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Abstract 

This project attempted to design and implement a digital flight controller on a 

FPGA prototype board for stabilizing a small quadcopter unmanned aerial vehicle.  

The purpose of the project was to assess the feasibility of using an FPGA in the 

stabilized control of an underactuated aerial robotic system.   Unfortunately, the 

project was not successfully implemented due to difficulties interfacing with the 

proprietary sensor components and underestimation of the risk exposure in the 

project scope.   The project was able to determine that the FPGA is an inadequate 

platform for implementing quadcopter control compared to widely used 

microcontrollers that are more than adequate and have a large support base.  The 

FPGA platform was found to pose good properties for integrating multiple sensors 

and performing parallel tasks such as motor control.  Future projects should 

consider the viability of pairing a microcontroller handling basic control 

functionality with the FPGA handling sensor interface tasks and performing large 

parallel computational tasks such as optical flow sensing and enabling self-tuning 

feedback.  

Figure 1: Picture of the assembled quadrotor. 
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0 INTRODUCTION 

The goal of this project was to assess the viability of the FPGA as a digital 
controller for a small vertical takeoff and land (VTOL) unmanned aerial vehicle 
(UAV).  To assess the viability, I attempted to implement a digital PID controller 

that could interface with an inertial measurement unit (IMU) and an ultrasonic 
range sensor in order to calculate control inputs for the four brushless DC motors of 

a small quadcopter.  The flight controller would allow for the stabilized flight of the 
quadcopter and maintain a constant desired altitude.     

A Mojo v3 FPGA prototype board by Embedded Micro was chosen for the 

project.  The Mojo was to send pulse width modulated (PWM) signals to four iPower 
2212Q 1000 Kv rated motors through an accessory servo shield, as well as, 

interface with the sensors through its GPIO pins. Power (12 volt-18 ampere) was 
delivered via tethered speaker wire to a power distribution board on the quadcopter 

and supplied by a modified computer desktop power supply (PSU).     
Despite my best efforts, I was not successful in completing a flying prototype 

in time. I encountered numerous issues related to interfacing with proprietary 

sensors, developing a usable power source, and working with corrupted ISE project 
files that caused large schedule setbacks I could not overcome.  Highlights I was 

able to accomplish were: developed working drivers for interfacing with the sensors 
including an SPI mode 0 master; created a useful MATLAB simulation for developing 
the control scheme; and assembled a viable quadcopter with frame, motors, 

electronic speed controllers (ESC) and power supply that only needed a working 
flight controller to fly.   The Verilog modules that worked in simulation and on the 

6.111 labkit did not work properly on the Mojo, indicating issues that I did not 
account for with developing across FPGA platforms (the labkit contained an older 
Xilinx Virtex II while the Mojo had a newer, but less powerful Spartan 6).    
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1 HARDWARE INTEGRATION 

A major aspect of this project were issues concerning interfacing the digital 

world of the FPGA with the physical world of motors, quadcopter frame and 

sensors.  Considering I had never before built a quadcopter or any RC aircraft or 

had much experience with tasks such as soldering, there was a large amount of risk 

in the project that I had not anticipated.  Major concerns arose with key initial 

design decisions related to developing on two different FPGA platforms, proprietary 

sensor formats, and hacking together the power system. 

1.1 FPGA 

There were two FPGA prototype systems used in the development of this 
project: the Xilinx Virtex II located on the 6.111 labkit and the Xilinx Spartan 6 on 
the Mojo V3 prototype board.  The labkit was used for the rapid development and 

test of Verilog modules because it had buttons, switches and a led hex display 
useful for verifying modules are working properly that the Mojo lacked.  The Mojo 

V3 FPGA prototype board from Embedded Micro was intended to be the final flight 
control platform and located on the quadrotor during flight.  The Mojo had been 
chosen for this project due to its form factor, its low price ($70) and that it can 

easily be connected to an accessory servo shield ($40) to operate the motors.  
The Mojo could take anywhere between 3V-12V because of its onboard 

voltage regulator and could be powered from either its DC bullet connector or micro 
USB port. It also had the ability to accept a power source from its servo accessory 
which was ideal because the ESCs used had a 5V battery elimination circuit (BEC) 

that could supply the necessary power to the Mojo.  This avoided having to design a 
voltage regulator to convert down the 12V power from the power supply used. 

I ran into trouble with developing on two platforms because modules and state 

machines that worked properly on the labkit Virtex II did not transfer to the Mojo 

without major issues.  In hindsight, I should have developed a working serial out 

capability connected to my laptop first on the Mojo so I would be able to only 

develop on one platform. This would have saved me a good amount of frustration 

and time that I lost having to transfer between the two platforms.  It would also 

would have proven useful later for sending desired control inputs and reading data 

from the Mojo during flight.      

 

Figure 2: Mojo V3 and servo shield 
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1.2 IFLIGHT 450 MM QUADCOPTER KIT 

For this project, I purchased an almost-

ready-to-fly (ARF) quadcopter kit from 

AltitudeHobbies.com.  The $150 kit came with a 

sturdy and light 450 mm frame with center 

platform, four powerful iPower M2212Q 1000 Kv 

rated brushless DC motors, four max 30 ampere 

electronic speed controllers (ESCs) with 5V-3A 

battery elimination circuits (BEC), two sets of 10 

inch x 4.5 pitch plastic propellers, and the 

necessary assembly materials. 

From the details on the webpage, it seemed 

to meet my requirements that it be low cost, easily 

assembled and be able to easily carry the FPGA and sensors onboard.  The ESCs in 

the kit were also ideal because they became preloaded with the SimonK ESC 

firmware.  The SimonK firmware is open source and heavily documented which will 

allow me to understand how to interface with the motors through a custom motor 

controller implemented in the FPGA. 

When it arrived, I found out that it was just a cheaper Chinese Dji Flamewheel 

450 clone with sparse documentation and performance specs.  The quality of the 

material was adequate, and if the project flew, the quadcopter would have been a 

stable platform.  However, the lack of easily available performance information 

caused issues because it made it harder to calculate system parameters for 

accurately modeling the quadcopter dynamics.  I spent a significant amount of time 

researching and deriving estimates that would not have been necessary if I had 

used a more well-known kit.   

In addition, I ran into issues with mounting sensors due to the limited amount 

of space in the center platforms. There was limited clearance available underneath 

for storing parts.  A quadcopter with extended clearance possibly with landing legs 

would have been ideal.  I was able to overcome this by placing the Mojo with servo 

shield on the top platform, the IMU sensor on a breadboard on the lower platform 

along the right orientation, and mounting the ultrasonic sensor on the arms, but as 

far away from the propellers as possible.  There were definitely tradeoffs with the 

limited space.        

1.3 POWER SYSTEM 

The power system was a key implementation task on the project that required 

a good deal of assembly tasks to create a power system from scratch.  One of the 
key initial design choices was to tether the quadrotor to eliminate the use of 
Lithium-Polymer (LiPo) batteries and increase the safety factor in the lab. However, 

existing power supplies in the lab were not adequate to meet the power 
requirements of the motors.  The 2212Q motors could draw up to 17 amps each 

Figure 3: Picture of the assembled 

quadcopter kit (without propellers) 
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under max throttle.  For hover applications at least an 18 amp power supply was 
needed.  The motors also needed between a 9-14 volts for proper operation of the 

motors and the ESCs needed at least the 9 volts in order to produce the 5 volt 
power for the Mojo.   

After a bit of research, I ended 
up determining that a computer 
power supply unit (PSU) could 

provide the necessary power 
requirements with a few 

modifications.  With a PSU in hand, I 
added a switch between the green 
power line and ground, a 5 ohm, 20 

watt power resistor to a 5 volt line, 
and ground to deliver a basic load 

when turning on the PSU, an red led 
indicator light on another 5 volt line 
and a male XC60 power connector to 

a 12 volt-18 amp line out for the 
quadcopter power. 

To complete the power system, 
the power tether was made out of 16 

gauge copper wire of sufficient length.  The power tether connected the PSU to a 
power distribution board on the quadcopter with soldered male and female XC60 
power connectors, respectively.  The power distribution board on the quadcopter 

was then connected to each of the ESCs via bullet connectors. 
Because I had never soldered before, I experienced a major learning curve in 

soldering connectors to the power system wires.  I spent much of the initial two 
weeks of the project in the soldering lab preparing the power distribution system 
and soldering header pins on the sensor boards.  It was a good learning experience, 

but developing the power system certainly contributed to schedule delays.  
Unfortunately, I needed a working power supply in order to develop important 

components of the system and ultimately to enable the integrated the quadcopter 
system to fly.   

1.4 ULTRASONIC SENSOR 

In order to obtain sensor data for altitude, a Devantech SRF05 ($23) sold by 
Acroname was chosen for measuring the height of the UAV. The sensor works by 

sending out a series of ultrasonic pulses and then measuring the time delay 
average in the return signals. The operation of the digital sensor is relatively 
simple.  The system returns a positive transistor-transistor logic (TTL) level signal 

that is proportional to the range sensed. Using the separate trigger and echo mode 
of operation, the sensor is sent a minimum 10µs trigger high signal and then listens 

for an echo pulse to return. The length (between 100µS to 25 mS) of the return 
echo pulse is then proportional to the height. 

Figure 4: The modified PSU.  (From left to right) The 

switch, led indicator, and female XC60 power 
connector can be seen in the photo.   
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1.5 IMU SENSOR MODULE 

For stabilizing the quadcopter, onboard sensors that can read attitude 

orientation and position information are needed for the flight controller.  These 
inertial measurement units (IMU) often consist of gyroscopes (angular rates), 

accelerometers (forces), magnetometers (magnetic heading) and GPS beacons 
(geographic position).  For the project, I needed an IMU that could determine body 
attitude (roll, pitch, yaw) and angular rates for the control scheme.  I had two 

options: 1) buy an off the shelf IMU that computes flight attitudes; or 2) integrate 
gyroscopes and accelerometers myself and implement an attitude calculation 

through the use of a Kalman Filter or Direction Cosine matrix.  To avoid the 
complexity of implementing my own IMU, I chose to obtain an off-the-shelf option.  
Luckily, the price of consumer IMU breakout boards has come down considerably 

over the last few years and affordable options are available and easy to obtain.  

1.5.1 JB IMU 

After dealing with proprietary issues with the initial IMU breakout board I 
selected, I was able to locate a more suitable alternative.  The JB IMU from JB 

Robotics was a fully integrated IMU breakout board that communicates over SPI.  
The JB IMU produces attitude angle estimates with a quaternion-based Extended 
Kalman Filter (EKF) that avoids singularities associated with Euler angle based 

calculations.  For the purposes of the project, the board provided angle, angular 
rate and force measurements as 16 bit signed integers that could be readily used 

by the flight control module.   
There were a few issues I encountered working with the IMU.  

Documentation was rather sparse with regards to the SPI protocol used.  A 
specification document was provided for the onboard microcontroller, but that did 
not provide enough information because multiple modes and register widths were 

possible.  As it was designed to be used by Arduinos, there was some sample code 
provided, but that was rather minimal as well. From studying the code, I was able 

to determine all the default settings were left intact with Arduino SPI library 
commands indicating that Mode 0 was being used with a 4 MHz SCK frequency.  A 
follow-up email with the manufacturer confirmed that the JB IMU was a Mode 0 

slave and that an 8 bit output SPI bus was used. From that information, I was then 
able to write an SPI module. 

Another major issue was I did not receive the IMU breakout board until after 
Thanksgiving due to the late switch of sensor boards. That left only a week 
remaining in the project to troubleshoot all the issues and successfully integrate the 

sensor board.  I was successful in developing an SPI module and reading the output 
data from the board in the time remaining, but that left little time for much else.       

1.5.2  Proprietary Issues   

As mentioned previously, I initially selected a different IMU breakout board but 

ran into severe proprietary issues. I originally selected a pretty cheap ($10) 

breakout board containing the Invensense MPU6050 6DOF chip.  I had chosen the 

MPU6050 because it not only contains both an accelerometer and gyroscope, but 

most importantly has an onboard sensor fusion digital signal processor (DSP) that 
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incorporates the gyroscope and accelerometer readings to make an accurate 

estimate on current angular orientation.   

Unfortunately, initializing and interfacing with the DSP to obtain the angle 

states is quite difficult because the manufacturer of the chip Invensense only 

provides for a proprietary software package to communicate with the chip.  While I 

did find several open source communities that were able to reverse engineer the 

chip and make available a series of Arduino code packages to interface with the 

chip, the initialization procedure required configuring the volatile memory dump 

with over 20Kb and proved very complicated to implement and beyond my current 

skill level.   

If I would have been able to initialize the DSP properly, I would then have had 

to deal with complex trigonometric functions to convert the quaternion to angles for 

my control calculations.  With the DSP properly initialized, the IMU would have sent 

out 42 bit data packet FIFO (first in, first out) queue on the chip that contains the 

accelerometer (g forces), gyroscope(degrees per second) and angular readings in 

quaternions.  I could have implemented a CORDIC module for the trigonometry but 

that would have required a lot more logic slices on the Spartan 6 FPGA compared to 

the using the IMU board I ended up with.        
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2 QUADCOPTER CONTROL 

Over the last decade, the market for small UAVs have rapidly exceeded its 
origins in the hobbyist and military communities to become a reality for the broader 
consumer and commercial space.  Much of this growth has been enabled by the 

near universal availability of cheap, fast microprocessors that can perform all the 
regulation needed to allow humans or machine interfaces to fly the UAVs safely. 

These microprocessors are more than fast enough to accommodate simple control 
schemes, but struggle with tasks that require more parallel execution of tasks.  For 
a vertical takeoff and landing (VTOL) vehicle such as a quadcopter, four controls 

inputs are ideally needed to be executed in parallel to operate the vehicle. A 
microcontroller overcomes this need for parallelism by operating at high enough 

frequency such that to the physical system, the control inputs are applied almost 
instantaneously.  FPGAs provide an attractive option to accomplish true parallelism 

for controls as well as signal processing without sacrificing the qualities that make 
microprocessors attractive development platforms (i.e. affordability, scalability and 
adaptability).  
 

2.1 DIGITAL CONTROL BACKGROUND 

Controllers for small unmanned aerial vehicles are necessary in order to 

stabilize the aircraft and allow for the system to be controllable by a human or 

machine interface.  In general, controllers act to regulate systems, also referred to 

as plants, through state feedback in which system responses are used to calibrate 

the future response of the system.  Controllers can be mechanical, analog, digital or 

biological in nature. As shown in Figure 4, a digital controller uses computer 

processors and/or digital integrated circuits to calculate control inputs and provide 

the regulation of the system.  For physical systems, a digital controller will need to 

use analog to digital converters (A2D) and digital to analog converters (D2A) in 

order to interact with and observe the physical plant and its environment.   

Figure 5: A generalized diagram of digital control system 
Source: University of Michigan Engineering  
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The quadcoptor digital controller that was to be implemented in the FPGA 

follows a similar pattern. As displayed in Figure 5, the FPGA contains a flight 

controls module that calculates the control inputs and subsequently provides a 

throttle setting to the motor control module. The motor control module then emits a 

pulse-width-modulation (PWM) signal to the electronic speed controllers (ESCs) to 

operate the motors.  In this way, the motor control module and ESCs act as digital 

to analog converters (DACs) to the plant.  The system responses and state 

feedback is then reintroduced to the controller via sensor modules (the ADCs of the 

system) that communicate with the sensors. 

 

 

2.2 MODELING THE QUADCOPTER 

It was necessary that a model of the quadcopter dynamics be determined in 

order to derive control equations and for simulation purposes. As I had no prior 

experience in system identification, I needed a working simplified dynamics model 

in order to design the controller.  In selecting a model and control scheme, I 

referred to a number of academic papers and reports.   

I originally based my work on a paper and series of MATLAB scripts by Andrew 

Gibiansky.  It initially seemed that Gibianksy’s work could readily be adapted to my 

purposes and thus allow me to avoid having to develop my own MATLAB and 

Figure 6: Simulink model of the quadcoptor digital controller 
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Simulink simulation from scratch.  However, it became clear that Gibiansky was 

inadequate for the needs of the project.  The model in Gibiansky relied on precise 

estimates of system parameters in calculating the controls that I could not 

accurately measure given available resources and the chosen hardware platform.  

The control scheme also relied on divisions and trigonometry functions that would 

have been too resource heavy for implementation on the FPGA.       

I eventually settled on using a dynamic model and control scheme derived in 

Mellinger, et al from the University of Pennsylvania.  Much like Gibiansky, the 

paper had a full derivation of a quadrotor model and control scheme.  The control 

scheme was much more simplified and did not rely on having accurate estimates of 

system parameters to work properly.  The paper also gave instructions for 

implementing hover control and most importantly, had documented success 

implementing the system on a digital feedback controller.   

2.2.1 Dynamics of Quadcopters  

A quadcopter is what is referred to as an underactuated plant.  An 

underactuated system is one in which there are fewer independent inputs than 
there are degrees of freedom.  Like all bodies in space, quadcopters have six 
degrees of freedom (three translational and three rotational), however, the 

quadcopter only has four independent inputs that can be used for movement.  The 
quadcopter is able to move in space through altering the rotor speeds of its four 

motors to generate moments.  Inducing a moment alters the rotational attitude of 
the aircraft and changes the thrust vector producing translational motion.  The 
rotational and translational motion of the quadcopter is highly coupled so the 

dynamics of the quadcopter are highly nonlinear. 
 From Mellinger et al, the following state space model of the quadcopter was 

derived (see Appendix A for the complete derivation): 

2.2.2 Motor Model  

The connection between force (Fi) and moments (Mi) and the rotor speeds (ωi) of 
each motor was also derived by Mellinger, et al.  The relationship can be modeled 
as 

𝐹𝑖 = 𝑘𝐹𝜔𝑖
2 

𝑀𝑖 = 𝑘𝑀𝜔𝑖
2 

, where kF and kM are constant coefficients that relate rotor speed to thrust and 
torque respectively. Rough estimates were calculated based on available 

Figure 7: Simplified state space dynamics of quadcopter (Mellinger, et al: 4).  
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performance data, but would ideally be matched to real performance data from 
testing. Estimates for the motor coefficients were calculated to be:  

𝑘𝐹 = 9.18 × 10−8
𝑁

𝑟𝑝𝑚2
 

𝑘𝑀 = 3.01 × 10−5
𝑁𝑚

𝑟𝑝𝑚2
 

In hindsight, it would have been wise to have selected a more well-known and 
tested motor for the project, instead of the cheaper Chinese motor clone I went 
with.  I was able to find some performance data for the iPower 2212Q motor 

selected for the project, but I would have saved a good amount of time and effort if 
I had been more prudent in my choice.   

2.3 DEVELOPING CONTROL EQUATIONS 

2.3.1 Discrete PID Control Equations 

As mentioned previously, I desired to implement a PID digital control 
scheme. PIDs (also P, PI and PD) are a control scheme where proportional gains are 
applied to the derivative, integral and present feedback error to compute control 

inputs.  PID controllers are most commonly used in industrial control applications or 
where single set points are desired.   PID controllers have been popular for the 

hobbyist UAV flight controllers because they are rather simple to program 
compared to more modern methods.  Advantages of PID controllers are they do not 
rely on having very accurate dynamics models, can be tuned manually using proven 

methods, and can be readily converted for discrete applications.     
The classic form of the PID error equation is 

𝑢(𝑡) =  𝐾𝑑

𝑑

𝑑𝑡
(𝑥𝑑𝑒𝑠 − 𝑥(𝑡)) +  𝐾𝑃 (𝑥𝑑𝑒𝑠 − 𝑥(𝑡)) + 𝐾𝑖 ∫ (𝑥𝑑𝑒𝑠 − 𝑥(𝑡))  

, where Kd, Ki, Kp are the gains for the derivative, integral and present error 
respectively.  To be useful for digital control, the discrete form of PID control 

(derived from backwards difference) is needed which is  

𝑢[𝑘] = 𝑢[𝑘 − 1] + 
𝐾𝑑

𝑇𝑠
(𝑒[𝑘] − 2𝑒[𝑘 − 1] + 𝑒[𝑘 − 2]) + 𝐾𝑃(𝑒[𝑘] − 𝑒[𝑘 − 1]) + 𝐾𝑖𝑇𝑠𝑒[𝑘]  

, where 
k     = sample number 
u[k] = controller input value at sample k 

e[k] = the error term (xdes-x[k]) 
T[s] = Sample period 

  This discrete form is also known as the Type A equation.  Type B and Type C 
equations involve removing the error term from the proportional and both the 
proportional and derivative terms respectively. Moving the set point from terms 

lessens the impact of rapid changes in the state and makes it easier to tune the 
gains.  

𝑻𝒚𝒑𝒆 𝑩: 𝑢[𝑘] = 𝑢[𝑘 − 1] +  
𝐾𝑑

𝑇𝑠

(−𝑥[𝑘] + 2𝑥[𝑘 − 1] + 𝑥[𝑘 − 2]) +  𝐾𝑃(𝑒[𝑘] − 𝑒[𝑘 − 1]) + 𝐾𝑖𝑇𝑠𝑒[𝑘] 

𝑻𝒚𝒑𝒆 𝑪: 𝑢[𝑘] = 𝑢[𝑘 − 1] + 
𝐾𝑑

𝑇𝑠

(−𝑥[𝑘] + 2𝑥[𝑘 − 1] + 𝑥[𝑘 − 2]) +  𝐾𝑃(−𝑥[𝑘] + 𝑥[𝑘 − 1]) + 𝐾𝑖𝑇𝑠𝑒[𝑘] 
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2.3.2 Attitude PD Control 

The control scheme detailed in Mellinger et al, incorporates two controllers 

in cascade feedback: an inner loop attitude controller and an outer loop trajectory 
controller.  As shown in Figure 5 below, the simplified control scheme relates 

attitude error and required rotor speed to desired input rotor speed. The term 𝜔ℎ is 
calculated to be the required rotor speed for hover.  A proportional derivative 
control law was given for calculating the nominal vectors for roll (∆𝜔𝜙), pitch (∆𝜔𝜃), 

and yaw (∆𝜔𝜓) as shown in Figure 6. Due to selecting the correct IMU board, the 

PD equations in Figure 6 can be used directly in the digital controller because the 
IMU returns both present angle and angular rate.   

Hover Control 

2.3.3 Hover Control 

For the purposes of this project, only hover control was desired so the desired roll 

and pitch angles were desired to be constant at level (equal to zero) and the PID 
feedback was only implemented on the height measurement. Using the type C 

equations from above, the PID control for height (z) with slight modification is 

 𝑢𝑍[𝑘] =  
𝐾𝑑

𝑇𝑠

(−𝑧[𝑘] + 2𝑧[𝑘 − 1] + 𝑧[𝑘 − 2]) +  𝐾𝑃(−𝑧[𝑘] + 𝑧[𝑘 − 1]) + 𝐾𝑖𝑇𝑠(𝑧𝑑𝑒𝑠 − 𝑧[𝑘]) 

, and then for hover the remaining terms of the control laws are 𝜙𝑑𝑒𝑠 = 0, 𝜃𝑑𝑒𝑠 = 0 ,  

𝜓𝑑𝑒𝑠 = 𝜓0(some arbitrary yaw orientation), and Δ𝜔ℎ =
𝑚

8𝑘𝐹𝜔ℎ
𝑢𝑍[𝑘].  

Figure 9: State space control scheme relating desired rotor rpm 
to PD difference errors (Mellinger: 4) 

Figure 8: PD difference equations for attitude control 
(Mellinger:5) 
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3 IMPLEMENTATION 

3.1 IMPLEMENTATION OVERVIEW 

 The core of the project consisted of several finite state machine (FSM) 

modules consisting of a flight control module (FC), motor control module 
(MC), an IMU interface module (JB_IMU), and an altitude range sensor 

module (SR05) implemented on the Xilinx Spartan 6 FPGA.  A high level diagram 
of the modules is shown in Figure 7 below. 

The flight control module (FC) performs the flight arithmetic functions 
explained in Section 2.3, sends throttle settings to the motor controller, and 
interfaces with the sensor modules. The flight control module is also where the 

system level state machine resides. The system level state machine controls system 
function modes such as initialization and flying. 

The motor controller takes in an 8 bit throttle setting (0-255) for each motor 
and converts that setting to a PWM signal using a look up table and PWM module 
for each motor.  The refresh rate of the motor controllers is 400 Hz, which is the 

maximum refresh rate of the electronic speed controllers.   
The JB_IMU is a driver for connecting to the JB Robotics IMU breakout board. 

The module communicates over SPI with the board and retrieves a 16 bit signed 
integer values for current attitude (roll, pitch, yaw), angular rates, and body 
accelerations. The module then outputs the attitude and angular rate information to 

Figure 10: Module Level FPGA Block Diagram 
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the flight control module.  The refresh rate is limited to 250 Hz because the 
extended Kalman filter (EKF) algorithm implemented on the JB IMU is 250 Hz.  

The SR05 module is a driver for the control of the SR05 ultrasonic ranger.  
The module triggers an ultrasonic pulse and then reads the active high signal time 

in microseconds of the echo pulse to determine the range.  The module then 
outputs the distance reading as a 15 bit unsigned integer with a cycle time of 20 
Hz. The sensor itself needs time to reset and can only operate at a minimum of 20 

Hz.          
All modules are connected to the same system clock of 50 megahertz.  The 

Mojo has a 50 Mhz crystal oscillator which is more than fast enough to perform all 
operations necessary given the relatively slow update rates of the modules 
required.  Synchronizing all modules on the same clock allows for oversampling of 

sensor inputs and preventing any metastability issues due to different clock 
domains. 

3.2 FLIGHT CONTROLLER (FC) MODULE 

3.2.1 System Level FSM 

A system level FSM was intended to be included in the system to control 
functionality of the FPGA modules, but was not fully implemented by the end of 
project deadline. Only partial functionality was implemented in Verilog module 

flight_controller.v.   
The quadrotor controller was designed to be in several states: Power On 

Reset, Initialization, Fail, Idle, and Fly.  When the system is first supplied 
power, the system will be in Power On Reset mode for 2 seconds to complete 

hardware initialization.  The system will then move to Initialization mode to 
calibrate the ESCs, and to self-test and calibrate the digital sensors. If the 
Initialization is not successful, the system will move to Fail mode and flash the 

LEDs on the FPGA in a specific pattern to indicate that the system is not safe for 
flight.  If the Initialization is successful, the system will move to Idle mode and 

wait for operator input to begin flying. When the operator green lights for takeoff, 
the system will change to Fly mode, which is the normal operating mode.  The 
motors will initially operate at 1% throttle setting to indicate that the system is 

ready to fly.  The system can return to Idle mode if the system senses it is on the 
ground and after being directed by the operator.  

 

Figure 11: System state flow diagram 
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3.2.2 Initialize 

When the system is in the initialization state, an initialization process 
occurs.  This initialization process was implemented in a standalone Verilog module 

flight_control_initialize.v.  However, the module was not tested to be working by 
the project deadline due to compiler issues that were unfortunately left unresolved. 

 The initialization procedure focused on three tasks: 1) Calibrate the ESCs and 
make sure they are operational, 2) start the SR05 sensor module and validate that 
proper signal returns are valid, and 3) start the JBIMU sensor module, validate that 

the sensor driver is working, and record initial offset state readings to be used by 
the flight arithmetic module.  After each task was completed, the motors were then 

commanded to spin at a low RPM setting for visual indication that initialization was 
successful.  If the initialization process was successful, then a finished signal was 
sent to the parent module.  If an error occurred, the parent module is notified that 

there is an error with a separate signal.    

3.2.3 FC_Arithmetic 

The FC_Arithmetic module was intended to be the core module at the heart 
of the flight controller that would operate when the system is in FLY mode.  This 

module was not implemented by the project deadline. This module was to 
perform the control calculations described in Section 2.3 in fixed point integer 

arithmetic with proper attention to the scaling of the system state readings from 
the sensors. For example, the angle estimates given by the JB IMU as 16 bit signed 
integers were scaled by 100 so that would then need to be accounted for in the 

fixed point math.  
The arithmetic module will then output four independent inputs for RPM 

speed scaled down to a 16 bit unsigned integers. The 16 bit RPM settings would 
then be sent to a look up table that would convert the RPM setting to an 8 bit 
throttle setting to be read by the motor controller.   

The arithmetic module would operate on a 400 Hz rate to match the refresh rate of 
the motor controller.  The module would also only calculate new values when new 

data was available from the JB_IMU or SR05 module that are operating at a 250Hz 
and 20 Hz cycle time, respectively.           
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3.3 MOTOR CONTROLLER (MC) MODULE 

The motor controller module acts as the interface between the flight 

controller module and the signals sent to the ESCs.  The module contains look up 
tables in series with a pulse width modulation (PWM) generator that converts the 

throttle setting from the flight controller and outputs the PWM signal with the 
desired duty time.  For interfacing with the SimonK ESCs, a PWM active high signal 
is needed for anywhere between 1060 us (for Idle) and 1860 us (for Full Throttle).  

3.3.1 Throttle2PWM 

This module implements a look up table that converts the 8 bit unsigned 

integer throttle setting (0-255) to a valid 12 bit comparison time to be used by a 
subsequent PWM module. The module can also take input for desired idle.  If idle is 

high, then the signal output to the pwm module is less than 1060 us.  Anything that 
is less 1060 us is read by the ESCs as idle.  This just provides extra maneuvering 
ability between modules in case the flight controller wants to cutoff the motors 

instantly.  

3.3.2 PWM 

The PWM.v module takes a control signal of some parameter length and 
outputs a pwm signal of the desired duty time.  For the purposes of this project, the 

module works on a refresh rate assigned as a parameter in microseconds.  For the 
400 Hz refresh rate desired, that rate is 2500 microseconds.  Default parameters 
values for the control length is 12 bits long and for the refresh rate 12 bit integer 

equal to 2499 (400 Hz). 
The module operates through the use of a 1 microsecond divider.  Upon each 

1 us enable signal, a counter is incremented.  If the counter is less the comparison 
control signal, the pwm output signal is high.  If the counter is greater than the 

comparison signal, than the pwm output signal is low.  The counter resets when the 
refresh rate is reached as given by the parameter.   
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3.4 JB IMU MODULE (JB_IMU) 

As mentioned previously in Section 1.5, the JB IMU can provide state 

orientation data through a SPI Mode 0 slave interface.  A SPI master module 
was implemented that successfully communicates to the IMU slave with 

Mode 0 enabled.  A driver module was also implemented to control the SPI 
transactions and to obtain all the data from the JB IMU. Simulation was used to 
validate the implementations and the actual operation was demonstrated on the 

labkit.   

3.4.1 SPI 

An SPI master mode 0 module was implemented in Verilog as spi.v. SPI is a 
4 wire communication protocol between a single master and its slaves.  The master 

generates a SCK clock signal to be used in the transaction and also transmits bits 
serially on the Master Out-Slave In wire (MOSI).  The master reads in bits serially 
from the slave on the Master In-Slave Out wire (MISO). The master can select a 

slave to communicate with by pulling the Slave Select (SS) wire low.      
The JB IMU operates as a Mode 0 slave.  Of the four possible modes in the 

SPI specification, Mode 0 indicates that clock polarity when idle is low (CPHOL =0), 
and data is transmitted on the negative edge of the clock signal (CPHA = 0).  The 
SPI module correspondingly samples new data on the rising edge of the clock 

signal.   
The spi.v module operates in three states: IDLE, WAIT_HALF, and 

TRANSFER. When a start signal arrives, the module pulls the slave select low and 
then enters WAIT_HALF state. The module waits half a SCK cycle before starting 

TRANSFER mode.  An SCK signal is generated by assigning the last bit of the clock 
divider with bit width set by a parameter.  The master SPI then proceeds with the 
data transfer: transmitting each bit (MSB to LSB) on MOSI on the negative edge of 

SCK and then sampling the MISO until filling the output data bus.  When the output 
data bus is filled, the state is returned to IDLE, SS is reasserted active high, and 

the new_data output signal is assigned high. 
An interesting feature implemented is that the SPI bus width can be set 

arbitrarily through parameters.  An internal function implements log base 2 to 

calculate the number of bits needed to count as a local parameter.       

3.4.1.1 SPI Testbench 

The Verilog testbench test_spi.v was successfully simulated using ModelSim 
to verify that the spi.v module worked as expected.  A mode 0 slave Verilog module 

was used to test the interface.  The spi_slave.v was included with starter Mojo 
code. 

3.4.2 JB IMU FSM 

As previously mentioned in Section 1.5, I relied on sample Arduino code for 
understanding how to interface with the board.  The Verilog code jb_imu.v is loose 

interpretation of that code.  The sample Arduino code sends one dummy signal to 
begin the transaction and then performs 9x2 = 18 transactions to obtain the 

attitude, angular rate, and accelerometer data. Each 16 bit signed integer is thus 
divided into two 8 bit transactions.   
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Each cycle, the JB_IMU sends 19 transmissions of all zeros to the slave.  The 
first 8 bit transaction is discarded by the master.  Thereafter, all transactions are 

shifted onto an internal 144 bit (9*16) data register.  When all transmissions are 
finished, outputs are assigned in order whereas the first 48 bits are the three 16 bit 

signed attitude angles, the next 48 bits are the three 16 bit signed angular rates, 
and the last 48 bits are the three 16 bit signed accelerations.    

After completing the round of transactions, the JB_IMU waits in IDLE state 

until receiving an enable signal high from a 250 microsecond divider.              

3.4.2.1 JB_IMU Testbench 

Similar to the SPI test bench, the JB_IMU testbench, test_jbimu.v, was used 
to verify proper operation with the Mode 0 slave module, spi_slave.v.  The test 

bench sends incrementing 8 bit integers from the slave to the master.  Correct 
operation is observed when the unit under test properly outputs values with 
incrementing hexadecimal values.    

3.5 SR05 MODULE (SR05) 

The SR05 operates through a trigger and echo cycle and requires 20 Hz cycle in 

order to reset properly. The SR05 was successfully implemented, verified in 
simulation and tested on the labkit to be working properly. 

3.5.1 Trigger and Echo 

The Verilog module srf05_trigger_and_echo is just a dumb driver that upon a 
start signal sends a 10 microsecond pulse on the trigger output wire and then 

listens for a high signal on the echo wire input.  The module then counts the time 
length of the TTL signal.  If the time signal recorded is not of invalid length (less 

than 100 microseconds or more than 30 milliseconds), the time recorded is then 
assigned to the 15 bit unsigned output distance.  There is error detection and time 

outs if the sensor malfunctions. 

3.5.1.1 Testbench for SR05 

A test bench, test_srf05.v, was implemented to verify the proper 
functionality of the trigger and echo low level driver.  The final module successfully 
passed the simulation test. 

3.5.2 SRF05 FSM 

The finite state machine module, srf05.v, operates the trigger and echo low 

level driver on a 20 Hz refresh rate. The FSM first triggers the low level driver.  The 
FSM then waits for a ready signal.  If the ready signal is pulled high, the FSM then 

moves to the store the value from the low level driver to the 15 bit unsigned 
distance output. The FSM then waits to receive a high enable signal from the 50 
ms/20Hz divider to begin a new trigger and receive cycle.     
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4 LESSONS LEARNED 

Although the project was not successful, it became clear that for just basic 

flight controls, the FPGA was not a useful platform and the microcontroller is more 

than adequate for use.  Other than incorporated into a novelty project, 

implementing a PID controller on an FPGA is just overkill and an enormous of effort 

for not much gain. Possible areas where FPGA would be suitable for more advanced 

control schemes incorporating inverse learning networks or for providing additional 

sensor functionality such as optical flow sensing for position tracking.  Generally, 

use case for microcontrollers breakdown where parallelism is necessary and this is 

exactly where the FPGA would be best suited for. 

To conclude this report, the following is a non-exhaustive list of topics and tasks 

that I was able to learn and demonstrate in this project. 

 Digital Systems 

 Communication Protocols (SPI/I2C) 

 Interfaces between digital and physical 

 R/C aircraft technology 

 Suitable Uses for FPGA 

 IMU (proprietary vs composite) 

 Sensor Filtering (Kalman, Direction Cosine Matrix, EKF, Complementary 

Filter) 

 Fixed Point vs Floating Point 

 PID Digital Control (Types, Designs, Pros/Cons) 

 Soldering/Powering Connections 

 Quadrotor Modeling 

 Underactuated Control 

 Verilog vs VHDL  

 Latches vs Shift Registers in HDL Design 

 UCF constraint files 

 Using FPGA very different from Labkit 

 PWM 
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6 GLOSSARY 

FPGA field programmable gate array 

UAV unmanned aerial vehicle 

VTOL vertical takeoff and land 

PID A feedback control scheme that uses derivative, integral and 
proportional constants to provide control inputs 

IMU inertial measurement unit 

DC direct current 

DAC digital to analog converter 

ADC analog to digital converter 

SPI serial periphereal interface 

TTL Analog signal that is similar nature of a digital signal, and can be 

recognized as a digital signal. 

ESC Electronic speed controller 
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7 APPENDIX A: DERIVATION OF QUADCOPTER MODEL 

The following is an excerpt from Mellinger et al, pp. 3-6. The following is a 

thorough derivation of the quadcopter dynamics and control scheme.  
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8 APPENDIX B: VERILOG 

8.1 FLIGHT_CONTROLLER.V 

`timescale 1ns / 1ps 

////////////////////////////////////////////////////////////////////////////////// 

// Flight Control Module Major FSM 

// 

////////////////////////////////////////////////////////////////////////////////// 

module flight_controller #(parameter CALIBRATE_ESC = 1'b0) 

( 

 input clock, 

 input reset, 

// output [7:0] led, 

// input fly,         

 //whether should go to fly mode 

// input idle,         

 //wheter should go back to IDLE 

 //JB IMU interface 

 output imu_start,         //start 

imu signal 

 output imu_reset,        

 //reset imu signal 

 input imu_new_data,        //new 

data available 

 input signed [15:0] roll, 

 input signed [15:0] pitch, 

 input signed [15:0] yaw, 

 input signed [15:0] roll_rate, 

 input signed [15:0] pitch_rate, 

 input signed [15:0] yaw_rate, 

// //Arithmetic Inputs 
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// input signed [15:0] desired_roll, 

// input signed [15:0] desired_pitch, 

// input signed [15:0] desired_yaw, 

// input signed [15:0] desired_roll_rate, 

// input signed [15:0] desired_pitch_rate, 

// input signed [15:0] desired_yaw_rate, 

 //SRF05 interface 

 output srf05_start,        //start 

height sensor 

 output srf05_reset,        //reset 

height sensor 

 input srf05_new_data,       //new data 

available 

 input [14:0] distance, 

 //Motor Controller interface 

 output motors_start, 

 output motors_idle, 

 output motors_reset, 

 output [7:0] throttle1, 

 output [7:0] throttle2, 

 output [7:0] throttle3, 

 output [7:0] throttle4 

 ); 

/////////////////////////////////////////////////////////////////////////////////////////////

////// 

// 1 Second Divider 

 wire reset_div1, en_sec; 

 divider_sec #(.CLK_FRQ_MHZ(50)) 

timer_sec(.clock(clock),.reset(reset_div1),.en_sec(en_sec)); 
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/////////////////////////////////////////////////////////////////////////////////////////////

////// 

/// Initialization Components  

  

 wire signed [15:0] init_roll, init_pitch, init_yaw, init_P, init_Q, init_R; 

 wire [14:0] init_distance; 

 reg init_reset, init_start; 

 wire init_finished; 

 wire init_reset_div1; 

 wire error_srf05, error_imu; 

 wire calibrate;  

 assign calibrate = CALIBRATE_ESC; 

 wire [31:0] init_throttles; 

 wire init_imu_start, init_imu_reset; 

 wire init_srf_start, init_srf_reset; 

 wire init_motors_start, init_motors_reset; 

  

 //Initialization Module 

 flight_control_initialize init( 

 .clock(clock),         

 //clock 

 .reset(init_reset),         

 //reset initialize 

 .start(init_start),         

 //start initialization 

 .done(init_finished),         

 //indicates initialization is done 

 .error_srf05(error_srf05), 

 .error_imu(error_imu), 

 .reset_1sec(init_reset_div1),       

 //reset 1 sec divider 
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 .en_sec(en_sec),         

 //divider signal from 1 second divider       

      

 .calibrate(calibrate),        

 //if high, calibrate motors 

 .throttles(init_throttles),      //throttle settings 

for motors 

 .motors_start(init_motors_start),       

 //start motor controller 

 .motors_reset(init_motors_reset),       

 //reset motor controller       

 .srf05_start(init_srf_start),       

 //start height sensor 

 .srf05_reset(init_srf_reset),       

 //reset height sensor 

 .srf05_new_data(srf05_new_data), 

 .distance(distance),       

 //height reading from sensor (in microseconds) 

 .offset_distance(init_distance),    //offset initial height 

reading (in microseconds)   

 .imu_start(init_imu_start),        

 //start imu signal 

 .imu_reset(init_imu_reset),        

 //reset imu signal 

 .imu_new_data,        //new data 

available 

 .cur_roll(roll),      //roll angle: sensor 

reading from imu 

 .cur_pitch(pitch),     //pitch angle: sensor reading 

from imu 

 .cur_yaw(yaw),       //yaw angle: 

sensor reading from imu 

 .cur_roll_rate(roll_rate),   //roll rate: sensor reading from imu 

 .cur_pitch_rate(pitch_rate),  //pitch rate: sensor reading from imu 
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 .cur_yaw_rate(yaw_rate),   //yaw rate: sensor reading from 

imu 

 .offset_roll(init_roll),   //roll angle: offset for control 

arithmetic 

 .offset_pitch(init_pitch),   //pitch angle: offset for control 

arithmetic 

 .offset_yaw(init_yaw),    //yaw angle: offset for control 

arithmetic 

 .offset_roll_rate(init_P),   //roll rate: offset for control arithmetic 

 .offset_pitch_rate(init_Q),   //pitch rate: offset for control 

arithmetic 

 .offset_yaw_rate(init_R)   //yaw rate: offset for control 

arithmetic 

    ); 

  

/////////////////////////////////////////////////////////////////////////////////////////////

////// 

/// FLY Modules 

  

  

  

/////////////////////////////////////////////////////////////////////////////////////////////

////// 

/// Major FSM states 

 localparam POWER_ON_RESET = 2'd0, 

    INITIALIZE = 2'd1, 

    IDLE = 2'd2, 

 //   FLY = 3'd3, 

    FAIL = 2'd3; 

 reg [1:0] state, next_state; 

  

 //Assign I/Os 
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 assign srf05_start   = (state == INITIALIZE) ? init_srf_start 

 : 1'b0;       //start height sensor 

 assign srf05_reset   = (state == INITIALIZE) ? init_srf_reset 

 : 1'b1;       //reset height sensor 

 assign imu_start   = (state == INITIALIZE) ?

 init_imu_start  : 1'b0;        

      //start imu signal 

 assign imu_reset    = (state == INITIALIZE) ?

 init_imu_reset  : 1'b1;        

      //reset imu signal 

 assign motors_start   = (state == INITIALIZE) ?

 init_motors_start : 1'b0; 

 assign motors_reset   = (state == INITIALIZE) ?

 init_motors_reset : 1'bz; 

 assign motors_idle   = 1'b0;  

 assign reset_div1   = (state == INITIALIZE) ?

 init_reset_div1 : 1'b0; 

 wire [32:0] throttles; 

 assign throttles = (state == INITIALIZE) ? init_throttles : 32'h0; 

 assign throttle1 = throttles[31:24]; 

 assign throttle2 = throttles[23:16]; 

 assign throttle3 = throttles[15:8]; 

 assign throttle4 = throttles[7:0]; 

/////////////////////////////////////////////////////////////////////////////////////////////

//////  

  

 always @(posedge clock) begin 

  if(reset) begin 

   state <= POWER_ON_RESET; 

   init_reset <= 1'b1; 

   init_start <= 1'b0; 

   //Flight Arithmetic states 
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  end 

  else begin 

   state <= next_state; 

   if(state == POWER_ON_RESET)begin 

     init_reset <= 1'b0; 

   end 

   else if(INITIALIZE)  begin 

     init_start <= 1'b1; 

     init_reset <= 1'b0; 

   end 

  end 

 end 

  

 always @(*) begin 

  case(state)  

   POWER_ON_RESET: next_state = INITIALIZE; 

   INITIALIZE:   next_state = (~init_finished) ? 

INITIALIZE :  

            

 ((error_srf05 | error_imu) ? FAIL : 

             

 IDLE); 

   IDLE:     next_state = IDLE; 

  // FLY: 

   FAIL:     next_state = FAIL; 

   default:    next_state = IDLE; 

  endcase 

 end 

 

endmodule 
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8.2 FLIGHT_CONTROL_INITIALIZE.V 

`timescale 1ns / 1ps 
////////////////////////////////////////////////////////////////////////////////// 

//  

// Module Name:    flight_control_initialize  

////////////////////////////////////////////////////////////////////////////////// 

module flight_control_initialize( 

 input clock,         

 //clock 

 input reset,         

 //reset initialize 

 input start,          //start 

initialization 

 output done,         

 //indicates initialization is done 

 output reg error_srf05, 

 output reg error_imu, 

 output reset_1sec,        //reset 1 sec 

divider 

 input en_sec,         

 //divider signal from 1 second divider       

      

 input calibrate,         //if 

high, calibrate motors 

 output reg [31:0] throttles,      //throttle 

settings for motors 

 output reg motors_start,        //start 

motor controller 

 output reg motors_reset,       

 //reset motor controller       

 output reg srf05_start,        //start 

height sensor 

 output reg srf05_reset,       

 //reset height sensor 
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 input srf05_new_data, 

 input [14:0] distance,       

 //height reading from sensor (in microseconds) 

 output reg [14:0] offset_distance,    //offset initial 

height reading (in microseconds)   

 output reg imu_start,        

 //start imu signal 

 output reg imu_reset,        

 //reset imu signal 

 input imu_new_data,        //new 

data available 

 input signed [15:0] cur_roll,     //roll angle: sensor 

reading from imu 

 input signed [15:0] cur_pitch,    //pitch angle: sensor 

reading from imu 

 input signed [15:0] cur_yaw,     //yaw angle: 

sensor reading from imu 

 input signed [15:0] cur_roll_rate,   //roll rate: sensor 

reading from imu 

 input signed [15:0] cur_pitch_rate,   //pitch rate: sensor 

reading from imu 

 input signed [15:0] cur_yaw_rate,   //yaw rate: sensor 

reading from imu 

 output reg signed [15:0] offset_roll,   //roll angle: offset for 

control arithmetic 

 output reg signed [15:0] offset_pitch,   //pitch angle: offset for 

control arithmetic 

 output reg signed [15:0] offset_yaw,    //yaw angle: offset 

for control arithmetic 

 output reg signed [15:0] offset_roll_rate,  //roll rate: offset for 

control arithmetic 

 output reg signed [15:0] offset_pitch_rate,  //pitch rate: offset for control 

arithmetic 

 output reg signed [15:0] offset_yaw_rate  //yaw rate: offset for 

control arithmetic 
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    ); 

   

  //Initialization Steps 

  // 1. Calibrate Motors (if enabled) 

  //  -Throttle High 

  //  -Throttle Idle 

  //   

  // 2. Start Range Sensor 

  //  -Check no error recorded 

  //  -Averaging Filter 

  //  -Record Initial Value 

  // 3. Start IMU Board 

  //  -Record Initial Values for 5 seconds 

  //  -Averaging Filter 

  //  -Record Offset Values 

  // Spin Rotors for Confirmation 

 reg [4:0] state, next_state; 

 localparam RESET = 4'd0; 

 localparam ERROR_SRF05 = 4'd1, ERROR_IMU = 4'd2; 

 localparam CALIBRATE = 4'd3, 

     CALIBRATE_COMPLETE = 4'd4; 

 localparam RANGE_SENSOR1 = 4'd5, 

     RANGE_SENSOR2 = 4'd6, 

     RANGE_SENSOR3 = 4'd7; 

 localparam IMU1 = 4'd8, 

    IMU2 = 4'd9, 

    IMU3 = 4'd10; 

 localparam END1 = 4'd11,  

     END2 = 4'd12; 
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 localparam DONE = 4'd13; 

  

  

 assign done = (state == DONE); 

  

 reg [3:0] timer_q, timer_d;  

  

  

 assign reset_1sec = (state != next_state); 

  

  

  

 //Ring Buffer for SRF05-Range Sensor 

 reg  [14:0] buffer_dist[31:0]; 

 reg  [19:0] sum_dist = 0; 

 reg  [14:0] avg_dist = 0; 

 reg [5:0] index = 0; 

  

 integer i; 

// initial begin 

//  for(i = 0; i < 32;i = i+1) begin 

//   buffer_dist[i] = 15'd0; 

//  end 

// end 

  

 //Ring Buffer for  

 ///AVeraging Filter for IMU outputs 

 //Ring Buffer 

 reg signed  [15:0] buffer_roll[63:0]; 
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 reg signed [15:0] buffer_pitch[63:0]; 

 reg signed [15:0] buffer_yaw[63:0]; 

 reg signed [15:0] buffer_roll_rate[63:0]; 

 reg signed [15:0] buffer_pitch_rate[63:0]; 

 reg signed [15:0] buffer_yaw_rate[63:0]; 

 reg signed [21:0] sum_roll = 0; 

 reg signed [21:0] sum_pitch = 0; 

 reg signed [21:0] sum_yaw = 0; 

 reg signed [21:0] sum_roll_rate = 0; 

 reg signed [21:0] sum_pitch_rate = 0; 

 reg signed [21:0] sum_yaw_rate = 0; 

 reg signed [15:0] avg_roll; 

 reg signed [15:0] avg_pitch; 

 reg signed [15:0] avg_yaw; 

 reg signed [15:0] avg_roll_rate; 

 reg signed [15:0] avg_pitch_rate; 

 reg signed [15:0] avg_yaw_rate; 

 integer i2; 

// initial begin 

//  for(i2 = 0; i2 < 64;i2 = i2+1) begin 

//   buffer_roll[i2] = 16'sd0; 

//   buffer_pitch[i2] = 16'sd0; 

//   buffer_yaw[i2] = 16'sd0; 

//   buffer_roll_rate[i2] = 16'sd0; 

//   buffer_pitch_rate[i2] = 16'sd0; 

//   buffer_yaw_rate[i2] = 16'sd0; 

//  end 

// end 
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//////////////////////////////////////////////////////////////////////////////////////////// 

// State Machine  

 always @(posedge clock) begin 

  if(reset) begin 

   state     <= 4'd0; 

   error_srf05   <= 1'b0; 

   error_imu   <= 1'b0; 

   motors_start   <= 1'b0; 

   motors_reset   <= 1'b1; 

   throttles    <= 32'hFF_FF_FF_FF; 

   srf05_start   <= 1'b0; 

   srf05_reset   <= 1'b1; 

   offset_distance <= {15{1'b0}}; 

   imu_start   <= 1'b0; 

   imu_reset   <= 1'b1;  

   timer_q    <= 3'd0; 

   sum_dist    <= 20'd0; 

   avg_dist    <= 15'd0; 

   index     <= 6'd0; 

   sum_roll    <= 22'sd0; 

   sum_pitch    <= 22'sd0; 

   sum_yaw     <= 22'sd0; 

   sum_roll_rate   <= 22'sd0; 

   sum_pitch_rate  <= 22'sd0; 

   sum_yaw_rate  <= 22'sd0; 

   avg_roll     <= 16'sd0; 

   avg_pitch    <= 16'sd0; 

   avg_yaw     <= 16'sd0;    
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   avg_roll_rate   <= 16'sd0; 

   avg_pitch_rate   <= 16'sd0; 

   avg_yaw_rate   <= 16'sd0; 

  end 

  else begin 

   state <= next_state; 

   timer_q <= (state != next_state) ? 4'd0 : timer_d; 

    

   //Case Specific Shift Registers 

   case(state) 

     RESET:begin 

      state     <= 4'd0; 

      error_srf05   <= 1'b0; 

      error_imu   <= 1'b0; 

      motors_start   <= 1'b0; 

      motors_reset   <= 1'b1; 

      throttles    <=

 32'hFF_FF_FF_FF; 

      srf05_start   <= 1'b0; 

      srf05_reset   <= 1'b1; 

      offset_distance <= {15{1'b0}}; 

      imu_start   <= 1'b0; 

      imu_reset   <= 1'b1;  

      timer_q    <= 3'd0; 

     end 

     CALIBRATE: begin 

        motors_start   <= 

1'b1; 

        motors_reset   <= 

1'b0; 
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        throttles    <=

 (timer_d < 2) ? 32'hFF_FF_FF_FF : 32'd0;  //High then low throttle to 

calibrate 

     end 

     CALIBRATE_COMPLETE: begin 

        motors_start   <= 

1'b0; 

        motors_reset  <= 

(timer_d < 3) ? 1'd0 : 1'd1; 

        throttles   <= 

(timer_d < 3) ? 32'h01_02_03_04 : 32'd0; //Spin Rotors to indicate calibration 

complete 

     end 

     RANGE_SENSOR1: begin 

        srf05_reset   <= 

1'b0; 

        srf05_start   <= 

1'b1;   //start range sensor 

     end 

     RANGE_SENSOR2: begin 

      if(srf05_new_data) begin 

       sum_dist     <= 

sum_dist + (distance) - (buffer_dist[index]); 

       buffer_dist[index]  <= distance; 

       index      <= 

(index == 6'd31) ? 5'd0 : index + 1'b1; //overflow at 32 

      end 

      avg_dist      <= 

sum_dist>>5; 

     end 

     RANGE_SENSOR3: begin    

       offset_distance   <= 

avg_dist; //set initial offset for height 
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      // srf05_reset    <= 1'b1; 

  //shut off sensor 

       srf05_start    <= 

1'b0; 

     end 

     IMU1: begin 

       imu_reset    <= 

1'b0; 

       imu_start    <= 

1'b1;  

     end 

     IMU2: begin 

      if(imu_new_data) begin 

       sum_roll <= sum_roll + (cur_roll) - 

(buffer_roll[index]); 

       buffer_roll[index] <= cur_roll; 

       sum_pitch <= sum_pitch + 

(cur_pitch) - (buffer_pitch[index]); 

       buffer_pitch[index] <= cur_pitch; 

       sum_yaw <= sum_yaw + (cur_yaw) - 

(buffer_yaw[index]); 

       buffer_yaw[index] <= cur_yaw; 

       sum_roll_rate <= sum_roll_rate + 

(cur_roll_rate) - (buffer_roll_rate[index]); 

       buffer_roll_rate[index] <= 

cur_roll_rate; 

       sum_pitch_rate <= sum_pitch_rate + 

(cur_pitch_rate) - (buffer_pitch_rate[index]); 

       buffer_pitch_rate[index] <= 

cur_pitch_rate; 

       sum_yaw_rate <= sum_yaw_rate + 

(cur_yaw_rate) - (buffer_yaw_rate[index]); 
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       buffer_yaw_rate[index] <= 

cur_yaw_rate; 

       index <= index + 1'b1; 

      end 

      avg_roll <= sum_roll/64; 

      avg_pitch <= sum_pitch/64; 

      avg_yaw <= sum_yaw/64; 

      avg_roll_rate <= sum_roll_rate/64; 

      avg_pitch_rate <= sum_pitch_rate/64; 

      avg_yaw_rate <= sum_yaw_rate/64; 

     end 

     IMU3: begin 

       offset_roll     <= 

avg_roll; //set initial offsets for height 

       offset_pitch     <= 

avg_pitch; //set initial offset for height 

       offset_yaw     

 <= avg_yaw; //set initial offset for height 

       offset_roll_rate    <= 

avg_roll_rate; //set initial offset for height 

       offset_pitch_rate   <= 

avg_pitch_rate; //set initial offset for height 

       offset_yaw_rate    <= 

avg_yaw_rate; //set initial offset for height 

       //Shut off Sensor 

       srf05_start    

 <= 1'b0; 

      

     end 

     //Spin Rotors to Finish Intialization 

     END1: begin 

      motors_start   <= 1'b1; 
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      motors_reset   <= 1'b0; 

      throttles    <= 

32'h01_02_03_04; 

     end 

     END2: begin 

      motors_start   <= 1'b0; 

      motors_reset  <= (timer_d < 3) 

? 1'd0 : 1'd1; 

      throttles   <= (timer_d < 3) 

? 32'h01_02_03_04 : 32'd0; 

     end 

     ERROR_SRF05:  error_srf05 <= 1'b1; 

     ERROR_IMU:  error_imu <= 1'b1; 

   endcase 

  end 

 end 

  

 always @(*)  begin 

  timer_d = timer_q; 

   

  //Case Specific Latches 

  case(state) 

   RESET:    next_state = (~start) ? RESET : 

(calibrate) ? CALIBRATE : RANGE_SENSOR1; 

   CALIBRATE:  begin 

        timer_d = (en_sec) ? timer_q + 

1'b1 : timer_q; 

        next_state = (timer_q == 4) ? 

CALIBRATE_COMPLETE : CALIBRATE;  //elapsed time = 4 seconds 

   end 

   CALIBRATE_COMPLETE:  begin 
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        timer_d = (en_sec) ? timer_q + 

1'b1 : timer_q; 

        next_state = (timer_q == 3) ? 

RANGE_SENSOR1: CALIBRATE_COMPLETE;   //elapsed time = 3 seconds 

   end 

   //SRF05 Initialize Statements 

   RANGE_SENSOR1: next_state = RANGE_SENSOR2; 

   RANGE_SENSOR2: begin 

    timer_d = (en_sec) ? timer_q + 1'b1 : timer_q; 

    next_state = (timer_q == 3) ? RANGE_SENSOR3: 

RANGE_SENSOR2;  //elapsed time = 3 seconds 

   end 

   RANGE_SENSOR3: next_state = (avg_dist < 100) ? 

ERROR_SRF05 : IMU1; 

   //IMU Initialize Statements 

   IMU1:    next_state = IMU2; 

   IMU2:  begin 

    timer_d = (en_sec) ? timer_q + 1'b1 : timer_q; 

    next_state = (timer_q == 3) ? IMU3: IMU2; 

 //elapsed time = 3 seconds 

   end 

   //IF Roll is especially erroneous, report an error 

   IMU3:   next_state = ((avg_roll > 15'sd4500 && 

avg_roll < 15'sd13500) || (avg_roll < -15'sd4500 && avg_roll > -15'sd13500)) ? 

            

 ERROR_IMU : END1; 

   //End spin props to signal success 

   END1: next_state = END2; 

   END2: begin 

    timer_d = (en_sec) ? timer_q + 1'b1 : timer_q; 

    next_state = (timer_q == 3) ? DONE: END2;   //elapsed 

time = 3 seconds 
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   end 

   ERROR_SRF05: next_state = DONE; 

   ERROR_IMU: next_state = DONE; 

   DONE:  next_state = DONE; 

   default: next_state = RESET; 

  endcase 

 end 

  

  

endmodule 

 

  



 Gregory Kravit APPENDIX B: Verilog 

49 

 

8.3 MOJO_TOP.V 

`timescale 1ns / 1ps 

////////////////////////////////////////////////////////////////////////////////// 
//  

// Module Name:    flight_control_initialize  
////////////////////////////////////////////////////////////////////////////////// 
module flight_control_initialize( 

 input clock,         
 //clock 

 input reset,         
 //reset initialize 
 input start,          //start 

initialization 
 output done,         

 //indicates initialization is done 
 output reg error_srf05, 
 output reg error_imu, 

 output reset_1sec,        //reset 1 sec 
divider 

 input en_sec,         
 //divider signal from 1 second divider       
      

 input calibrate,         //if 
high, calibrate motors 

 output reg [31:0] throttles,      //throttle 
settings for motors 

 output reg motors_start,        //start 
motor controller 
 output reg motors_reset,       

 //reset motor controller       
 output reg srf05_start,        //start 

height sensor 
 output reg srf05_reset,       
 //reset height sensor 

 input srf05_new_data, 
 input [14:0] distance,       

 //height reading from sensor (in microseconds) 
 output reg [14:0] offset_distance,    //offset initial 
height reading (in microseconds)   

 output reg imu_start,        
 //start imu signal 

 output reg imu_reset,        
 //reset imu signal 
 input imu_new_data,        //new 

data available 
 input signed [15:0] cur_roll,     //roll angle: sensor 

reading from imu 
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 input signed [15:0] cur_pitch,    //pitch angle: sensor 
reading from imu 

 input signed [15:0] cur_yaw,     //yaw angle: 
sensor reading from imu 

 input signed [15:0] cur_roll_rate,   //roll rate: sensor 
reading from imu 
 input signed [15:0] cur_pitch_rate,   //pitch rate: sensor 

reading from imu 
 input signed [15:0] cur_yaw_rate,   //yaw rate: sensor 

reading from imu 
 output reg signed [15:0] offset_roll,   //roll angle: offset for 
control arithmetic 

 output reg signed [15:0] offset_pitch,   //pitch angle: offset for 
control arithmetic 

 output reg signed [15:0] offset_yaw,    //yaw angle: offset 
for control arithmetic 
 output reg signed [15:0] offset_roll_rate,  //roll rate: offset for 

control arithmetic 
 output reg signed [15:0] offset_pitch_rate,  //pitch rate: offset for control 

arithmetic 
 output reg signed [15:0] offset_yaw_rate  //yaw rate: offset for 

control arithmetic 
    ); 
   

  //Initialization Steps 
  // 1. Calibrate Motors (if enabled) 

  //  -Throttle High 
  //  -Throttle Idle 
  //   

  // 2. Start Range Sensor 
  //  -Check no error recorded 

  //  -Averaging Filter 
  //  -Record Initial Value 
  // 3. Start IMU Board 

  //  -Record Initial Values for 5 seconds 
  //  -Averaging Filter 

  //  -Record Offset Values 
  // Spin Rotors for Confirmation 
 reg [4:0] state, next_state; 

 localparam RESET = 4'd0; 
 localparam ERROR_SRF05 = 4'd1, ERROR_IMU = 4'd2; 

 localparam CALIBRATE = 4'd3, 
     CALIBRATE_COMPLETE = 4'd4; 
 localparam RANGE_SENSOR1 = 4'd5, 

     RANGE_SENSOR2 = 4'd6, 
     RANGE_SENSOR3 = 4'd7; 

 localparam IMU1 = 4'd8, 
    IMU2 = 4'd9, 
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    IMU3 = 4'd10; 
 localparam END1 = 4'd11,  

     END2 = 4'd12; 
 localparam DONE = 4'd13; 

  
  
 assign done = (state == DONE); 

  
 reg [3:0] timer_q, timer_d;  

  
  
 assign reset_1sec = (state != next_state); 

  
  

  
 //Ring Buffer for SRF05-Range Sensor 
 reg  [14:0] buffer_dist[31:0]; 

 reg  [19:0] sum_dist = 0; 
 reg  [14:0] avg_dist = 0; 

 reg [5:0] index = 0; 
  

 integer i; 
// initial begin 
//  for(i = 0; i < 32;i = i+1) begin 

//   buffer_dist[i] = 15'd0; 
//  end 

// end 
  
 //Ring Buffer for  

 ///AVeraging Filter for IMU outputs 
 //Ring Buffer 

 reg signed  [15:0] buffer_roll[63:0]; 
 reg signed [15:0] buffer_pitch[63:0]; 
 reg signed [15:0] buffer_yaw[63:0]; 

 reg signed [15:0] buffer_roll_rate[63:0]; 
 reg signed [15:0] buffer_pitch_rate[63:0]; 

 reg signed [15:0] buffer_yaw_rate[63:0]; 
 reg signed [21:0] sum_roll = 0; 
 reg signed [21:0] sum_pitch = 0; 

 reg signed [21:0] sum_yaw = 0; 
 reg signed [21:0] sum_roll_rate = 0; 

 reg signed [21:0] sum_pitch_rate = 0; 
 reg signed [21:0] sum_yaw_rate = 0; 
 reg signed [15:0] avg_roll; 

 reg signed [15:0] avg_pitch; 
 reg signed [15:0] avg_yaw; 

 reg signed [15:0] avg_roll_rate; 
 reg signed [15:0] avg_pitch_rate; 
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 reg signed [15:0] avg_yaw_rate; 
 integer i2; 

// initial begin 
//  for(i2 = 0; i2 < 64;i2 = i2+1) begin 

//   buffer_roll[i2] = 16'sd0; 
//   buffer_pitch[i2] = 16'sd0; 
//   buffer_yaw[i2] = 16'sd0; 

//   buffer_roll_rate[i2] = 16'sd0; 
//   buffer_pitch_rate[i2] = 16'sd0; 

//   buffer_yaw_rate[i2] = 16'sd0; 
//  end 
// end 

  
  

//////////////////////////////////////////////////////////////////////////////////////////// 
// State Machine  
 always @(posedge clock) begin 

  if(reset) begin 
   state     <= 4'd0; 

   error_srf05   <= 1'b0; 
   error_imu   <= 1'b0; 

   motors_start   <= 1'b0; 
   motors_reset   <= 1'b1; 
   throttles    <= 32'hFF_FF_FF_FF; 

   srf05_start   <= 1'b0; 
   srf05_reset   <= 1'b1; 

   offset_distance <= {15{1'b0}}; 
   imu_start   <= 1'b0; 
   imu_reset   <= 1'b1;  

   timer_q    <= 3'd0; 
   sum_dist    <= 20'd0; 

   avg_dist    <= 15'd0; 
   index     <= 6'd0; 
   sum_roll    <= 22'sd0; 

   sum_pitch    <= 22'sd0; 
   sum_yaw     <= 22'sd0; 

   sum_roll_rate   <= 22'sd0; 
   sum_pitch_rate  <= 22'sd0; 
   sum_yaw_rate  <= 22'sd0; 

   avg_roll     <= 16'sd0; 
   avg_pitch    <= 16'sd0; 

   avg_yaw     <= 16'sd0;    
   avg_roll_rate   <= 16'sd0; 
   avg_pitch_rate   <= 16'sd0; 

   avg_yaw_rate   <= 16'sd0; 
  end 

  else begin 
   state <= next_state; 
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   timer_q <= (state != next_state) ? 4'd0 : timer_d; 
    

   //Case Specific Shift Registers 
   case(state) 

     RESET:begin 
      state     <= 4'd0; 
      error_srf05   <= 1'b0; 

      error_imu   <= 1'b0; 
      motors_start   <= 1'b0; 

      motors_reset   <= 1'b1; 
      throttles    <=
 32'hFF_FF_FF_FF; 

      srf05_start   <= 1'b0; 
      srf05_reset   <= 1'b1; 

      offset_distance <= {15{1'b0}}; 
      imu_start   <= 1'b0; 
      imu_reset   <= 1'b1;  

      timer_q    <= 3'd0; 
     end 

     CALIBRATE: begin 
        motors_start   <= 

1'b1; 
        motors_reset   <= 
1'b0; 

        throttles    <=
 (timer_d < 2) ? 32'hFF_FF_FF_FF : 32'd0;  //High then low throttle to 

calibrate 
     end 
     CALIBRATE_COMPLETE: begin 

        motors_start   <= 
1'b0; 

        motors_reset  <= 
(timer_d < 3) ? 1'd0 : 1'd1; 
        throttles   <= 

(timer_d < 3) ? 32'h01_02_03_04 : 32'd0; //Spin Rotors to indicate calibration 
complete 

     end 
     RANGE_SENSOR1: begin 
        srf05_reset   <= 

1'b0; 
        srf05_start   <= 

1'b1;   //start range sensor 
     end 
     RANGE_SENSOR2: begin 

      if(srf05_new_data) begin 
       sum_dist     <= 

sum_dist + (distance) - (buffer_dist[index]); 
       buffer_dist[index]  <= distance; 
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       index      <= 
(index == 6'd31) ? 5'd0 : index + 1'b1; //overflow at 32 

      end 
      avg_dist      <= 

sum_dist>>5; 
     end 
     RANGE_SENSOR3: begin    

       offset_distance   <= 
avg_dist; //set initial offset for height 

      // srf05_reset    <= 1'b1; 
  //shut off sensor 
       srf05_start    <= 

1'b0; 
     end 

     IMU1: begin 
       imu_reset    <= 
1'b0; 

       imu_start    <= 
1'b1;  

     end 
     IMU2: begin 

      if(imu_new_data) begin 
       sum_roll <= sum_roll + (cur_roll) - 
(buffer_roll[index]); 

       buffer_roll[index] <= cur_roll; 
       sum_pitch <= sum_pitch + 

(cur_pitch) - (buffer_pitch[index]); 
       buffer_pitch[index] <= cur_pitch; 
       sum_yaw <= sum_yaw + (cur_yaw) - 

(buffer_yaw[index]); 
       buffer_yaw[index] <= cur_yaw; 

       sum_roll_rate <= sum_roll_rate + 
(cur_roll_rate) - (buffer_roll_rate[index]); 
       buffer_roll_rate[index] <= 

cur_roll_rate; 
       sum_pitch_rate <= sum_pitch_rate + 

(cur_pitch_rate) - (buffer_pitch_rate[index]); 
       buffer_pitch_rate[index] <= 
cur_pitch_rate; 

       sum_yaw_rate <= sum_yaw_rate + 
(cur_yaw_rate) - (buffer_yaw_rate[index]); 

       buffer_yaw_rate[index] <= 
cur_yaw_rate; 
       index <= index + 1'b1; 

      end 
      avg_roll <= sum_roll/64; 

      avg_pitch <= sum_pitch/64; 
      avg_yaw <= sum_yaw/64; 
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      avg_roll_rate <= sum_roll_rate/64; 
      avg_pitch_rate <= sum_pitch_rate/64; 

      avg_yaw_rate <= sum_yaw_rate/64; 
     end 

     IMU3: begin 
       offset_roll     <= 
avg_roll; //set initial offsets for height 

       offset_pitch     <= 
avg_pitch; //set initial offset for height 

       offset_yaw     
 <= avg_yaw; //set initial offset for height 
       offset_roll_rate    <= 

avg_roll_rate; //set initial offset for height 
       offset_pitch_rate   <= 

avg_pitch_rate; //set initial offset for height 
       offset_yaw_rate    <= 
avg_yaw_rate; //set initial offset for height 

       //Shut off Sensor 
       srf05_start    

 <= 1'b0; 
      

     end 
     //Spin Rotors to Finish Intialization 
     END1: begin 

      motors_start   <= 1'b1; 
      motors_reset   <= 1'b0; 

      throttles    <= 
32'h01_02_03_04; 
     end 

     END2: begin 
      motors_start   <= 1'b0; 

      motors_reset  <= (timer_d < 3) 
? 1'd0 : 1'd1; 
      throttles   <= (timer_d < 3) 

? 32'h01_02_03_04 : 32'd0; 
     end 

     ERROR_SRF05:  error_srf05 <= 1'b1; 
     ERROR_IMU:  error_imu <= 1'b1; 
   endcase 

  end 
 end 

  
 always @(*)  begin 
  timer_d = timer_q; 

   
  //Case Specific Latches 

  case(state) 
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   RESET:    next_state = (~start) ? RESET : 
(calibrate) ? CALIBRATE : RANGE_SENSOR1; 

   CALIBRATE:  begin 
        timer_d = (en_sec) ? timer_q + 

1'b1 : timer_q; 
        next_state = (timer_q == 4) ? 
CALIBRATE_COMPLETE : CALIBRATE;  //elapsed time = 4 seconds 

   end 
   CALIBRATE_COMPLETE:  begin 

        timer_d = (en_sec) ? timer_q + 
1'b1 : timer_q; 
        next_state = (timer_q == 3) ? 

RANGE_SENSOR1: CALIBRATE_COMPLETE;   //elapsed time = 3 seconds 
   end 

   //SRF05 Initialize Statements 
   RANGE_SENSOR1: next_state = RANGE_SENSOR2; 
   RANGE_SENSOR2: begin 

    timer_d = (en_sec) ? timer_q + 1'b1 : timer_q; 
    next_state = (timer_q == 3) ? RANGE_SENSOR3: 

RANGE_SENSOR2;  //elapsed time = 3 seconds 
   end 

   RANGE_SENSOR3: next_state = (avg_dist < 100) ? 
ERROR_SRF05 : IMU1; 
   //IMU Initialize Statements 

   IMU1:    next_state = IMU2; 
   IMU2:  begin 

    timer_d = (en_sec) ? timer_q + 1'b1 : timer_q; 
    next_state = (timer_q == 3) ? IMU3: IMU2; 
 //elapsed time = 3 seconds 

   end 
   //IF Roll is especially erroneous, report an error 

   IMU3:   next_state = ((avg_roll > 15'sd4500 && 
avg_roll < 15'sd13500) || (avg_roll < -15'sd4500 && avg_roll > -15'sd13500)) ? 
            

 ERROR_IMU : END1; 
   //End spin props to signal success 

   END1: next_state = END2; 
   END2: begin 
    timer_d = (en_sec) ? timer_q + 1'b1 : timer_q; 

    next_state = (timer_q == 3) ? DONE: END2;   //elapsed 
time = 3 seconds 

   end 
   ERROR_SRF05: next_state = DONE; 
   ERROR_IMU: next_state = DONE; 

   DONE:  next_state = DONE; 
   default: next_state = RESET; 

  endcase 
 end 
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endmodule 
 

8.4 MOJO.UCF 

#Created by Constraints Editor (xc6slx9-tqg144-3) - 2012/11/05 
NET "clk" TNM_NET = clk; 

TIMESPEC TS_clk = PERIOD "clk" 50 MHz HIGH 50%; 
 

NET "clk" LOC = P56 | IOSTANDARD = LVTTL; 
NET "rst_n" LOC = P38 | IOSTANDARD = LVTTL; 
 

NET "cclk" LOC = P70 | IOSTANDARD = LVTTL; 
 

NET "led<0>" LOC = P134 | IOSTANDARD = LVTTL; 
NET "led<1>" LOC = P133 | IOSTANDARD = LVTTL; 
NET "led<2>" LOC = P132 | IOSTANDARD = LVTTL; 

NET "led<3>" LOC = P131 | IOSTANDARD = LVTTL; 
NET "led<4>" LOC = P127 | IOSTANDARD = LVTTL; 

NET "led<5>" LOC = P126 | IOSTANDARD = LVTTL; 
NET "led<6>" LOC = P124 | IOSTANDARD = LVTTL; 
NET "led<7>" LOC = P123 | IOSTANDARD = LVTTL; 

 
NET "spi_mosi" LOC = P44 | IOSTANDARD = LVTTL; 

NET "spi_miso" LOC = P45 | IOSTANDARD = LVTTL; 
NET "spi_ss" LOC = P48 | IOSTANDARD = LVTTL; 

NET "spi_sck" LOC = P43 | IOSTANDARD = LVTTL; 
NET "avr_flags<0>" LOC = P46 | IOSTANDARD = LVTTL; 
NET "avr_flags<1>" LOC = P61 | IOSTANDARD = LVTTL; 

NET "avr_flags<2>" LOC = P62 | IOSTANDARD = LVTTL; 
NET "avr_flags<3>" LOC = P65 | IOSTANDARD = LVTTL; 

 
NET "avr_tx" LOC = P55 | IOSTANDARD = LVTTL; 
NET "avr_rx" LOC = P59 | IOSTANDARD = LVTTL; 

NET "avr_rx_busy" LOC = P39 | IOSTANDARD = LVTTL; 
 

 
 
# JB IMU  

 
NET "imu[0]" LOC = P92; 

NET "imu[1]" LOC = P94; 
NET "imu[2]" LOC = P97; 
NET "imu[3]" LOC = P99; 

 
# SRF05 
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NET "srf05[0]" LOC = P8 | IOSTANDARD = LVTTL; 
NET "srf05[1]" LOC = P7 | IOSTANDARD = LVTTL; 

 
# Motors 

 
NET "motor<0>" LOC = P79 | IOSTANDARD = LVTTL; 
NET "motor<1>" LOC = P57 | IOSTANDARD = LVTTL; 

NET "motor<2>" LOC = P88 | IOSTANDARD = LVTTL; 
NET "motor<3>" LOC = P33 | IOSTANDARD = LVTTL; 

 
 

8.5 MOTOR_CONTROLLER.V 

`timescale 1ns / 1ps 
////////////////////////////////////////////////////////////////////////////////// 

// Motor Control Module 
// 
// Acts as a black box to flight control module 

//   -- Two States On or Off 
//   -- Flight Control Module Must Tell it To Stop, or go IDLE 

////////////////////////////////////////////////////////////////////////////////// 
module motor_controller( 
 input clock, 

 input start, 
 input idle, 

 input reset, 
 input [7:0] throttle1, 

 input [7:0] throttle2, 
 input [7:0] throttle3, 
 input [7:0] throttle4, 

 output [3:0] motor_signals 
 ); 

 
 
/////////////////////////////////////////////////////////////////////////////////////////////

//////// 
// Motor Controller State Machine 

 localparam IDLE = 1'b0; 
 localparam ON = 1'b1; 
 reg state, next_state; 

  
 wire pwm_reset; 

 reg pwm_on_q, pwm_on_d; 
 assign pwm_reset = ~pwm_on_q; 
  

 always @(posedge clock) begin 
  if(reset) begin 
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   state <= IDLE; 
   pwm_on_q <= 1'b0; 

  end 
  else  begin 

   state <= next_state;  
   pwm_on_q <= pwm_on_d; 
  end 

 end 
 always @(*) begin 

  case(state)  
   IDLE: begin 
       next_state = (start) ? ON : IDLE; 

       pwm_on_d = 1'b0; 
   end 

   ON: begin 
       next_state = ON; 
       pwm_on_d = 1'b1; 

   end 
  endcase 

 end 
 

/////////////////////////////////////////////////////////////////////////////////////////////
////////////// 
//  Throttle 2 PWM Lookup Tables 

// 
  

 wire [11:0] pwm_signal[3:0]; 
 wire [47:0] compare; 
  

 throttle2pwm throttleLUT1( 
    .clock(clock), 

  .reset(pwm_reset), 
  .idle(idle), 
    .throttle_setting(throttle1), 

    .pwm_signal_time(compare[47:36]) 
    ); 

   
  throttle2pwm throttleLUT2( 
    .clock(clock), 

  .reset(pwm_reset), 
  .idle(idle), 

    .throttle_setting(throttle2), 
    .pwm_signal_time(compare[35:24]) 
    ); 

   
  throttle2pwm throttleLUT3( 

    .clock(clock), 
  .reset(pwm_reset), 
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  .idle(idle), 
    .throttle_setting(throttle3), 

    .pwm_signal_time(compare[23:12]) 
    ); 

   
  throttle2pwm throttleLUT4( 
    .clock(clock), 

  .reset(pwm_reset), 
  .idle(idle), 

    .throttle_setting(throttle4), 
    .pwm_signal_time(compare[11:0]) 
    ); 

  
  

  
/////////////////////////////////////////////////////////////////////////////////////////////
////////// 

// PWM Modules 
/////////////////////////////////////////////////////////////////////////////////////////////

//////////  
  

 wire pwm1,pwm2,pwm3,pwm4; 
 assign motor_signals = {pwm1,pwm2,pwm3,pwm4};  
 //output of motor controller 

  
 pwm motor1 //400 hz = 2500 us period 

 ( 
    .clock(clock),  //clock 50 Mhz 
    .reset(pwm_reset),    //reset wire 

    .compare(compare[47:36]), //compare value in microseconds 
    .pwm(pwm1)  //pwm signal out 

    ); 
   
  pwm motor2 //400 hz = 2500 us period 

 ( 
    .clock(clock),  //clock 50 Mhz 

    .reset(pwm_reset),    //reset wire 
    .compare(compare[35:24]), //compare value in microseconds 
    .pwm(pwm2)  //pwm signal out 

    ); 
   

  pwm motor3 //400 hz = 2500 us period 
 ( 
    .clock(clock),  //clock 50 Mhz 

    .reset(pwm_reset),    //reset wire 
    .compare(compare[23:12]), //compare value in microseconds 

    .pwm(pwm3)  //pwm signal out 
    ); 



 Gregory Kravit APPENDIX B: Verilog 

61 

 

   
  pwm motor4 //400 hz = 2500 us period 

 ( 
    .clock(clock),  //clock 50 Mhz 

    .reset(pwm_reset),    //reset wire 
    .compare(compare[11:0]), //compare value in microseconds 
    .pwm(pwm4)  //pwm signal out 

    );  
 

endmodule 

8.6 PWM.V 

`timescale 1ns / 1ps 

////////////////////////////////////////////////////////////////////////////////// 

// Engineer:  

//  

// Create Date:    17:06:44 11/18/2014  

// Design Name: Digital Controller for VTOL UAV 

// Module Name:    pwm  

// Project Name:  

// Target Devices: Mojov V3 Spartan 6 xclx9 

// Tool versions:  

// Description: Sends a PWM pulse up to the compare value on a 400 hz refresh 

// 

// Dependencies:  

// 

// Revision:  

// Revision 0.01 - File Created 

// Additional Comments:  

//    Based off code examples from 

embbededmicro.com/tutorials/mojo/pulse-width-modulation 

//  

////////////////////////////////////////////////////////////////////////////////// 

module pwm #(parameter CTR_LEN = 12, 
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     parameter REFRESH_RATE_US = 12'd2499) //400 hz = 

2500 us period 

 ( 

    input clock,  //clock 50 Mhz 

    input reset,    //reset wire 

    input [CTR_LEN-1:0] compare, //compare value in microseconds 

    output pwm  //pwm signal out 

    ); 

   

 wire one_us; 

 divider_1us one_us_div(.clock(clock),.reset(reset),.one_us_enable(one_us)); 

   

 reg pwm_d, pwm_q;      //pulse out 

registers 

 reg [CTR_LEN-1:0] ctr_d, ctr_q;  //counters for pulse 

  

 assign pwm = pwm_q & ~reset; 

  

   

   

 always @(*) begin 

  ctr_d = (one_us) ? ctr_q + 1'b1 : ctr_q;  //if one ms passed, 

increment q register 

  pwm_d = (compare > ctr_q) ? 1'b1 : 1'b0;  //set pulse high  

 end 

  

 always @(posedge clock) begin 

  if(reset) ctr_q <= 1'b0; 

  else ctr_q <= (ctr_d == REFRESH_RATE_US) ? 1'b0 :  ctr_d;  

  //if exceed refresh rate, return to 0. Otherwise except register value. 
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  //shift register value 

  pwm_q <= pwm_d; 

 end 

endmodule 

8.7 THROTTLE2PWM.V 

`timescale 1ns / 1ps 

////////////////////////////////////////////////////////////////////////////////// 

// Company:  

// Engineer:  

//  

// Create Date:    18:01:43 11/18/2014  

// Design Name:  

// Module Name:    throttle2pwm  

// Project Name:  

// Target Devices:  

// Tool versions:  

// Description:  

// 

// Dependencies:  

// 

// Revision:  

// Revision 0.01 - File Created 

// Additional Comments:  

// 

////////////////////////////////////////////////////////////////////////////////// 

module throttle2pwm #(parameter PWM_LEN = 12) 

 ( 
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    input clock, 

  input reset, 

  input idle, 

    input [7:0] throttle_setting, 

    output [11:0] pwm_signal_time 

    ); 

   

  reg [11:0] signal_time; 

  assign pwm_signal_time = (idle || reset) ? 12'd900 : signal_time; 

   

  always @(posedge clock) begin 

  case(throttle_setting) 

   8'd0:    signal_time =   12'd1064; 

   8'd1:    signal_time =   12'd1067; 

   8'd2:    signal_time =   12'd1070; 

   8'd3:    signal_time =   12'd1073; 

   8'd4:    signal_time =   12'd1077; 

   8'd5:    signal_time =   12'd1080; 

   8'd6:    signal_time =   12'd1083; 

   8'd7:    signal_time =   12'd1086; 

   8'd8:    signal_time =   12'd1089; 

   8'd9:    signal_time =   12'd1092; 

   8'd10:   signal_time =   12'd1095; 

   8'd11:   signal_time =   12'd1099; 

   8'd12:   signal_time =   12'd1102; 

   8'd13:   signal_time =   12'd1105; 

   8'd14:   signal_time =   12'd1108; 

   8'd15:   signal_time =   12'd1111; 

   8'd16:   signal_time =   12'd1114; 
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   8'd17:   signal_time =   12'd1117; 

   8'd18:   signal_time =   12'd1120; 

   8'd19:   signal_time =   12'd1124; 

   8'd20:   signal_time =   12'd1127; 

   8'd21:   signal_time =   12'd1130; 

   8'd22:   signal_time =   12'd1133; 

   8'd23:   signal_time =   12'd1136; 

   8'd24:   signal_time =   12'd1139; 

   8'd25:   signal_time =   12'd1142; 

   8'd26:   signal_time =   12'd1146; 

   8'd27:   signal_time =   12'd1149; 

   8'd28:   signal_time =   12'd1152; 

   8'd29:   signal_time =   12'd1155; 

   8'd30:   signal_time =   12'd1158; 

   8'd31:   signal_time =   12'd1161; 

   8'd32:   signal_time =   12'd1164; 

   8'd33:   signal_time =   12'd1168; 

   8'd34:   signal_time =   12'd1171; 

   8'd35:   signal_time =   12'd1174; 

   8'd36:   signal_time =   12'd1177; 

   8'd37:   signal_time =   12'd1180; 

   8'd38:   signal_time =   12'd1183; 

   8'd39:   signal_time =   12'd1186; 

   8'd40:   signal_time =   12'd1189; 

   8'd41:   signal_time =   12'd1193; 

   8'd42:   signal_time =   12'd1196; 

   8'd43:   signal_time =   12'd1199; 

   8'd44:   signal_time =   12'd1202; 

   8'd45:   signal_time =   12'd1205; 
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   8'd46:   signal_time =   12'd1208; 

   8'd47:   signal_time =   12'd1211; 

   8'd48:   signal_time =   12'd1215; 

   8'd49:   signal_time =   12'd1218; 

   8'd50:   signal_time =   12'd1221; 

   8'd51:   signal_time =   12'd1224; 

   8'd52:   signal_time =   12'd1227; 

   8'd53:   signal_time =   12'd1230; 

   8'd54:   signal_time =   12'd1233; 

   8'd55:   signal_time =   12'd1237; 

   8'd56:   signal_time =   12'd1240; 

   8'd57:   signal_time =   12'd1243; 

   8'd58:   signal_time =   12'd1246; 

   8'd59:   signal_time =   12'd1249; 

   8'd60:   signal_time =   12'd1252; 

   8'd61:   signal_time =   12'd1255; 

   8'd62:   signal_time =   12'd1259; 

   8'd63:   signal_time =   12'd1262; 

   8'd64:   signal_time =   12'd1265; 

   8'd65:   signal_time =   12'd1268; 

   8'd66:   signal_time =   12'd1271; 

   8'd67:   signal_time =   12'd1274; 

   8'd68:   signal_time =   12'd1277; 

   8'd69:   signal_time =   12'd1280; 

   8'd70:   signal_time =   12'd1284; 

   8'd71:   signal_time =   12'd1287; 

   8'd72:   signal_time =   12'd1290; 

   8'd73:   signal_time =   12'd1293; 

   8'd74:   signal_time =   12'd1296; 
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   8'd75:   signal_time =   12'd1299; 

   8'd76:   signal_time =   12'd1302; 

   8'd77:   signal_time =   12'd1306; 

   8'd78:   signal_time =   12'd1309; 

   8'd79:   signal_time =   12'd1312; 

   8'd80:   signal_time =   12'd1315; 

   8'd81:   signal_time =   12'd1318; 

   8'd82:   signal_time =   12'd1321; 

   8'd83:   signal_time =   12'd1324; 

   8'd84:   signal_time =   12'd1328; 

   8'd85:   signal_time =   12'd1331; 

   8'd86:   signal_time =   12'd1334; 

   8'd87:   signal_time =   12'd1337; 

   8'd88:   signal_time =   12'd1340; 

   8'd89:   signal_time =   12'd1343; 

   8'd90:   signal_time =   12'd1346; 

   8'd91:   signal_time =   12'd1349; 

   8'd92:   signal_time =   12'd1353; 

   8'd93:   signal_time =   12'd1356; 

   8'd94:   signal_time =   12'd1359; 

   8'd95:   signal_time =   12'd1362; 

   8'd96:   signal_time =   12'd1365; 

   8'd97:   signal_time =   12'd1368; 

   8'd98:   signal_time =   12'd1371; 

   8'd99:   signal_time =   12'd1375; 

   8'd100:   signal_time =   12'd1378; 

   8'd101:   signal_time =   12'd1381; 

   8'd102:   signal_time =   12'd1384; 

   8'd103:   signal_time =   12'd1387; 



 Gregory Kravit APPENDIX B: Verilog 

68 

 

   8'd104:   signal_time =   12'd1390; 

   8'd105:   signal_time =   12'd1393; 

   8'd106:   signal_time =   12'd1397; 

   8'd107:   signal_time =   12'd1400; 

   8'd108:   signal_time =   12'd1403; 

   8'd109:   signal_time =   12'd1406; 

   8'd110:   signal_time =   12'd1409; 

   8'd111:   signal_time =   12'd1412; 

   8'd112:   signal_time =   12'd1415; 

   8'd113:   signal_time =   12'd1419; 

   8'd114:   signal_time =   12'd1422; 

   8'd115:   signal_time =   12'd1425; 

   8'd116:   signal_time =   12'd1428; 

   8'd117:   signal_time =   12'd1431; 

   8'd118:   signal_time =   12'd1434; 

   8'd119:   signal_time =   12'd1437; 

   8'd120:   signal_time =   12'd1440; 

   8'd121:   signal_time =   12'd1444; 

   8'd122:   signal_time =   12'd1447; 

   8'd123:   signal_time =   12'd1450; 

   8'd124:   signal_time =   12'd1453; 

   8'd125:   signal_time =   12'd1456; 

   8'd126:   signal_time =   12'd1459; 

   8'd127:   signal_time =   12'd1462; 

   8'd128:   signal_time =   12'd1466; 

   8'd129:   signal_time =   12'd1469; 

   8'd130:   signal_time =   12'd1472; 

   8'd131:   signal_time =   12'd1475; 

   8'd132:   signal_time =   12'd1478; 
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   8'd133:   signal_time =   12'd1481; 

   8'd134:   signal_time =   12'd1484; 

   8'd135:   signal_time =   12'd1488; 

   8'd136:   signal_time =   12'd1491; 

   8'd137:   signal_time =   12'd1494; 

   8'd138:   signal_time =   12'd1497; 

   8'd139:   signal_time =   12'd1500; 

   8'd140:   signal_time =   12'd1503; 

   8'd141:   signal_time =   12'd1506; 

   8'd142:   signal_time =   12'd1509; 

   8'd143:   signal_time =   12'd1513; 

   8'd144:   signal_time =   12'd1516; 

   8'd145:   signal_time =   12'd1519; 

   8'd146:   signal_time =   12'd1522; 

   8'd147:   signal_time =   12'd1525; 

   8'd148:   signal_time =   12'd1528; 

   8'd149:   signal_time =   12'd1531; 

   8'd150:   signal_time =   12'd1535; 

   8'd151:   signal_time =   12'd1538; 

   8'd152:   signal_time =   12'd1541; 

   8'd153:   signal_time =   12'd1544; 

   8'd154:   signal_time =   12'd1547; 

   8'd155:   signal_time =   12'd1550; 

   8'd156:   signal_time =   12'd1553; 

   8'd157:   signal_time =   12'd1557; 

   8'd158:   signal_time =   12'd1560; 

   8'd159:   signal_time =   12'd1563; 

   8'd160:   signal_time =   12'd1566; 

   8'd161:   signal_time =   12'd1569; 
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   8'd162:   signal_time =   12'd1572; 

   8'd163:   signal_time =   12'd1575; 

   8'd164:   signal_time =   12'd1579; 

   8'd165:   signal_time =   12'd1582; 

   8'd166:   signal_time =   12'd1585; 

   8'd167:   signal_time =   12'd1588; 

   8'd168:   signal_time =   12'd1591; 

   8'd169:   signal_time =   12'd1594; 

   8'd170:   signal_time =   12'd1597; 

   8'd171:   signal_time =   12'd1600; 

   8'd172:   signal_time =   12'd1604; 

   8'd173:   signal_time =   12'd1607; 

   8'd174:   signal_time =   12'd1610; 

   8'd175:   signal_time =   12'd1613; 

   8'd176:   signal_time =   12'd1616; 

   8'd177:   signal_time =   12'd1619; 

   8'd178:   signal_time =   12'd1622; 

   8'd179:   signal_time =   12'd1626; 

   8'd180:   signal_time =   12'd1629; 

   8'd181:   signal_time =   12'd1632; 

   8'd182:   signal_time =   12'd1635; 

   8'd183:   signal_time =   12'd1638; 

   8'd184:   signal_time =   12'd1641; 

   8'd185:   signal_time =   12'd1644; 

   8'd186:   signal_time =   12'd1648; 

   8'd187:   signal_time =   12'd1651; 

   8'd188:   signal_time =   12'd1654; 

   8'd189:   signal_time =   12'd1657; 

   8'd190:   signal_time =   12'd1660; 
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   8'd191:   signal_time =   12'd1663; 

   8'd192:   signal_time =   12'd1666; 

   8'd193:   signal_time =   12'd1669; 

   8'd194:   signal_time =   12'd1673; 

   8'd195:   signal_time =   12'd1676; 

   8'd196:   signal_time =   12'd1679; 

   8'd197:   signal_time =   12'd1682; 

   8'd198:   signal_time =   12'd1685; 

   8'd199:   signal_time =   12'd1688; 

   8'd200:   signal_time =   12'd1691; 

   8'd201:   signal_time =   12'd1695; 

   8'd202:   signal_time =   12'd1698; 

   8'd203:   signal_time =   12'd1701; 

   8'd204:   signal_time =   12'd1704; 

   8'd205:   signal_time =   12'd1707; 

   8'd206:   signal_time =   12'd1710; 

   8'd207:   signal_time =   12'd1713; 

   8'd208:   signal_time =   12'd1717; 

   8'd209:   signal_time =   12'd1720; 

   8'd210:   signal_time =   12'd1723; 

   8'd211:   signal_time =   12'd1726; 

   8'd212:   signal_time =   12'd1729; 

   8'd213:   signal_time =   12'd1732; 

   8'd214:   signal_time =   12'd1735; 

   8'd215:   signal_time =   12'd1739; 

   8'd216:   signal_time =   12'd1742; 

   8'd217:   signal_time =   12'd1745; 

   8'd218:   signal_time =   12'd1748; 

   8'd219:   signal_time =   12'd1751; 
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   8'd220:   signal_time =   12'd1754; 

   8'd221:   signal_time =   12'd1757; 

   8'd222:   signal_time =   12'd1760; 

   8'd223:   signal_time =   12'd1764; 

   8'd224:   signal_time =   12'd1767; 

   8'd225:   signal_time =   12'd1770; 

   8'd226:   signal_time =   12'd1773; 

   8'd227:   signal_time =   12'd1776; 

   8'd228:   signal_time =   12'd1779; 

   8'd229:   signal_time =   12'd1782; 

   8'd230:   signal_time =   12'd1786; 

   8'd231:   signal_time =   12'd1789; 

   8'd232:   signal_time =   12'd1792; 

   8'd233:   signal_time =   12'd1795; 

   8'd234:   signal_time =   12'd1798; 

   8'd235:   signal_time =   12'd1801; 

   8'd236:   signal_time =   12'd1804; 

   8'd237:   signal_time =   12'd1808; 

   8'd238:   signal_time =   12'd1811; 

   8'd239:   signal_time =   12'd1814; 

   8'd240:   signal_time =   12'd1817; 

   8'd241:   signal_time =   12'd1820; 

   8'd242:   signal_time =   12'd1823; 

   8'd243:   signal_time =   12'd1826; 

   8'd244:   signal_time =   12'd1829; 

   8'd245:   signal_time =   12'd1833; 

   8'd246:   signal_time =   12'd1836; 

   8'd247:   signal_time =   12'd1839; 

   8'd248:   signal_time =   12'd1842; 
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   8'd249:   signal_time =   12'd1845; 

   8'd250:   signal_time =   12'd1848; 

   8'd251:   signal_time =   12'd1851; 

   8'd252:   signal_time =   12'd1855; 

   8'd253:   signal_time =   12'd1858; 

   8'd254:   signal_time =   12'd1861; 

   8'd255:   signal_time =   12'd1864; 

  endcase   

 end 

endmodule 

8.8 JB_IMU.V 

`timescale 1ns / 1ps 
////////////////////////////////////////////////////////////////////////////////// 
// Company:  

// Engineer:  
//  

// Create Date:    18:01:43 11/18/2014  
// Design Name:  
// Module Name:    throttle2pwm  

// Project Name:  
// Target Devices:  

// Tool versions:  
// Description:  
// 

// Dependencies:  
// 

// Revision:  
// Revision 0.01 - File Created 

// Additional Comments:  
// 
////////////////////////////////////////////////////////////////////////////////// 

module throttle2pwm #(parameter PWM_LEN = 12) 
 ( 

    input clock, 
  input reset, 
  input idle, 

    input [7:0] throttle_setting, 
    output [11:0] pwm_signal_time 

    ); 
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  reg [11:0] signal_time; 
  assign pwm_signal_time = (idle || reset) ? 12'd900 : signal_time; 

   
  always @(posedge clock) begin 

  case(throttle_setting) 
   8'd0:    signal_time =   12'd1064; 
   8'd1:    signal_time =   12'd1067; 

   8'd2:    signal_time =   12'd1070; 
   8'd3:    signal_time =   12'd1073; 

   8'd4:    signal_time =   12'd1077; 
   8'd5:    signal_time =   12'd1080; 
   8'd6:    signal_time =   12'd1083; 

   8'd7:    signal_time =   12'd1086; 
   8'd8:    signal_time =   12'd1089; 

   8'd9:    signal_time =   12'd1092; 
   8'd10:   signal_time =   12'd1095; 
   8'd11:   signal_time =   12'd1099; 

   8'd12:   signal_time =   12'd1102; 
   8'd13:   signal_time =   12'd1105; 

   8'd14:   signal_time =   12'd1108; 
   8'd15:   signal_time =   12'd1111; 

   8'd16:   signal_time =   12'd1114; 
   8'd17:   signal_time =   12'd1117; 
   8'd18:   signal_time =   12'd1120; 

   8'd19:   signal_time =   12'd1124; 
   8'd20:   signal_time =   12'd1127; 

   8'd21:   signal_time =   12'd1130; 
   8'd22:   signal_time =   12'd1133; 
   8'd23:   signal_time =   12'd1136; 

   8'd24:   signal_time =   12'd1139; 
   8'd25:   signal_time =   12'd1142; 

   8'd26:   signal_time =   12'd1146; 
   8'd27:   signal_time =   12'd1149; 
   8'd28:   signal_time =   12'd1152; 

   8'd29:   signal_time =   12'd1155; 
   8'd30:   signal_time =   12'd1158; 

   8'd31:   signal_time =   12'd1161; 
   8'd32:   signal_time =   12'd1164; 
   8'd33:   signal_time =   12'd1168; 

   8'd34:   signal_time =   12'd1171; 
   8'd35:   signal_time =   12'd1174; 

   8'd36:   signal_time =   12'd1177; 
   8'd37:   signal_time =   12'd1180; 
   8'd38:   signal_time =   12'd1183; 

   8'd39:   signal_time =   12'd1186; 
   8'd40:   signal_time =   12'd1189; 

   8'd41:   signal_time =   12'd1193; 
   8'd42:   signal_time =   12'd1196; 
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   8'd43:   signal_time =   12'd1199; 
   8'd44:   signal_time =   12'd1202; 

   8'd45:   signal_time =   12'd1205; 
   8'd46:   signal_time =   12'd1208; 

   8'd47:   signal_time =   12'd1211; 
   8'd48:   signal_time =   12'd1215; 
   8'd49:   signal_time =   12'd1218; 

   8'd50:   signal_time =   12'd1221; 
   8'd51:   signal_time =   12'd1224; 

   8'd52:   signal_time =   12'd1227; 
   8'd53:   signal_time =   12'd1230; 
   8'd54:   signal_time =   12'd1233; 

   8'd55:   signal_time =   12'd1237; 
   8'd56:   signal_time =   12'd1240; 

   8'd57:   signal_time =   12'd1243; 
   8'd58:   signal_time =   12'd1246; 
   8'd59:   signal_time =   12'd1249; 

   8'd60:   signal_time =   12'd1252; 
   8'd61:   signal_time =   12'd1255; 

   8'd62:   signal_time =   12'd1259; 
   8'd63:   signal_time =   12'd1262; 

   8'd64:   signal_time =   12'd1265; 
   8'd65:   signal_time =   12'd1268; 
   8'd66:   signal_time =   12'd1271; 

   8'd67:   signal_time =   12'd1274; 
   8'd68:   signal_time =   12'd1277; 

   8'd69:   signal_time =   12'd1280; 
   8'd70:   signal_time =   12'd1284; 
   8'd71:   signal_time =   12'd1287; 

   8'd72:   signal_time =   12'd1290; 
   8'd73:   signal_time =   12'd1293; 

   8'd74:   signal_time =   12'd1296; 
   8'd75:   signal_time =   12'd1299; 
   8'd76:   signal_time =   12'd1302; 

   8'd77:   signal_time =   12'd1306; 
   8'd78:   signal_time =   12'd1309; 

   8'd79:   signal_time =   12'd1312; 
   8'd80:   signal_time =   12'd1315; 
   8'd81:   signal_time =   12'd1318; 

   8'd82:   signal_time =   12'd1321; 
   8'd83:   signal_time =   12'd1324; 

   8'd84:   signal_time =   12'd1328; 
   8'd85:   signal_time =   12'd1331; 
   8'd86:   signal_time =   12'd1334; 

   8'd87:   signal_time =   12'd1337; 
   8'd88:   signal_time =   12'd1340; 

   8'd89:   signal_time =   12'd1343; 
   8'd90:   signal_time =   12'd1346; 



 Gregory Kravit APPENDIX B: Verilog 

76 

 

   8'd91:   signal_time =   12'd1349; 
   8'd92:   signal_time =   12'd1353; 

   8'd93:   signal_time =   12'd1356; 
   8'd94:   signal_time =   12'd1359; 

   8'd95:   signal_time =   12'd1362; 
   8'd96:   signal_time =   12'd1365; 
   8'd97:   signal_time =   12'd1368; 

   8'd98:   signal_time =   12'd1371; 
   8'd99:   signal_time =   12'd1375; 

   8'd100:   signal_time =   12'd1378; 
   8'd101:   signal_time =   12'd1381; 
   8'd102:   signal_time =   12'd1384; 

   8'd103:   signal_time =   12'd1387; 
   8'd104:   signal_time =   12'd1390; 

   8'd105:   signal_time =   12'd1393; 
   8'd106:   signal_time =   12'd1397; 
   8'd107:   signal_time =   12'd1400; 

   8'd108:   signal_time =   12'd1403; 
   8'd109:   signal_time =   12'd1406; 

   8'd110:   signal_time =   12'd1409; 
   8'd111:   signal_time =   12'd1412; 

   8'd112:   signal_time =   12'd1415; 
   8'd113:   signal_time =   12'd1419; 
   8'd114:   signal_time =   12'd1422; 

   8'd115:   signal_time =   12'd1425; 
   8'd116:   signal_time =   12'd1428; 

   8'd117:   signal_time =   12'd1431; 
   8'd118:   signal_time =   12'd1434; 
   8'd119:   signal_time =   12'd1437; 

   8'd120:   signal_time =   12'd1440; 
   8'd121:   signal_time =   12'd1444; 

   8'd122:   signal_time =   12'd1447; 
   8'd123:   signal_time =   12'd1450; 
   8'd124:   signal_time =   12'd1453; 

   8'd125:   signal_time =   12'd1456; 
   8'd126:   signal_time =   12'd1459; 

   8'd127:   signal_time =   12'd1462; 
   8'd128:   signal_time =   12'd1466; 
   8'd129:   signal_time =   12'd1469; 

   8'd130:   signal_time =   12'd1472; 
   8'd131:   signal_time =   12'd1475; 

   8'd132:   signal_time =   12'd1478; 
   8'd133:   signal_time =   12'd1481; 
   8'd134:   signal_time =   12'd1484; 

   8'd135:   signal_time =   12'd1488; 
   8'd136:   signal_time =   12'd1491; 

   8'd137:   signal_time =   12'd1494; 
   8'd138:   signal_time =   12'd1497; 
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   8'd139:   signal_time =   12'd1500; 
   8'd140:   signal_time =   12'd1503; 

   8'd141:   signal_time =   12'd1506; 
   8'd142:   signal_time =   12'd1509; 

   8'd143:   signal_time =   12'd1513; 
   8'd144:   signal_time =   12'd1516; 
   8'd145:   signal_time =   12'd1519; 

   8'd146:   signal_time =   12'd1522; 
   8'd147:   signal_time =   12'd1525; 

   8'd148:   signal_time =   12'd1528; 
   8'd149:   signal_time =   12'd1531; 
   8'd150:   signal_time =   12'd1535; 

   8'd151:   signal_time =   12'd1538; 
   8'd152:   signal_time =   12'd1541; 

   8'd153:   signal_time =   12'd1544; 
   8'd154:   signal_time =   12'd1547; 
   8'd155:   signal_time =   12'd1550; 

   8'd156:   signal_time =   12'd1553; 
   8'd157:   signal_time =   12'd1557; 

   8'd158:   signal_time =   12'd1560; 
   8'd159:   signal_time =   12'd1563; 

   8'd160:   signal_time =   12'd1566; 
   8'd161:   signal_time =   12'd1569; 
   8'd162:   signal_time =   12'd1572; 

   8'd163:   signal_time =   12'd1575; 
   8'd164:   signal_time =   12'd1579; 

   8'd165:   signal_time =   12'd1582; 
   8'd166:   signal_time =   12'd1585; 
   8'd167:   signal_time =   12'd1588; 

   8'd168:   signal_time =   12'd1591; 
   8'd169:   signal_time =   12'd1594; 

   8'd170:   signal_time =   12'd1597; 
   8'd171:   signal_time =   12'd1600; 
   8'd172:   signal_time =   12'd1604; 

   8'd173:   signal_time =   12'd1607; 
   8'd174:   signal_time =   12'd1610; 

   8'd175:   signal_time =   12'd1613; 
   8'd176:   signal_time =   12'd1616; 
   8'd177:   signal_time =   12'd1619; 

   8'd178:   signal_time =   12'd1622; 
   8'd179:   signal_time =   12'd1626; 

   8'd180:   signal_time =   12'd1629; 
   8'd181:   signal_time =   12'd1632; 
   8'd182:   signal_time =   12'd1635; 

   8'd183:   signal_time =   12'd1638; 
   8'd184:   signal_time =   12'd1641; 

   8'd185:   signal_time =   12'd1644; 
   8'd186:   signal_time =   12'd1648; 
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   8'd187:   signal_time =   12'd1651; 
   8'd188:   signal_time =   12'd1654; 

   8'd189:   signal_time =   12'd1657; 
   8'd190:   signal_time =   12'd1660; 

   8'd191:   signal_time =   12'd1663; 
   8'd192:   signal_time =   12'd1666; 
   8'd193:   signal_time =   12'd1669; 

   8'd194:   signal_time =   12'd1673; 
   8'd195:   signal_time =   12'd1676; 

   8'd196:   signal_time =   12'd1679; 
   8'd197:   signal_time =   12'd1682; 
   8'd198:   signal_time =   12'd1685; 

   8'd199:   signal_time =   12'd1688; 
   8'd200:   signal_time =   12'd1691; 

   8'd201:   signal_time =   12'd1695; 
   8'd202:   signal_time =   12'd1698; 
   8'd203:   signal_time =   12'd1701; 

   8'd204:   signal_time =   12'd1704; 
   8'd205:   signal_time =   12'd1707; 

   8'd206:   signal_time =   12'd1710; 
   8'd207:   signal_time =   12'd1713; 

   8'd208:   signal_time =   12'd1717; 
   8'd209:   signal_time =   12'd1720; 
   8'd210:   signal_time =   12'd1723; 

   8'd211:   signal_time =   12'd1726; 
   8'd212:   signal_time =   12'd1729; 

   8'd213:   signal_time =   12'd1732; 
   8'd214:   signal_time =   12'd1735; 
   8'd215:   signal_time =   12'd1739; 

   8'd216:   signal_time =   12'd1742; 
   8'd217:   signal_time =   12'd1745; 

   8'd218:   signal_time =   12'd1748; 
   8'd219:   signal_time =   12'd1751; 
   8'd220:   signal_time =   12'd1754; 

   8'd221:   signal_time =   12'd1757; 
   8'd222:   signal_time =   12'd1760; 

   8'd223:   signal_time =   12'd1764; 
   8'd224:   signal_time =   12'd1767; 
   8'd225:   signal_time =   12'd1770; 

   8'd226:   signal_time =   12'd1773; 
   8'd227:   signal_time =   12'd1776; 

   8'd228:   signal_time =   12'd1779; 
   8'd229:   signal_time =   12'd1782; 
   8'd230:   signal_time =   12'd1786; 

   8'd231:   signal_time =   12'd1789; 
   8'd232:   signal_time =   12'd1792; 

   8'd233:   signal_time =   12'd1795; 
   8'd234:   signal_time =   12'd1798; 
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   8'd235:   signal_time =   12'd1801; 
   8'd236:   signal_time =   12'd1804; 

   8'd237:   signal_time =   12'd1808; 
   8'd238:   signal_time =   12'd1811; 

   8'd239:   signal_time =   12'd1814; 
   8'd240:   signal_time =   12'd1817; 
   8'd241:   signal_time =   12'd1820; 

   8'd242:   signal_time =   12'd1823; 
   8'd243:   signal_time =   12'd1826; 

   8'd244:   signal_time =   12'd1829; 
   8'd245:   signal_time =   12'd1833; 
   8'd246:   signal_time =   12'd1836; 

   8'd247:   signal_time =   12'd1839; 
   8'd248:   signal_time =   12'd1842; 

   8'd249:   signal_time =   12'd1845; 
   8'd250:   signal_time =   12'd1848; 
   8'd251:   signal_time =   12'd1851; 

   8'd252:   signal_time =   12'd1855; 
   8'd253:   signal_time =   12'd1858; 

   8'd254:   signal_time =   12'd1861; 
   8'd255:   signal_time =   12'd1864; 

  endcase   
 end 
endmodule 

8.9 SPI.V 

`timescale 1ns / 1ps 

 
//Gregory Kravit 
// gkravit@mit.edu 

//Adapted from embeddedmicro.com 
////////////////////////////////////////////////////////////////////////////////// 

// SPI Master:  Mode 0 CKE = 1; CKP = 0; 
//Sources Used: 
// http://www.rosseeld.be/DRO/PIC/SPI_Timing.htm 

// http://www.elecdude.com/2013/09/spi-master-slave-verilog-code-spi.html 
// dsPIC (JBimu Microcontroller) p. 372 

// 
//Mode 0 
// Parameters: 

//  SPI_CLK_DIV: 
//   -Divides System Clock for relevant SCK speed  

//   SPI_CLK_DIV = C:  SCK_FREQ = CLK_FREQ/2^C 
//    C = 2: SCK_FREQ = CLK_FREQ /4 
//      3: SCK_FREQ = CLK_FREQ /8 

//      4: SCK_FREQ = CLK_FREQ /16 
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//      5: SCK_FREQ = CLK_FREQ /32    
  

//  SPI_BUS_WIDTH: 
//   -Number of Bits In Communication expected to transmit and 

receive 
//   SPI_BUS_WIDTH = W:  
 

////////////////////////////////////////////////////////////////////////////////// 
module spi #(parameter SPI_CLK_DIV = 4, parameter SPI_BUS_WIDTH = 8)( 

        input clk, 
        input rst, 
        input miso, 

        output mosi, 
        output sck, 

        input start, 
        input [SPI_BUS_WIDTH-1:0] data_in, 
        output[SPI_BUS_WIDTH-1:0] data_out, 

    output ss, 
        output busy, 

        output new_data 
    ); 

 //num bits needed to count to bus width 
 localparam NUM_BITS = log2(SPI_BUS_WIDTH);  
 

 localparam STATE_SIZE = 2; 
 localparam IDLE = 2'd0, 

   WAIT_HALF = 2'd1, 
   TRANSFER = 2'd2; 
 

 reg [STATE_SIZE-1:0] state_d, state_q; 
 

 reg [SPI_BUS_WIDTH-1:0] data_d, data_q; 
 reg [SPI_CLK_DIV-1:0] sck_d, sck_q; 
 // wire sck_old; 

 reg mosi_d, mosi_q; 
 reg [NUM_BITS-1:0] ctr_d, ctr_q; 

 reg new_data_d, new_data_q; 
 reg [7:0] data_out_d, data_out_q; 
 

 assign mosi = mosi_q; 
 assign ss = state_q == IDLE; 

 assign sck = (sck_q[SPI_CLK_DIV-1]) & (state_q == TRANSFER); 
 assign busy = state_q != IDLE; 
 assign data_out = data_out_q; 

 assign new_data = new_data_q; 
 

 always @(*) begin 
   sck_d = sck_q; 
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   data_d = data_q; 
   mosi_d = mosi_q; 

   ctr_d = ctr_q; 
   new_data_d = 1'b0; 

   data_out_d = data_out_q; 
   state_d = state_q; 
   

   case (state_q) 
   IDLE: begin 

     sck_d = 4'b0; 
     ctr_d = 3'b0; 
     mosi_d = 1'b1; 

     if (start == 1'b1) begin 
       data_d = data_in; 

       state_d = WAIT_HALF; 
     end 
   end 

   WAIT_HALF: begin 
     sck_d = sck_q + 1'b1; 

     if (sck_q == {1'b0,{SPI_CLK_DIV-1{1'b1}}}) begin 
       sck_d = 1'b0; //go right to transfer 

       state_d = TRANSFER; 
     end 
   end 

   TRANSFER: begin 
     sck_d = sck_q + 1'b1; 

     if (sck_q == 0) begin //transmit on falling edge 
       mosi_d = data_q[7]; 
     end else if (sck_q == {1'b0,{SPI_CLK_DIV-1{1'b1}}}) 

begin //sample on rising edge 
       data_d = {data_q[6:0], miso}; 

     end else if (sck_q == {SPI_CLK_DIV{1'b1}}) begin // 
change bits between sck 
       ctr_d = ctr_q + 1'b1; 

       if (ctr_q == {NUM_BITS-1{1'b1}}) begin 
       state_d = IDLE; 

       data_out_d = data_q; 
       new_data_d = 1'b1; 
       end 

     end 
   end 

   endcase 
 end 
 

 always @(posedge clk) begin 
   if (rst) begin 

   ctr_q <= {NUM_BITS-1{1'b0}}; 
   data_q <= {SPI_BUS_WIDTH{1'b0}}; 
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   sck_q <= {SPI_CLK_DIV{1'b0}}; 
   mosi_q <= 1'b1; 

   state_q <= IDLE; 
   data_out_q <= {SPI_BUS_WIDTH{1'b0}}; 

   new_data_q <= 1'b0; 
   end else begin 
   ctr_q <= ctr_d; 

   data_q <= data_d; 
   sck_q <= sck_d; 

   mosi_q <= mosi_d; 
   state_q <= state_d; 
   data_out_q <= data_out_d; 

   new_data_q <= new_data_d; 
   end 

 end 
 
 function integer log2; 

  input [31:0] value; 
  begin 

   for (log2=0; value>0; log2=log2+1)  
    begin 

     value = value>>1; 
    end 
  end 

 endfunction 
 

      
endmodule 
 

8.10 TEST_JBIMU.V 

`timescale 1ns / 1ps 

 
//////////////////////////////////////////////////////////////////////////////// 
//test_jbimu.v 

 
module test_jbimu; 

 
 // Inputs 
 reg clks; 

 reg clock; 
 reg reset; 

 reg start; 
 wire miso; 
 

 // Outputs 
 wire [15:0] roll; 
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 wire [15:0] pitch; 
 wire [15:0] yaw; 

 wire [15:0] roll_rate; 
 wire [15:0] pitch_rate; 

 wire [15:0] yaw_rate; 
 wire [15:0] accel_x; 
 wire [15:0] accel_y; 

 wire [15:0] accel_z; 
 wire done; 

 wire mosi; 
 wire sck; 
 wire ss; 

 
 // Instantiate the Unit Under Test (UUT) 

 jb_imu uut ( 
  .clock(clock),  
  .reset(reset),  

  .start(start),  
  .roll(roll),  

  .pitch(pitch),  
  .yaw(yaw),  

  .roll_rate(roll_rate),  
  .pitch_rate(pitch_rate),  
  .yaw_rate(yaw_rate),  

  .accel_x(accel_x),  
  .accel_y(accel_y),  

  .accel_z(accel_z),  
  .done(done),  
  .miso(miso),  

  .mosi(mosi),  
  .sck(sck),  

  .ss(ss) 
 ); 
 

 wire slave_done; 
 reg [7:0] din; 

 wire [7:0] slave_dout; 
 spi_slave slave( 
    .clk(clks), 

    .rst(reset), 
    .ss(ss), 

    .mosi(mosi), 
    .miso(miso), 
    .sck(sck), 

    .done(slave_done), 
    .din(din), 

    .dout(slave_dout) 
    ); 
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 always #10 clock = ~clock; //50Mhz = 20 ns period 

  
 always #20 clks = ~clks; //25 Mhz slave clock 

  
 always @(slave_done) begin 
  if(slave_done) begin 

   din = din + 1'b1; 
  end 

 end 
  
 initial begin 

  // Initialize Inputs 
  clock = 0; 

  clks=0; 
  reset = 0; 
  start = 0; 

  din = 0; 
 

  // Wait 100 ns for global reset to finish 
  reset = 1; 

  #100; 
  reset = 0; 
         

  // Add stimulus here 
  din = 8'h00; 

  #20; 
   
  start = 1; 

  #20; 
  start = 0; 

  #10000; 
 end 
       

endmodule 
 

8.11 TEST_SPI.V 

`timescale 1ns / 1ps 
 

//////////////////////////////////////////////////////////////////////////////// 
//test_jbimu.v 

 
module test_jbimu; 
 

 // Inputs 
 reg clks; 
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 reg clock; 
 reg reset; 

 reg start; 
 wire miso; 

 
 // Outputs 
 wire [15:0] roll; 

 wire [15:0] pitch; 
 wire [15:0] yaw; 

 wire [15:0] roll_rate; 
 wire [15:0] pitch_rate; 
 wire [15:0] yaw_rate; 

 wire [15:0] accel_x; 
 wire [15:0] accel_y; 

 wire [15:0] accel_z; 
 wire done; 
 wire mosi; 

 wire sck; 
 wire ss; 

 
 // Instantiate the Unit Under Test (UUT) 

 jb_imu uut ( 
  .clock(clock),  
  .reset(reset),  

  .start(start),  
  .roll(roll),  

  .pitch(pitch),  
  .yaw(yaw),  
  .roll_rate(roll_rate),  

  .pitch_rate(pitch_rate),  
  .yaw_rate(yaw_rate),  

  .accel_x(accel_x),  
  .accel_y(accel_y),  
  .accel_z(accel_z),  

  .done(done),  
  .miso(miso),  

  .mosi(mosi),  
  .sck(sck),  
  .ss(ss) 

 ); 
 

 wire slave_done; 
 reg [7:0] din; 
 wire [7:0] slave_dout; 

 spi_slave slave( 
    .clk(clks), 

    .rst(reset), 
    .ss(ss), 



 Gregory Kravit APPENDIX B: Verilog 

86 

 

    .mosi(mosi), 
    .miso(miso), 

    .sck(sck), 
    .done(slave_done), 

    .din(din), 
    .dout(slave_dout) 
    ); 

  
 always #10 clock = ~clock; //50Mhz = 20 ns period 

  
 always #20 clks = ~clks; //25 Mhz slave clock 
  

 always @(slave_done) begin 
  if(slave_done) begin 

   din = din + 1'b1; 
  end 
 end 

  
 initial begin 

  // Initialize Inputs 
  clock = 0; 

  clks=0; 
  reset = 0; 
  start = 0; 

  din = 0; 
 

  // Wait 100 ns for global reset to finish 
  reset = 1; 
  #100; 

  reset = 0; 
         

  // Add stimulus here 
  din = 8'h00; 
  #20; 

   
  start = 1; 

  #20; 
  start = 0; 
  #10000; 

 end 
       

endmodule 
 

8.12 SPI_SLAVE.V (EMBEDDEDMICRO.COM) 

`timescale 1ns / 1ps 
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//////////////////////////////////////////////////////////////////////////////// 
//test_jbimu.v 

 
module test_jbimu; 

 
 // Inputs 
 reg clks; 

 reg clock; 
 reg reset; 

 reg start; 
 wire miso; 
 

 // Outputs 
 wire [15:0] roll; 

 wire [15:0] pitch; 
 wire [15:0] yaw; 
 wire [15:0] roll_rate; 

 wire [15:0] pitch_rate; 
 wire [15:0] yaw_rate; 

 wire [15:0] accel_x; 
 wire [15:0] accel_y; 

 wire [15:0] accel_z; 
 wire done; 
 wire mosi; 

 wire sck; 
 wire ss; 

 
 // Instantiate the Unit Under Test (UUT) 
 jb_imu uut ( 

  .clock(clock),  
  .reset(reset),  

  .start(start),  
  .roll(roll),  
  .pitch(pitch),  

  .yaw(yaw),  
  .roll_rate(roll_rate),  

  .pitch_rate(pitch_rate),  
  .yaw_rate(yaw_rate),  
  .accel_x(accel_x),  

  .accel_y(accel_y),  
  .accel_z(accel_z),  

  .done(done),  
  .miso(miso),  
  .mosi(mosi),  

  .sck(sck),  
  .ss(ss) 

 ); 
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 wire slave_done; 
 reg [7:0] din; 

 wire [7:0] slave_dout; 
 spi_slave slave( 

    .clk(clks), 
    .rst(reset), 
    .ss(ss), 

    .mosi(mosi), 
    .miso(miso), 

    .sck(sck), 
    .done(slave_done), 
    .din(din), 

    .dout(slave_dout) 
    ); 

  
 always #10 clock = ~clock; //50Mhz = 20 ns period 
  

 always #20 clks = ~clks; //25 Mhz slave clock 
  

 always @(slave_done) begin 
  if(slave_done) begin 

   din = din + 1'b1; 
  end 
 end 

  
 initial begin 

  // Initialize Inputs 
  clock = 0; 
  clks=0; 

  reset = 0; 
  start = 0; 

  din = 0; 
 
  // Wait 100 ns for global reset to finish 

  reset = 1; 
  #100; 

  reset = 0; 
         
  // Add stimulus here 

  din = 8'h00; 
  #20; 

   
  start = 1; 
  #20; 

  start = 0; 
  #10000; 

 end 
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endmodule 
 

8.13 SRF05.V 

`timescale 1ns / 1ps 
 

//////////////////////////////////////////////////////////////////////////////// 
//test_jbimu.v 

 
module test_jbimu; 
 

 // Inputs 
 reg clks; 

 reg clock; 
 reg reset; 
 reg start; 

 wire miso; 
 

 // Outputs 
 wire [15:0] roll; 
 wire [15:0] pitch; 

 wire [15:0] yaw; 
 wire [15:0] roll_rate; 

 wire [15:0] pitch_rate; 
 wire [15:0] yaw_rate; 

 wire [15:0] accel_x; 
 wire [15:0] accel_y; 
 wire [15:0] accel_z; 

 wire done; 
 wire mosi; 

 wire sck; 
 wire ss; 
 

 // Instantiate the Unit Under Test (UUT) 
 jb_imu uut ( 

  .clock(clock),  
  .reset(reset),  
  .start(start),  

  .roll(roll),  
  .pitch(pitch),  

  .yaw(yaw),  
  .roll_rate(roll_rate),  
  .pitch_rate(pitch_rate),  

  .yaw_rate(yaw_rate),  
  .accel_x(accel_x),  

  .accel_y(accel_y),  
  .accel_z(accel_z),  
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  .done(done),  
  .miso(miso),  

  .mosi(mosi),  
  .sck(sck),  

  .ss(ss) 
 ); 
 

 wire slave_done; 
 reg [7:0] din; 

 wire [7:0] slave_dout; 
 spi_slave slave( 
    .clk(clks), 

    .rst(reset), 
    .ss(ss), 

    .mosi(mosi), 
    .miso(miso), 
    .sck(sck), 

    .done(slave_done), 
    .din(din), 

    .dout(slave_dout) 
    ); 

  
 always #10 clock = ~clock; //50Mhz = 20 ns period 
  

 always #20 clks = ~clks; //25 Mhz slave clock 
  

 always @(slave_done) begin 
  if(slave_done) begin 
   din = din + 1'b1; 

  end 
 end 

  
 initial begin 
  // Initialize Inputs 

  clock = 0; 
  clks=0; 

  reset = 0; 
  start = 0; 
  din = 0; 

 
  // Wait 100 ns for global reset to finish 

  reset = 1; 
  #100; 
  reset = 0; 

         
  // Add stimulus here 

  din = 8'h00; 
  #20; 
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  start = 1; 

  #20; 
  start = 0; 

  #10000; 
 end 
       

endmodule 
 

8.14 TESST_SRF05.V 

`timescale 1ns / 1ps 
 

//////////////////////////////////////////////////////////////////////////////// 
//test_jbimu.v 

 
module test_jbimu; 
 

 // Inputs 
 reg clks; 

 reg clock; 
 reg reset; 
 reg start; 

 wire miso; 
 

 // Outputs 
 wire [15:0] roll; 

 wire [15:0] pitch; 
 wire [15:0] yaw; 
 wire [15:0] roll_rate; 

 wire [15:0] pitch_rate; 
 wire [15:0] yaw_rate; 

 wire [15:0] accel_x; 
 wire [15:0] accel_y; 
 wire [15:0] accel_z; 

 wire done; 
 wire mosi; 

 wire sck; 
 wire ss; 
 

 // Instantiate the Unit Under Test (UUT) 
 jb_imu uut ( 

  .clock(clock),  
  .reset(reset),  
  .start(start),  

  .roll(roll),  
  .pitch(pitch),  
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  .yaw(yaw),  
  .roll_rate(roll_rate),  

  .pitch_rate(pitch_rate),  
  .yaw_rate(yaw_rate),  

  .accel_x(accel_x),  
  .accel_y(accel_y),  
  .accel_z(accel_z),  

  .done(done),  
  .miso(miso),  

  .mosi(mosi),  
  .sck(sck),  
  .ss(ss) 

 ); 
 

 wire slave_done; 
 reg [7:0] din; 
 wire [7:0] slave_dout; 

 spi_slave slave( 
    .clk(clks), 

    .rst(reset), 
    .ss(ss), 

    .mosi(mosi), 
    .miso(miso), 
    .sck(sck), 

    .done(slave_done), 
    .din(din), 

    .dout(slave_dout) 
    ); 
  

 always #10 clock = ~clock; //50Mhz = 20 ns period 
  

 always #20 clks = ~clks; //25 Mhz slave clock 
  
 always @(slave_done) begin 

  if(slave_done) begin 
   din = din + 1'b1; 

  end 
 end 
  

 initial begin 
  // Initialize Inputs 

  clock = 0; 
  clks=0; 
  reset = 0; 

  start = 0; 
  din = 0; 

 
  // Wait 100 ns for global reset to finish 
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  reset = 1; 
  #100; 

  reset = 0; 
         

  // Add stimulus here 
  din = 8'h00; 
  #20; 

   
  start = 1; 

  #20; 
  start = 0; 
  #10000; 

 end 
       

endmodule 
 

 

8.15 LABKIT.V 

`default_nettype none 
////////////////////////////////////////////////////////////////////////////// 

// 
// 6.111 FPGA Labkit -- Template Toplevel Module 
// 

// For Labkit Revision 004 
// 

// 
// Created: October 31, 2004, from revision 003 file 
// Author: Nathan Ickes 

// 
/////////////////////////////////////////////////////////////////////////////// 

// 
// CHANGES FOR BOARD REVISION 004 
// 

// 1) Added signals for logic analyzer pods 2-4. 
// 2) Expanded "tv_in_ycrcb" to 20 bits. 

// 3) Renamed "tv_out_data" to "tv_out_i2c_data" and "tv_out_sclk" to 
//    "tv_out_i2c_clock". 
// 4) Reversed disp_data_in and disp_data_out signals, so that "out" is an 

//    output of the FPGA, and "in" is an input. 
// 

// CHANGES FOR BOARD REVISION 003 
// 
// 1) Combined flash chip enables into a single signal, flash_ce_b. 

// 
// CHANGES FOR BOARD REVISION 002 

// 
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// 1) Added SRAM clock feedback path input and output 
// 2) Renamed "mousedata" to "mouse_data" 

// 3) Renamed some ZBT memory signals. Parity bits are now incorporated into  
//    the data bus, and the byte write enables have been combined into the 

//    4-bit ram#_bwe_b bus. 
// 4) Removed the "systemace_clock" net, since the SystemACE clock is now 
//    hardwired on the PCB to the oscillator. 

// 
/////////////////////////////////////////////////////////////////////////////// 

// 
// Complete change history (including bug fixes) 
// 

// 2006-Mar-08: Corrected default assignments to "vga_out_red", "vga_out_green" 
//              and "vga_out_blue". (Was 10'h0, now 8'h0.) 

// 
// 2005-Sep-09: Added missing default assignments to "ac97_sdata_out", 
//              "disp_data_out", "analyzer[2-3]_clock" and 

//              "analyzer[2-3]_data". 
// 

// 2005-Jan-23: Reduced flash address bus to 24 bits, to match 128Mb devices 
//              actually populated on the boards. (The boards support up to 

//              256Mb devices, with 25 address lines.) 
// 
// 2004-Oct-31: Adapted to new revision 004 board. 

// 
// 2004-May-01: Changed "disp_data_in" to be an output, and gave it a default 

//              value. (Previous versions of this file declared this port to 
//              be an input.) 
// 

// 2004-Apr-29: Reduced SRAM address busses to 19 bits, to match 18Mb devices 
//              actually populated on the boards. (The boards support up to 

//              72Mb devices, with 21 address lines.) 
// 
// 2004-Apr-29: Change history started 

// 
/////////////////////////////////////////////////////////////////////////////// 

 
module labkit (beep, audio_reset_b, ac97_sdata_out, ac97_sdata_in, ac97_synch, 
        ac97_bit_clock, 

         
        vga_out_red, vga_out_green, vga_out_blue, vga_out_sync_b, 

        vga_out_blank_b, vga_out_pixel_clock, vga_out_hsync, 
        vga_out_vsync, 
 

        tv_out_ycrcb, tv_out_reset_b, tv_out_clock, tv_out_i2c_clock, 
        tv_out_i2c_data, tv_out_pal_ntsc, tv_out_hsync_b, 

        tv_out_vsync_b, tv_out_blank_b, tv_out_subcar_reset, 
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        tv_in_ycrcb, tv_in_data_valid, tv_in_line_clock1, 
        tv_in_line_clock2, tv_in_aef, tv_in_hff, tv_in_aff, 

        tv_in_i2c_clock, tv_in_i2c_data, tv_in_fifo_read, 
        tv_in_fifo_clock, tv_in_iso, tv_in_reset_b, tv_in_clock, 

 
        ram0_data, ram0_address, ram0_adv_ld, ram0_clk, ram0_cen_b, 
        ram0_ce_b, ram0_oe_b, ram0_we_b, ram0_bwe_b,  

 
        ram1_data, ram1_address, ram1_adv_ld, ram1_clk, ram1_cen_b, 

        ram1_ce_b, ram1_oe_b, ram1_we_b, ram1_bwe_b, 
 
        clock_feedback_out, clock_feedback_in, 

 
        flash_data, flash_address, flash_ce_b, flash_oe_b, flash_we_b, 

        flash_reset_b, flash_sts, flash_byte_b, 
 
        rs232_txd, rs232_rxd, rs232_rts, rs232_cts, 

 
        mouse_clock, mouse_data, keyboard_clock, keyboard_data, 

 
        clock_27mhz, clock1, clock2, 

 
        disp_blank, disp_data_out, disp_clock, disp_rs, disp_ce_b, 
        disp_reset_b, disp_data_in, 

 
        button0, button1, button2, button3, button_enter, button_right, 

        button_left, button_down, button_up, 
 
        switch, 

 
        led, 

         
        user1, user2, user3, user4, 
         

        daughtercard, 
 

        systemace_data, systemace_address, systemace_ce_b, 
        systemace_we_b, systemace_oe_b, systemace_irq, systemace_mpbrdy, 
         

        analyzer1_data, analyzer1_clock, 
         analyzer2_data, analyzer2_clock, 

         analyzer3_data, analyzer3_clock, 
         analyzer4_data, analyzer4_clock); 
 

   output beep, audio_reset_b, ac97_synch, ac97_sdata_out; 
   input  ac97_bit_clock, ac97_sdata_in; 

    
   output [7:0] vga_out_red, vga_out_green, vga_out_blue; 
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   output vga_out_sync_b, vga_out_blank_b, vga_out_pixel_clock, 
   vga_out_hsync, vga_out_vsync; 

 
   output [9:0] tv_out_ycrcb; 

   output tv_out_reset_b, tv_out_clock, tv_out_i2c_clock, tv_out_i2c_data, 
   tv_out_pal_ntsc, tv_out_hsync_b, tv_out_vsync_b, tv_out_blank_b, 
   tv_out_subcar_reset; 

    
   input  [19:0] tv_in_ycrcb; 

   input  tv_in_data_valid, tv_in_line_clock1, tv_in_line_clock2, tv_in_aef, 
   tv_in_hff, tv_in_aff; 
   output tv_in_i2c_clock, tv_in_fifo_read, tv_in_fifo_clock, tv_in_iso, 

   tv_in_reset_b, tv_in_clock; 
   inout  tv_in_i2c_data; 

         
   inout  [35:0] ram0_data; 
   output [18:0] ram0_address; 

   output ram0_adv_ld, ram0_clk, ram0_cen_b, ram0_ce_b, ram0_oe_b, 
ram0_we_b; 

   output [3:0] ram0_bwe_b; 
    

   inout  [35:0] ram1_data; 
   output [18:0] ram1_address; 
   output ram1_adv_ld, ram1_clk, ram1_cen_b, ram1_ce_b, ram1_oe_b, 

ram1_we_b; 
   output [3:0] ram1_bwe_b; 

 
   input  clock_feedback_in; 
   output clock_feedback_out; 

    
   inout  [15:0] flash_data; 

   output [23:0] flash_address; 
   output flash_ce_b, flash_oe_b, flash_we_b, flash_reset_b, flash_byte_b; 
   input  flash_sts; 

    
   output rs232_txd, rs232_rts; 

   input  rs232_rxd, rs232_cts; 
 
   input  mouse_clock, mouse_data, keyboard_clock, keyboard_data; 

 
   input  clock_27mhz, clock1, clock2; 

 
   output disp_blank, disp_clock, disp_rs, disp_ce_b, disp_reset_b;   
   input  disp_data_in; 

   output  disp_data_out; 
    

   input  button0, button1, button2, button3, button_enter, button_right, 
   button_left, button_down, button_up; 
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   input  [7:0] switch; 
   output [7:0] led; 

 
   inout [31:0] user1, user2, user3, user4; 

    
   inout [43:0] daughtercard; 
 

   inout  [15:0] systemace_data; 
   output [6:0]  systemace_address; 

   output systemace_ce_b, systemace_we_b, systemace_oe_b; 
   input  systemace_irq, systemace_mpbrdy; 
 

   output [15:0] analyzer1_data, analyzer2_data, analyzer3_data,  
   analyzer4_data; 

   output analyzer1_clock, analyzer2_clock, analyzer3_clock, analyzer4_clock; 
 
   //////////////////////////////////////////////////////////////////////////// 

   // 
   // I/O Assignments 

   // 
   //////////////////////////////////////////////////////////////////////////// 

    
   // Audio Input and Output 
   assign beep= 1'b0; 

   assign audio_reset_b = 1'b0; 
   assign ac97_synch = 1'b0; 

   assign ac97_sdata_out = 1'b0; 
   // ac97_sdata_in is an input 
 

   // VGA Output 
   assign vga_out_red = 8'h0; 

   assign vga_out_green = 8'h0; 
   assign vga_out_blue = 8'h0; 
   assign vga_out_sync_b = 1'b1; 

   assign vga_out_blank_b = 1'b1; 
   assign vga_out_pixel_clock = 1'b0; 

   assign vga_out_hsync = 1'b0; 
   assign vga_out_vsync = 1'b0; 
 

   // Video Output 
   assign tv_out_ycrcb = 10'h0; 

   assign tv_out_reset_b = 1'b0; 
   assign tv_out_clock = 1'b0; 
   assign tv_out_i2c_clock = 1'b0; 

   assign tv_out_i2c_data = 1'b0; 
   assign tv_out_pal_ntsc = 1'b0; 

   assign tv_out_hsync_b = 1'b1; 
   assign tv_out_vsync_b = 1'b1; 
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   assign tv_out_blank_b = 1'b1; 
   assign tv_out_subcar_reset = 1'b0; 

    
   // Video Input 

   assign tv_in_i2c_clock = 1'b0; 
   assign tv_in_fifo_read = 1'b0; 
   assign tv_in_fifo_clock = 1'b0; 

   assign tv_in_iso = 1'b0; 
   assign tv_in_reset_b = 1'b0; 

   assign tv_in_clock = 1'b0; 
   assign tv_in_i2c_data = 1'bZ; 
   // tv_in_ycrcb, tv_in_data_valid, tv_in_line_clock1, tv_in_line_clock2,  

   // tv_in_aef, tv_in_hff, and tv_in_aff are inputs 
    

   // SRAMs 
   assign ram0_data = 36'hZ; 
   assign ram0_address = 19'h0; 

   assign ram0_adv_ld = 1'b0; 
   assign ram0_clk = 1'b0; 

   assign ram0_cen_b = 1'b1; 
   assign ram0_ce_b = 1'b1; 

   assign ram0_oe_b = 1'b1; 
   assign ram0_we_b = 1'b1; 
   assign ram0_bwe_b = 4'hF; 

   assign ram1_data = 36'hZ;  
   assign ram1_address = 19'h0; 

   assign ram1_adv_ld = 1'b0; 
   assign ram1_clk = 1'b0; 
   assign ram1_cen_b = 1'b1; 

   assign ram1_ce_b = 1'b1; 
   assign ram1_oe_b = 1'b1; 

   assign ram1_we_b = 1'b1; 
   assign ram1_bwe_b = 4'hF; 
   assign clock_feedback_out = 1'b0; 

   // clock_feedback_in is an input 
    

   // Flash ROM 
   assign flash_data = 16'hZ; 
   assign flash_address = 24'h0; 

   assign flash_ce_b = 1'b1; 
   assign flash_oe_b = 1'b1; 

   assign flash_we_b = 1'b1; 
   assign flash_reset_b = 1'b0; 
   assign flash_byte_b = 1'b1; 

   // flash_sts is an input 
 

   // RS-232 Interface 
   assign rs232_txd = 1'b1; 
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   assign rs232_rts = 1'b1; 
   // rs232_rxd and rs232_cts are inputs 

 
   // PS/2 Ports 

   // mouse_clock, mouse_data, keyboard_clock, and keyboard_data are inputs 
 
//   // LED Displays 

//   assign disp_blank = 1'b1; 
//   assign disp_clock = 1'b0; 

//   assign disp_rs = 1'b0; 
//   assign disp_ce_b = 1'b1; 
//   assign disp_reset_b = 1'b0; 

//   assign disp_data_out = 1'b0; 
   // disp_data_in is an input 

 
   // Buttons, Switches, and Individual LEDs 
 //  assign led = 8'hFF; 

   // button0, button1, button2, button3, button_enter, button_right, 
   // button_left, button_down, button_up, and switches are inputs 

 
   // User I/Os 

   assign user1 = 32'hZ; 
   assign user2 = 32'hZ; 
   //assign user3 = 32'hZ; 

  //assign user4 = 32'hZ; 
 

   // Daughtercard Connectors 
   assign daughtercard = 44'hZ; 
 

   // SystemACE Microprocessor Port 
   assign systemace_data = 16'hZ; 

   assign systemace_address = 7'h0; 
   assign systemace_ce_b = 1'b1; 
   assign systemace_we_b = 1'b1; 

   assign systemace_oe_b = 1'b1; 
   // systemace_irq and systemace_mpbrdy are inputs 

 
//   // Logic Analyzer 
//   assign analyzer1_data = 16'h0; 

//   assign analyzer1_clock = 1'b1; 
//   assign analyzer2_data = 16'h0; 

//   assign analyzer2_clock = 1'b1; 
//   assign analyzer3_data = 16'h0; 
//   assign analyzer3_clock = 1'b1; 

//   assign analyzer4_data = 16'h0; 
//   assign analyzer4_clock = 1'b1; 

        
//////////////////////////////////////////////////////////////////////////// 
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  // 
  // Reset Generation 

  // 
  // A shift register primitive is used to generate an active-high reset 

  // signal that remains high for 16 clock cycles after configuration finishes 
  // and the FPGA's internal clocks begin toggling. 
  // 

  //////////////////////////////////////////////////////////////////////////// 
  wire reset; 

  SRL16 reset_sr(.D(1'b0), .CLK(clock_27mhz), .Q(reset), 
          .A0(1'b1), .A1(1'b1), .A2(1'b1), .A3(1'b1)); 
  defparam reset_sr.INIT = 16'hFFFF; 

   
 // use FPGA's digital clock manager to produce a 

   // 65MHz clock (actually 64.8MHz) 
////   wire clock_50mhz_unbuf,clock_50mhz; 
////   DCM vclk1(.CLKIN(clock_27mhz),.CLKFX(clock_50mhz_unbuf)); 

////   // synthesis attribute CLKFX_DIVIDE of vclk1 is 27 
////   // synthesis attribute CLKFX_MULTIPLY of vclk1 is 50 

////   // synthesis attribute CLK_FEEDBACK of vclk1 is NONE 
////   // synthesis attribute CLKIN_PERIOD of vclk1 is 37 

////////   BUFG vclk2(.O(clock_50mhz),.I(clock_50mhz_unbuf)); 
  
 wire sensor_reset, sensor_reset_debounced; 

 assign sensor_reset = reset | sensor_reset_debounced; 
 wire sensor_start; 

  
  
  

 debounce reset_debounce(.reset(reset), .clock(clock_27mhz), 
.noisy(~button0), 

          .clean(sensor_reset_debounced)); 
  
 debounce sensor_start_deb(.reset(reset),.clock(clock_27mhz), 

      
 .noisy(~button3),.clean(sensor_start)); 

  
  
 wire echo; 

 assign echo = user3[30]; 
 wire trigger; 

 assign user3[31] = trigger; 
 assign user3[29:5] = 25'hZ; 
 wire [14:0] distance_out; 

 wire [14:0] distance; 
 wire error; 

 wire sensor_ready; 
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// srf05_trigger_and_echo srf05( 
//    .clock(clock_27mhz),    //50 MHz clock signal 

//    .reset(height_reset),      //reset signal 
//    .start(height_start),      //start signal to begin 

sensor reading 
//  .echo(echo),      //echo read in line from 
sensor 

//    .distance(distance_out),  //distance output (as a factor distance/29= 
cm distance) 

//  .trigger(trigger),     //trigger line out to sensor 
//  .ready(sensor_ready)      //when finished 
measuring distance 

//    ); 
  

  
  
 srf05 height_sensor( 

    .clock(clock_27mhz),    //50 MHz clock signal 
    .reset(sensor_reset),      //reset signal from 

fpga/flight controller 
//    input init,      //intialize signal from flight 

controller 
  .start(sensor_start),      //start signal from 
flight controller to begin normal operation 

  .echo(echo),      //output echo line from 
sensor 

    .distance(distance),  //Kept as a factor of 29 (for centimeter height) for 
simplified interface (assumed signed) 
  .trigger(trigger),     //output trigger line to sensor 

  .error(error),      //HIGH if error is 
detected 

  .ready(sensor_ready) 
    ); 
  

// wire signed [15:0] distance_sync; 
// synchronize16 

sync_avg(.clk(clock_27mhz),.in(distance),.out(distance_sync)); 
// wire fir_nfd, fir_ready, fir_nd; 
// assign fir_nd = sensor_ready; 

// wire [15:0] fir_dout; 
// wire [14:0] fir_din; 

// assign fir_din = distance[14:0]; 
//  
// fir_compiler_v5_0 fir_sr50( 

//  .rfd(nfd), .rdy(fir_ready), .nd(fir_nd), .clk(clock_27mhz), 
.dout(fir_dout), .din(fir_din)); 

////  
 //Ring Buffer 
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 reg  [14:0] buffer[31:0]; 
 reg  [19:0] sum = 0; 

 reg  [14:0] avg = 0; 
 reg [4:0] offset = 0; 

  
 integer i; 
 initial begin 

  for(i = 0; i < 32;i = i+1) begin 
   buffer[i] = 15'sd0; 

  end 
 end 
  

  
 always @(posedge clock_27mhz) begin 

   if(sensor_ready) begin 
    sum <= sum + (distance) - (buffer[offset]); 
    buffer[offset] <= distance; 

    offset <= offset + 1'b1; 
    avg <= sum/32; 

   end 
 end 

  
 //Jbimu 
  

 //hardware reset 
// wire imu_reset,imu_reset_deb; 

 //assign imu_reset = switch[0];  
// assign user4[0] = imu_reset; 
  

  
  

 wire signed [15:0] 
roll,pitch,yaw,roll_rate,yaw_rate,pitch_rate,accx,accy,accz; 
 wire [143:0] data_out2; 

 wire done; 
 wire miso,mosi,sck,ss; 

 assign user3[0] = sck; 
 assign user3[1] = sck; 
 assign miso = user3[2]; 

 assign user3[3] = mosi; 
 assign user3[4] = ss; 

 assign user4[31:0] = 32'hZ; 
 wire [7:0] spi_data; 
 assign led = {1'b1, 

miso,switch[1],switch[2],switch[3],~sensor_reset,~sensor_start,~sensor_ready}; 
  

 jb_imu imu( 
    .clock(clock_27mhz),    //50 Mhz clock 
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    .reset(sensor_reset),      //reset signal 
  .start(sensor_start),      //start normal 

operations 
    .roll(roll),    //Roll Angle *100 (deg) 

    .pitch(pitch),   //Pitch Angle *100 (deg) 
    .yaw(yaw),    //Yaw Angle *100 (deg) 
    .roll_rate(roll_rate),  //Roll Rate *10 (deg/sec) 

    .pitch_rate(pitch_rate),  //Pitch Rate *10 (deg/sec) 
    .yaw_rate(yaw_rate),  //Yaw Rate * 10 (deg/sec) 

    .accel_x(accx),   //Accleration gs*1000  
    .accel_y(accy),   //Acceleration gs*1000 
    .accel_z(accz),   //Acceleration gs*1000 

  .data_out_raw(data_out2), 
  .spi_data(spi_data), 

  .done(done),      //IMU Finished Reading 
  .miso(miso),      //MISO Master In/Slave 
Out 

    .mosi(mosi),      //MOSI Master OUt/Slave IN 
    .sck(sck),      //SClock out to device 

  .ss(ss)       //SPI Select Bit 
    ); 

  
 ///AVeraging Filter for IMU outputs 
 //Ring Buffer 

 reg signed  [15:0] buffer_roll[63:0]; 
 reg signed [15:0] buffer_pitch[63:0]; 

 reg signed [15:0] buffer_yaw[63:0]; 
 reg signed [15:0] buffer_roll_rate[63:0]; 
 reg signed [15:0] buffer_pitch_rate[63:0]; 

 reg signed [15:0] buffer_yaw_rate[63:0]; 
 reg signed [15:0] buffer_accx[63:0]; 

 reg signed [15:0] buffer_accy[63:0]; 
 reg signed [15:0] buffer_accz[63:0]; 
 reg signed [21:0] sum_roll = 0; 

 reg signed [21:0] sum_pitch = 0; 
 reg signed [21:0] sum_yaw = 0; 

 reg signed [21:0] sum_roll_rate = 0; 
 reg signed [21:0] sum_pitch_rate = 0; 
 reg signed [21:0] sum_yaw_rate = 0; 

 reg signed [21:0] sum_accx = 0; 
 reg signed [21:0] sum_accy = 0; 

 reg signed [21:0] sum_accz = 0; 
 reg signed [15:0] avg_roll; 
 reg signed [15:0] avg_pitch; 

 reg signed [15:0] avg_yaw; 
 reg signed [15:0] avg_roll_rate; 

 reg signed [15:0] avg_pitch_rate; 
 reg signed [15:0] avg_yaw_rate; 
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 reg signed [15:0] avg_accx; 
 reg signed [15:0] avg_accy; 

 reg signed [15:0] avg_accz; 
 reg [4:0] offset2 = 0; 

  
  
 integer i2; 

 initial begin 
  for(i2 = 0; i2 < 64;i2 = i2+1) begin 

   buffer_roll[i2] = 16'sd0; 
   buffer_pitch[i2] = 16'sd0; 
   buffer_yaw[i2] = 16'sd0; 

   buffer_roll_rate[i2] = 16'sd0; 
   buffer_pitch_rate[i2] = 16'sd0; 

   buffer_yaw_rate[i2] = 16'sd0; 
   buffer_accx[i2] = 16'sd0; 
   buffer_accy[i2] = 16'sd0; 

   buffer_accz[i2] = 16'sd0; 
  end 

 end 
  

 reg [4:0] buffer_cnt = 0; 
 always @(posedge clock_27mhz) begin 
   if(done) begin 

    sum_roll <= sum_roll + (roll) - (buffer_roll[offset2]); 
    buffer_roll[offset2] <= roll; 

    avg_roll <= sum_roll/64; 
     
    sum_pitch <= sum_pitch + (pitch) - 

(buffer_pitch[offset2]); 
    buffer_pitch[offset2] <= pitch; 

    avg_pitch <= sum_pitch/64; 
     
    sum_yaw <= sum_yaw + (yaw) - (buffer_yaw[offset2]); 

    buffer_yaw[offset2] <= yaw; 
    avg_yaw <= sum_yaw/64; 

     
    sum_roll_rate <= sum_roll_rate + (roll_rate) - 
(buffer_roll_rate[offset2]); 

    buffer_roll_rate[offset2] <= roll_rate; 
    avg_roll_rate <= sum_roll_rate/64; 

     
    sum_pitch_rate <= sum_pitch_rate + (pitch_rate) - 
(buffer_pitch_rate[offset2]); 

    buffer_pitch_rate[offset] <= pitch_rate; 
    avg_pitch_rate <= sum_pitch_rate/64; 
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    sum_yaw_rate <= sum_yaw_rate + (yaw_rate) - 
(buffer_yaw_rate[offset2]); 

    buffer_yaw_rate[offset2] <= yaw_rate; 
    avg_yaw_rate <= sum_yaw_rate/64; 

     
    sum_accx <= sum_accx + (accx) - 
(buffer_accx[offset2]); 

    buffer_accx[offset2] <= accx; 
    avg_accx <= sum_accx/64; 

     
    sum_accy <= sum_accy + (accy) - 
(buffer_accy[offset2]); 

    buffer_accy[offset2] <= accy; 
    avg_accy <= sum_accy/64; 

     
    sum_accz <= sum_accz + (accz) - 
(buffer_accz[offset2]); 

    buffer_accz[offset2] <= accz; 
    avg_accz <= sum_accz/64; 

   end 
 end 

 
  
  

  
 wire [47:0] imu_info; 

// assign imu_info = (switch[1]) ? {roll,pitch,yaw} : 
//       (switch[2]) ? 
{roll_rate,pitch_rate,yaw_rate} : 

//       (switch[3]) ? {accx,accy,accz} : 
//       48'hFF_FF_FF_FF_FF_FF; 

 assign imu_info = (switch[1]) ? {avg_roll,avg_pitch,avg_yaw} : 
       (switch[2]) ? 
{avg_roll_rate,avg_pitch_rate,avg_yaw_rate} : 

       (switch[3]) ? 
{avg_accx,avg_accy,avg_accz} : 

       48'hFF_FF_FF_FF_FF_FF; 
// assign imu_info = {roll,pitch,yaw}; 
  

  
 wire [15:0] data_out; 

 assign data_out = {1'b0,avg}; 
  
  

 //hex display out 
 wire [63:0] data; 

 assign data = {imu_info,data_out}; 
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 display_16hex hexdisplay(.reset(reset),.clock_27mhz(clock_27mhz), 
         .data(data), 

.disp_blank(disp_blank),  
        

 .disp_clock(disp_clock),.disp_rs(disp_rs), 
        
 .disp_ce_b(disp_ce_b),.disp_reset_b(disp_reset_b), 

        
 .disp_data_out(disp_data_out) 

         ); 
          
          

 // Logic Analyzer 
   assign analyzer1_data = roll;][= 

   assign analyzer1_clock = 1'b0; 
   assign analyzer2_data = 16'h0; 
   assign analyzer2_clock = 1'b1; 

   assign analyzer3_data = {3'd0,done,ss,sck,miso,mosi,spi_data}; 
   assign analyzer3_clock = {clock_27mhz}; 

   assign analyzer4_data = 16'h0; 
   assign analyzer4_clock = 1'b1;         

  
endmodule 
 

// 
//module synchronize16 (input clk,input [15:0] in, 

//                    output reg [15:0] out); 
// 
//  reg [15:0] sync; 

// 
//  always @ (posedge clk) 

//  begin 
//    {out,sync} <= {sync,in}; 
//  end 

//endmodule 
 

module debounce #(parameter DELAY=270000)   // .01 sec with a 27Mhz clock 
         (input reset, clock, noisy, 
          output reg clean); 

 
   reg [18:0] count; 

   reg new; 
 
   always @(posedge clock) 

     if (reset) 
       begin 

   count <= 0; 
   new <= noisy; 
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   clean <= noisy; 
       end 

     else if (noisy != new) 
       begin 

   new <= noisy; 
   count <= 0; 
       end 

     else if (count == DELAY) 
       clean <= new; 

     else 
       count <= count+1; 
       

endmodule 
 


