
6.111 Final Project: Digital Debussy-
A Hardware Music Composition Tool

Jordan Addison and Erin Ibarra
November 6, 2014

1

Purpose
�  Professional music composition software is

expensive
�  $150-$600, typically between $300-$600

�  Amateurs, beginners do not need the power and
functionality of professional software

�  Very little information on internal details of music
composition software

2

Outline of Minimum
Features

�  Single note melodies with up to 64 individual notes and
playback

�  Bass and treble clefs

�  Two time signatures : 3/4, 4/4

�  Transcribe pitches from C3-C5
�  One octave below Middle C to one octave above Middle C

�  1 Key Signature (C major) but all flats and sharps available as
accidentals

�  Note duration from whole to sixteenth notes

�  Dynamic volume from piano to forte

3

FPGA	

Bu(ons	

UI	
 Control	

FSM	

Sound	
 Clip	

FFT	
 BRAM	

IFFT	
 Playback	

Control	

Display	

Storage	

Time	

Stretching/	

Compression	

ac97	

VGA	

Output	

Note	
 BRAM	

Storage	

[15:0]	

Pitch	

ShiOer	

Erin	

Jordan	

User Interface Block
Diagram

5

Note
BRAM

Storage

Display
Storage

UI
Control

FSM

Graphics
Display

Labkit
Buttons

VGA
Output

Note- 16 bits

~Pitch~ Octave Duration Dot Accidental 5 Open

Graphical User Interface

6

Pitch

Duration

Octave

Dot

Accidental

Dynamic

C

½

4

.

#

p

Time
Signature

4/4

User Interface:
Transcription Process

�  User Interactions
�  Music transcribed from left to right using labkit buttons
�  Select parameters on toolbar
�  Switch between “Staff” and “Toolbar” modes using “Enter”

button
�  Place a note based on chosen parameters by pressing “1”

button in staff mode

�  Display
�  Entered notes are stored in note memory
�  Addresses of notes and duration values for corresponding

notes are stored in measure counter
�  Measures are divided accordingly on display

�  Pitches are displayed as sprites and mapped to appropriate
location on staff

 7

UI Testing
�  Using generated note files

�  Test benches with simulated button pushes

�  Visual inspection

8

Button Functionality
Toolbar

�  Up/Down: cycle through
attributes (pitch, duration,
etc.)

�  Left/Right: cycle through
values of a specific attribute
(i.e. pitch: A,B,C, etc.)

�  Enter: switch to staff mode

�  3: playback (press and hold)

Staff

�  Left/Right: scroll through
existing notes on the staff

�  0: erase the highlighted note
(turns into a rest)

�  Enter: switches to toolbar
mode

�  3: playback (press and hold)

�  1: place a note

9

Up

Right

Down
Left

Enter 0 1 2 3

Pitch and Speed

�  Seem to be inherently linked

�  Higher Speed → Higher Pitch,
Slower Speed → Lower Pitch

�  Standard Solution:
�  Window audio sample
�  Analyze pitch in frequency

domain
�  Analyze tempo in time domain

�  “Phase Vocoder”

Controlling Speed

•  To	
 change	
 playback	

speed,	
 change	

amount	
 of	
 overlap	

between	
 windowed	

segments	
 	

•  No	
 effect	
 on	
 pitch	

•  Can	
 have	
 other	

effects	
 on	
 the	
 sound	

Pitch Shifting: Concept

FFT	
 440Hz	

‘A4’	

Impulse	
 at	

440hz	

ShiO	
 by	

X2	

IFFT	

Impulse	
 at	

440hz	

880Hz	

‘A5’	

Impulse	
 at	

880hz	

Impulse	
 at	

880hz	

Controlling Pitch: Issues

… …
Frequency	
 Bins	
 	

FFT	
 Mapping	

Controlling Pitch: Solutions

•  Audio	
 signals	
 are	
 “short-­‐cme	

staconary”	

•  Adjacent	
 signals	
 are	
 NEARLY	

idenccal	

•  But	
 differ	
 enough	
 to	
 use	
 the	

phase	
 difference	
 to	
 extract	
 a	

very	
 precise	
 escmate	
 of	
 the	

“true	
 frequency”	
 of	
 a	
 bin	

•  Without	
 phase	
 informacon,	

looks	
 like	
 a	
 215Hz	
 signal	

(5Hz	
 error)	

•  With	
 phase	
 info,	
 escmated	

frequency	
 is	
 220.0219!	
 (Δt	
 =	

3ms)	

Implementation Scheme
�  Compute FFTs of sound clips ahead of time in

MATLAB

�  Store FFT data in FPGA BRAM

�  Implement pitch shifting/time dilation on FPGA

�  Other considerations:
�  Proper note shaping (Attack, sustain, release), will

likely use simple shaping filters if needed
�  Pitch shifting only has a 2 octave range

�  Time scaling is quite limited with this implementation

Playback Architecture
Overview

Sound	
 Clip	

FFT	
 BRAM	

IFFT	
 Playback	

Control	

Time	

Stretching/	

Compression	

ac97	

Note	
 BRAM	

Storage	

[15:0]	

Pitch	

ShiOer	
 Play	

Bu(on	

Playback Testing
�  MATLAB generated test files to put in BRAM

�  Use these for unit testing
�  Time Shift

�  Pitch Shift
�  Volume Control

Timeline

11/2 11/5 11/9 11/12 11/16 11/19 11/23 11/26 11/30 12/3 12/7 12/10
User.Interface.
FSMs/Internal.Structure
GUI/External.Structure
Troubleshooting/Debug
Playback
MATLAB.Prototyping
Verilog.Time.Shifting
Verilog.Pitch.Shifting
Integration
Integration

Week.6Week.1 Week.2 Week.3 Week.4 Week.5

