

Gesture Controlled UAV Proposal

Ben Schreck and Lee Gross
10/29/2014

1 Overview
There are currently two types of unmanned aerial vehicles (UAVs): autonomous aircrafts
and remotely piloted aircrafts. Remotely piloted aircrafts are tough to control using
handheld remotes. We propose an intuitive approach to controlling these UAVs, using
hand gestures rather than remotes.

Our project will allow a user to control a quadcopter (a type of UAV) using hand gestures.
The operator will make these gestures in front of a Microsoft Kinect device, which can
sense both colored light and depth of field. Using a Kinect allows us to define more
complex gestures that take advantage of the distance of the operator’s hands from the
camera. Furthermore, they may allow us to discard the typical colored gloves usually worn
by 6.111 students that enable easy hand-tracking by color matching.

When an operator makes a correct gesture, the FPGA will classify it, and send the
appropriate signal to the quadcopter’s remote controller, which will then send an infrared
signal to the quadcopter commanding it to perform a particular action.

Due to time constraints, we chose to limit the number of ways the user can control the
quadcopter. Manually holding a quadcopter’s altitude constant without complicated
controls and avionics is a challenge on its own. Therefore, we decided it is best to only
allow the user to turn the quadcopter on and off and control its elevation, leaving out the
ability to turn left or right.

2 Implementation
Our design is composed of two main parts: gesture recognition and quadcopter control.
The gesture recognition component is responsible for capturing information about the
operator in the form of video and depth sensing, recognizing the operator’s hands, and
then mapping the operator’s hand movements to predetermined gestures. The
quadcopter control component is responsible for interfacing with the infrared transmitter
that controls the quadcopter and sending signals that correspond to the controls
indicated by the gestures.

2.1 Gesture Recognition
The gesture recognition component is composed of a five step pipeline shown in figure 1.
The first step consists of capturing hand gestures using a Kinect camera. The
subsequent steps allow us to detect the location of the hands, transmit the data to the
FPGA and determine which gestures correspond to the operator’s actions.

2.1.1 Kinect Camera Input
We will be using a Kinect camera to capture the user’s hand gestures. The Kinect camera
affords us a 3D representation of the space: it provides us with an RGB image stream as
well as a depth stream.

The Kinect camera will be connected to a PC and a few computations (discussed in
sections 2.1.2 and 2.1.2a) will also be computed on the PC so that we can can use less
bandwidth when sending data to the FPGA.

2.1.2 Hand Classifier
This module finds the center of mass of each of the operator’s hands. It takes in depth
data from the Kinect, and potentially color stream data that has been mapped from RGB
(Red, Green Blue) to HSV (Hue, Saturation, Vibrance) color space. These two options are
discussed in the following subsections.

2.1.2a Using Kinect’s Depth Stream
The depth stream provides with a depth value for each x,y coordinate in the image,
corresponding to how far away that particular real world location is from the camera.
Ideally, we would be able to capture all necessary information about hand location solely
from the Kinect’s depth stream. Scanning the depth stream for clusters of coordinates
within a particular range will allow us to identify hands. However, in this case we may have
difficulty keeping track of the left and right hand as discrete units.

There are two solutions to this problem. The first idea is to divide the viewport into two
horizontally adjacent portions. If the majority of a hand is detected on the left side of the
viewport, it will be classified as the left hand, otherwise it will be classified as the right
hand. The operator is then in charge of keeping each of his or her hands on either side of
viewport.

The other option is to have the operator wear different colored gloves on each hand. To
take advantage of this option, we will have to use the Kinect’s RGB camera as well,
described in the following section.

2.1.2b Using Kinect’s Color Stream
The color stream’s main purpose is to distinguish between left and right hands. To
facilitate this, we first use a color space converter to convert from RGB to HSV data.
Then, knowing the correct hue associated with the operator’s colored gloves, the
colorstream submodule of the hand classifier averages the coordinates of the pixels that
are of the correct hue value. For example, it will look for all pixels of the color red
(meaning they are within a certain range of values) sum the x and y coordinates, and then
find the average. This leaves us with the center of mass of each hand.

2.1.4 USB Adapter
This module transmits data from the kinect-connected PC to the FPGA. The information
contained in this data will be used to classify gestures, so it will contain the coordinates
and depth of each hand of the operator and pass them to the gesture recognition state
machine on the FPGA.

2.1.5 Gesture Recognition State Machine
This module will determine which gesture the operator indicated. It will receive the
coordinates of the location of the hands and output one gesture from a set of
predetermined gestures. Each gesture will have a state machine that checks whether
that gesture was the most likely to have been indicated by the operator. We plan to have
one gesture that will turn the drone on or off and one gesture that will allow the drone to
levitate. This second gesture is actually a set of similar gestures, that each output a
particular number, corresponding to how high the operator wants the drone to levitate.

2.2 Quadcopter Control
Quadcopter control entails the conversion of representations of gestures inside the
FPGA to signals that the system will feed to the quadcopter remote controller. The
controller itself contains analog dials that alter four aspects of quadcopter control: roll,
pitch, yaw, and thrust. The definition of all of these terms is somewhat unnecessary for
this proposal, since we will only concern ourselves with thrust. The other terms deal with
moving the drone forward, backward, and sideways in space. Thrust deals with
up-and-down motion only.

We have yet to take apart the controller and understand how these controls are
delivered to the quadcopter, so we do not know how we will interface with it. However,
assuming the controls are simple analog voltage values, we will simply take apart the
control, and wire the thrust input to a digital-to-analog converter connected to the FPGA.
Similarly, we will wire digital on/off signals to the on/off switch on the controller. If the
controller has pushbuttons, we can replace the pushbuttons with a relay and control the
relay with the labkit.

2.3 Additional Features
If time allows, we’re also considering adding a couple of additional features. We have a
couple of ideas ranging from feedback to the user to gamifying the quadcopter control
(the game would be to see how long a user could keep the quadcopter at specified
altitudes). Below is a list of features that we will consider to add along with a difficulty
measure.

Feature Difficulty

Camera view from quadcopter 5

Feedback of recognized gestures on a
computer monitor

3

Additional gestures 2

Gamifying the quadcopter 4

Figure 1 displays the pipeline of the system as well as well each module is located.

3 Testing
We plan on testing each module individually, and then testing the interconnects between
them in stages. Many of these tests can be run in parallel.

3.1 Kinect Camera Input Testing
The Kinect input module needs to be tested to see if color and depth stream input can
be received by the PC from the Kinect.

3.1a Hand Classifier Testing
After receiving input from the Kinect, we need to test our ability to find the left and right
hand of the operator from the Kinect input, on the PC. During this test, we will decide
whether to use only the depth stream, or both the depth and color stream, based on how
difficult it is to distinguish between the left and right hands. The output of this test will
determine whether the operator needs to wear colored glove.s

3.2 USB Adapter Testing
This module can actually be tested in conjunction with 3.1 and 3.1a, because we only need
to see if we can transmit data from the PC to the FPGA.

3.3 Gesture Recognition State Machine Testing
This module can be tested independently, because its input can be mocked with fake
data corresponding to location of the hands. Here, we need to test whether particular
movements of the center of mass of hands can be classified into different gestures.

3.4 Quadcopter Control Testing
This module can also be tested independently, again because its input can be mocked
with fake data, this time with signals about how to control the quadcopter. Here, we need
to test whether particular control signals can be relayed to the quadcopter.

3.5 Integration Testing
We need to test how each module interacts with each other module. We will accomplish
this is in stages.

3.5.1 Kinect Input to USB Adapter Testing
Here, we test whether we can take in Kinect input, determine hand locations, and pass
that information to the FPGA.

3.5.2 Kinect Input to Gesture Recognition State Machine Testing
Here, we test whether we can take in Kinect input, determine hand locations, pass that
information to the FPGA, and classify hand motions as particular gestures.

3.5.3 Gesture Recognition State Machine to Quadcopter Testing
Here, we test whether we can classify gestures from faked data, and feed that to the
quadcopter control unit to actually control the quadcopter.

3.5.4 Kinect Input to Quadcopter Control Testing
Here, we test the entire system, making sure that Kinect input can be used to actually
control the quadcopter.

4 Timeline
We will begin by first working on the two external modules: interfacing with the drone
controller and getting the depth and VGA values from the Kinect. We will then implement
the color space converter as well as the center of mass calculation in C++ on a PC in
parallel with the gesture recognition module in verilog. Once we built these, we will
implement the USB adapter and finally, combine the modules. If time allows, we will also
implement additional features. A diagram showing the parallel flow is shown below.

This diagram is an approximation of our schedule but we realize that issues always arise
so we’ve planned to finish the project a week early and assigned extra time to each
module. If we finish the goals early, we plan on implementing additional features. The
feature we chose to implement will depend on the amount of time we have.

5 Resources
Below are the two items that we need for the project.

Item Cost

Kinect camera Free - borrow from friend

UAV $60

