6.111 Final Project: Digital Debussy-A Hardware Music Composition Tool

Jordan Addison and Erin Ibarra November 6, 2014

Purpose

- Professional music composition software is expensive
 - \$150-\$600, typically between \$300-\$600
 - Amateurs, beginners do not need the power and functionality of professional software
- Very little information on internal details of music composition software

Outline of Minimum Features

- Single note melodies with up to 64 individual notes and playback
- Bass and treble clefs
- Two time signatures: 3/4, 4/4
- Transcribe pitches from C3-C5
 - One octave below Middle C to one octave above Middle C
- 1 Key Signature (C major) but all flats and sharps available as accidentals
- Note duration from whole to sixteenth notes
- Dynamic volume from piano to forte

User Interface Block Diagram

Graphical User Interface

User Interface: Transcription Process

- User Interactions
 - Music transcribed from left to right using labkit buttons
 - Select parameters on toolbar
 - Switch between "Staff" and "Toolbar" modes using "Enter" button
 - Place a note based on chosen parameters by pressing "1" button in staff mode
- Display
 - Entered notes are stored in note memory
 - Addresses of notes and duration values for corresponding notes are stored in measure counter
 - Measures are divided accordingly on display
 - Pitches are displayed as sprites and mapped to appropriate location on staff

UI Testing

- Using generated note files
- Test benches with simulated button pushes
- Visual inspection

Button Functionality

Toolbar

- Up/Down: cycle through attributes (pitch, duration, etc.)
- Left/Right: cycle through values of a specific attribute (i.e. pitch: A,B,C, etc.)
- Enter: switch to staff mode
- 3: playback (press and hold)

Staff

- Left/Right: scroll through existing notes on the staff
- **0:** erase the highlighted note (turns into a rest)
- Enter: switches to toolbar mode
- 3: playback (press and hold)
- 1: place a note

Pitch and Speed

- Seem to be inherently linked
- Higher Speed → Higher Pitch,
 Slower Speed → Lower Pitch
- Standard Solution:
 - Window audio sample
 - Analyze pitch in frequency domain
 - Analyze tempo in time domain
- "Phase Vocoder"

Time-Stretching & Pitch-Shifting of Digital Audio

Niels Schepers

3 september 2010

Controlling Speed

- To change playback speed, change amount of overlap between windowed segments
- No effect on pitch
- Can have other effects on the sound

Pitch Shifting: Concept

Controlling Pitch: Issues

Controlling Pitch: Solutions

- Audio signals are "short-time stationary"
- Adjacent signals are NEARLY identical
- But differ enough to use the phase difference to extract a very precise estimate of the "true frequency" of a bin
- Without phase information, looks like a 215Hz signal (5Hz error)
- With phase info, estimated frequency is 220.0219! ($\Delta t = 3ms$)

Implementation Scheme

- Compute FFTs of sound clips ahead of time in MATLAB
- Store FFT data in FPGA BRAM
- Implement pitch shifting/time dilation on FPGA
- Other considerations:
 - Proper note shaping (Attack, sustain, release), will likely use simple shaping filters if needed
 - Pitch shifting only has a 2 octave range
 - Time scaling is quite limited with this implementation

Playback Architecture Overview

Playback Testing

- MATLAB generated test files to put in BRAM
- Use these for unit testing
 - Time Shift
 - Pitch Shift
 - Volume Control

Timeline

