My aim was to reflect the impressive sound libraries of professional 
music composition software. In order to have several instrument sample with 
which to work, I decided to save only one sound clip from any instrument on the 
FPGA. Then, based on information about each note read from memory, the right 
clip can be selected and processed to achieve the correct pitch and time 
duration. I broke this process down into three main steps: first read the correct 
note information (duration, and pitch) from memory, then select the sample 
saved in memory and adjust its pitch, and lastly play the sound through the AC97 
for the appropriate amount of time - depending on both tempo and note quality. 
These tasks broke down well into high level system blocks, and a general data 
path diagram is shown in figure 10. Some of the goals I wanted to achieve in my 
implementation were the following:  
 

 Produce music using one audio sample 
 Playback music input by user 
 Produce notes of varying duration 

 16th note 
 8th note 
 Quarter note 
 Half note 
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 Whole note 
 Produce notes within a 2 octave range 
 Play music at 3 tempos 

 

 
Fig. 9 A high level overview of the organization of the playback module 

Playback and Pitch Shifting: Phase Vocoder Theory 

The first challenge I addressed was exactly how to change the pitch of a 
note without affecting the speed at which it is played. After some online research, 
I decided to implement a phase vocoder on the FPGA, using an open source C 
algorithm (http://www.dspdimension.com/admin/pitch-shifting-using-the-ft/). The 
basic functionality of a phase vocoder is fairly straightforward. In essence, we 
send the signal through a Fourier Transform in order to observe its frequency 
spectrum. For example, a perfect sine wave that sounds as an ‘A4’ pitch has a 
frequency of 440Hz. If we wanted to adjust the sounding pitch of this sine wave 
to one octave higher, or an ‘A5’, we just need to ‘stretch’ its frequency spectrum 
by a factor of two and send all of the spectral energy at 440Hz to 880Hz. Now 
that we have a signal with all of its energy at 880Hz, when it is sent back to the 
time domain through an inverse Fourier Transform, it will be a sine wave at 
880Hz. Because all of the analysis is done in the frequency domain, there is no 
noticeable effect on the time duration of the sample.  

 
 

Fig. 10 An illustration of the effect of a frequency shift. The energy in this sine 
wave is moved from 440Hz to 880Hz 
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 While a simple shift of the raw Fourier Transform seems pretty effective, 
some issues arise when one considers the effects of taking the fast Fourier 
Transform (FFT) of a digital signal. When the FFT of a digital signal is taken, only 
certain frequencies can be represented based on the sampling rate of the signal 
and its length. For example, a signal with a length of 1024 samples that was 
sampled at a rate of 12kHz can represent 512 discrete frequencies between 0 
and 6khz, each spaced 11.71785Hz apart. So, if our signal is that same 440Hz 
sine wave, the frequency bin closest to its true frequency is bin number 38 – 
which has a center frequency of 445.27Hz. Simply stretching this frequency by 
two would result in a sine wave of 890.55Hz – over 10Hz away from the desired 
880Hz, an audible difference. The phase vocoder (as its name implies) takes into 
account the phase information of the FFT to extract for information about the 
signals spectral energy. The algorithm to accurately determine the frequency 
make up of a signal entails a few steps: first windowing the signal into 
overlapping frames (I chose a Hanning window for this, with a length of 1024 
samples, and spacing of 256 samples between windows), then taking the FFT of 
each of the individual windows. Then, by analyzing the phase shift between 
adjacent FFTs, a fairly accurate frequency spectrum can be computed. The 
result gives us a magnitude and ‘true frequency’ for each frequency bin. I tested 
the validity of this algorithm by first writing a MATLAB script and inspecting the 
results. The frequency analysis of a 440Hz sine wave sampled at 12kHz is 
shown in. 
 

Bin Number Center Frequency True Frequency 

37 433.56 440.036704455635 

38 445.2783 440.036663833689 

39 456.99615 440.036675017123 

40 468.714 440.036647040770 
 

Fig. 11 A table documenting the results of the true frequency estimation on a 
440Hz sine wave. The four nearest bins to 440 Hz have an estimated true 

frequency within .037 Hz of 440Hz 
 
 Now that the exact frequency make-up of the signal been determined, the 
actual frequency shifting can be done. After that, simply ‘undo’ all of the 
processing needed to get the original spectrum, send it through an inverse FFT 
(IFFT), and the result is a pitch shifted version of the same sine wave we started 
with. In the MATLAB script that I wrote, I was able to produce good quality sound 
within a range of 2 octaves with a pure sine wave, and about 1 octave with a 
trumpet audio sample. The results of the MATLAB mock-up were promising, but 
the much harder part was yet to come – translating this algorithm into a hardware 
system.  
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Playback: Hardware Approach 
  

With a more in depth understanding of how the pitch shifting would work, I 
was now able to create a more detailed high level block diagram, and define 
more concretely the functionality of each of my modules. When the play button is 
pushed, the note memory interface would begin reading note information from 
memory and sending it to the pitch-shifting module. The pitch shifting module 
would output windowed FFT spectrums that would be sent through an IFFT 
module provided by Michael Price, and the resulting windowed time domain 
signals would be reassembled and sent to the ac97 via the audio output module. 
 
Hardware Approach: Pitch Shifting 
 

Because I thought it may be the most challenging aspect of the project, I 
first focused on being implementing and testing the pitch shifting block of the 
system. The input to this module was to be the pitch of the note, and the output 
the time-domain windowed On a large scaled, my plan was to use the frequency 
information I generated in MATLAB (true frequency and magnitude, each with 32 
bit two’s complement representation), save those into a ROM on the FPGA to be 
processed appropriately for each pitch. The samples saved in ROM were 
sampled at 12kHz, 12,000 samples long, and I chose a window length of 1024 
samples with 256 samples between adjacent windows. The FFT information for 
each individual window were stored sequentially in the ROM, so memory 
locations 0-511 contain the spectrum for window 1, 512 – 1024 contain window 
2, and so on. I further broke the pitch shifting block down into two modules for 
simplicity and to ease the debugging process. There was one module for reading 
the frequency information from memory, and shifting the frequency spectrum by 
the appropriate amount based on the chosen pitch. A second module was used 
to take the shifted FFT values, extract the phase information, and send those 
values to the IFFT module. 
 
 

 
Fig. 12 A diagram of the architecture of the pitch shifting implementation. The 
pitch shifting module reads the true frequency and magnitude from ROM, then 
sends the shifted frequencies to the phase decom. module. The Cartesian form 

of the FFT is then sent through the FFT module. 
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Pitch Shift Module 
 

The function of this module was to take information about the pitch of the 
note, and to the appropriate frequency spectrum stretching. A mux was used to 
choose the correct scaling factor based on the desired pitch. With pulse of the 
get_next signal, an FFT bin is read from the FFT ROM and the magnitude and 
true frequency information is extracted. The frequency and index are multiplied 
be the shifting factor, and the new FFT information is sent on to the phase 
decomposition module. For example, if bin 38 has a magnitude of .0028 and a 
true frequency of 440Hz, then the pitch shift module communicates to the phase 
decomposition module that bin 76 should have a magnitude of .0028 and a true 
frequency of 880Hz. I tested the correctness of this module by first ensuring that 
a shift factor of 1 returned the same frequency spectrum that was saved in ROM. 
Then I compared the results of different shift factors against the results I found in 
MATLAB.  
 

 
Fig. 13 A block diagram of the structure of the pitch shift module 

 
Phase Decomposition Module 
 

The purpose of the phase decomposition module was to take the shifted 
frequency spectrum of each window, extract the phase shift information, and 
generate a real and imaginary component for each FFT bin to be sent to the IFFT 
module. The start_next_window pulse is used to begin gather the FFT 
information for a window. The data_ready signal goes high when all 512 samples 
in a window have been processed. Once the bin index, true frequency, and 
magnitude are returned by the pitch shift module, the center frequency of the bin 
is calculated. Then the frequency deviation is found by taking the difference of 
the true and center frequencies. From this, the bin deviation is calculated by 
dividing out the frequency per bin. After the oversampling (or the sample overlap) 
and expected phase advance are taken into account, the phase is computed by 
keeping a running sum of the phase for that particular bin. All values in this 
module are stored as 32b two’s complement numbers for arithmetic simplicity. 
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Now that the phase and magnitude of the bin are known, they must be 

returned to Cartesian coordinates so that they can be processed by the IFFT 
module. I used a CoreGen generated 1024 location 18bit two’s complement 
sin/cos LUT to take the sin and cosine of the phase, and used an algorithm to 
properly map the phase into a 0-2π interval. The calculated real and imaginary 
components are divided by 16 to account for scaling that was done when the bin 
magnitudes were written to ROM. 
 

The phase sums are stored in a 32 bit wide, 512 location BRAM as are the 
magnitude sums. On my first pass making this module, I found that my 
calculations were off because the values I was reading from RAM were not 
stable. In order to make sure the correct phase and magnitude sums were 
written/read to memory, I used a couple of buffer registers and a cycle counter to 
carefully control the read/write process.  
 

Similarly to the pitch shifting module, I tested this module by comparing 
the outputs to those I found in my MATLAB simulation. 
 

 
Fig 14. A screen shot of the imaginary and real components of the FFT of a 

440Hz sine wave, as output by the phase decomposition module 
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Fig. 15 A closer look at the 440Hz sine wave FFT. It is more visible that the 

magnitude peaks are focused around bin 39. 
 
FFT Interface Module 
 

The FFT interface module was used to control the signal flow from the 
phase decomposition module to the FFT module. I chose to use a state machine 
to control to implement this functionality. The WAITING state means the module 
is idle, and waiting for the next note to begin processing. Once the next desired 
pitch is read in, the module begins reading in the real and imaginary components 
of each bin magnitude from the phase decomposition module and enters the 
GETTING_SHIFTED_WINDOW state. As each magnitude is read in, it is written 
to the FFT module; the value from the phase decomposition module is written to 
the positive frequency, and its complex conjugate to the negative frequency. 
After all 512 sampled in a window have been written, the FFT module is started, 
and FFT interface module enters the GETTING_IFFT state and waits for the FFT 
module to finish processing the samples. Once the done_ifft signal is asserted by 
the FFT module, the FFT interface module enters the READING_IFFT state and 
begins reading the resulting time domain signal from the FFT module that gets 
sent to the audio output module. Once all 1024 samples have been read, the 
module either immediately begins processing the next window, or awaits further 
instruction from the playback module if the 44th and final window has been 
processed.  
 

I tested this module by observing the outputted waveforms in simulation. I 
really couldn’t tell how well it was working until I was able to listen to the output, 
but the Hanning window structure was clearly visible, and the waveforms seemed 
to more-or-less resemble the original sound samples, so it seemed to be working 
well. 
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Fig. 16 Simulation results that show the reconstructed windowed samples as 

output by the FFT module. The Hanning window structure is clearly visible 
 
 
 
 
 

 

 
Fig. 17 A closer look at the reconstructed 440Hz sine wave 
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Audio Output Module 
 

The audio output module was used to take the time domain windowed 
samples from the IFFT, reconstruct the sound clip, and send it to the AC97. Its 
jobs were to overlap the windows, and loop the sound clip for the appropriate 
amount of time. The biggest challenge of this module was properly overlapping 
adjacent windows. My original plan was to have an 18 bit wide, 1024 location 
BRAM to store the sound clip and overlap the samples as they were read in from 
the IFFT. But, I found this difficult because the output from the IFFT came in one 
burst, or at 1 sample per clock cycle. Because each point in the sound clip is 
represented in 4 different windows, I would need 2 clock cycles to process each 
sample: 1 clock cycle to read in the current location value, and another to add it 
to the value from the IFFT and then rewrite that to the BRAM. I found this 
particularly challenging, so I decided instead to just create a (very large, with 45k 
locations) BRAM to store all of the windows sequentially, then do the overlapping 
as data was sent to the AC97 - during the times when data wasn’t being received 
from the IFFT. Unfortunately, this scheme wasn’t much easier to implement, and 
also maxed out the BRAM availability on the FPGA if I were to conserve the 18bit 
two’s complement structure that I desired for the sound.  
 

In the end, I wasn’t able to successfully complete this module that was 
pretty essential to my goals. With more time, I would have spent more time trying 
to work out my original implementation idea for this module. 

 
Playback Module 
 

The playback module was used to connect together the pitch shifting 
block, audio output module, and note memory. When the play button is held 
down, this module would control the sample processing until either the song ends 
or the play button is released. I decided to first put together the pitch shifting and 
audio output blocks because, although I had compared the output of my pitch 
shifting block to the results I found in MATLAB, the true test of their functionality 
would be to actually listen to the resulting sounds. After being able to reliable 
play just one note at a time, my plan was to then add in the ability to parse in 
notes from note BRAM shared with the UI module. But, because I ran into trouble 
with the audio output module, I never got around to adding in that functionality. 
However, with the control signals built into the pitch shift modules, I think it would 
have been fairly straight forward. Once a note had been fully processed and sent 
to the audio output module, the next note could be read from memory and begin 
to be processed by the pitch shifting block. 
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Fig. 18. A block diagram outlining the functionality of the playback module. 

 
Conclusion 
 

Although I was disappointed to have not been able to implement the audio 
output module, I was happy with everything I was able to accomplish on the 
project. The FFT processing worked well, and I learned a lot about signal 
processing along the way. If I could go back, I would make a few changes to my 
overall approach. Firstly, I would’ve used higher quality samples than the 12k 
samples I decided to use, so that in the end (if there were sound) it would sound 
nicer. This would require only changing a few parameters in the algorithm: 
slightly larger ROMS for FFT storage, and a few constants would need to be 
adjusted in the phase decomposition module. I would, obviously, also spend 
more time working on the audio output functionality of the project, because a 
music processing project with the ability to make sound would have been nice. 

 
 
 

Conclusions 
 

While we were unable to integrate the UI and playback modules, the 
modules we did integrate were very successful.  The UI did allow for music 
composition.  While it was limited in functionality, a user could still select from a 
variety of parameters and compose. Although the playback module was unable 
to produce any sound, the signal processing modules worked well.The project is 
still scalable and expandable and supports the addition of other functionality and 
features.   
 
 


