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Introduction

In today’s excessively monitored and public world, there is no more privacy. An email can be
read by Google, and a chat conversation can be read by Facebook. A conversation over a cell
phone can be intercepted at a cell phone tower, and a phone conversation over a landline can be
wiretapped. In the era of technology, there is no longer a way to communicate privately except
face-to-face.

No way, that is, except for cryptographically protected communications. The last century, in
addition to bringing about the technologies mentioned above for communicating remotely (along
with the technologies used to eavesdrop on them) also brought about the invention of clever
cryptographic schemes for hiding information securely. These schemes go by many names; in
our implementation, we made use of a particular implementation: the one called Diffie-Hellman-
Merkle key exchange. Diffie-Hellman-Merkle key exchange begins with what we call a “hand-
shake” between the two parties; an initialization phase that involves the two participants agreeing
to a shared key, which will determine the encryption protocol. The truly incredible thing about
the Diffie-Hellman-Merkle handshake (along with a handful of other schemes which we did not
use) is that it enables two interlocutors with no prior agreements or contact to communicate
securely in the presence of an eavesdropper who can hear everything they ever say to each other,
including the entire handshake[1][2]. Conditioned on the hardness of various problems which are
widely believed to in fact be very difficult to solve by the wider academic community, it is in fact
provably intractable for the eavesdropper to hear the communications[3].

In what follows, we will give a detailed description a hardware implementation of a telephone
system that is cryptographically protected in a theoretically defensible way; that is, for an
attacker to be able to eavesdrop on a call using our telephone system would require either a
long-standing conjecture to be false, or would require more vastly more computational power
than is available to the world today. We begin this report with a high-level description of the
ideas and concepts behind what we did; in the second half of the report, we give more low-level,
detailed descriptions of how we actually implemented all the high-level ideas, and the challenges
we encountered in that process.

At various points in this paper, we will find it convenient to describe two hypothetical users
of our system, and a hypothetical attacker; in general, we will use the names Alice and Bob to
designate the legitimate users, and Eve to designate the eavesdropper.
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Chapter 1

High-Level Description

1.1 Transmitting Audio

In order to transmit the audio across the channel, we organize the audio signal into packets,
to be sent one at a time across the channel. It is more efficient to perform the cryptographic
calculations when the input is in available in larger chunks than a single audio sample. Packets
come in two types: audio packets and handshake packets, depending on whether or not the two
participants in the conversation have already successfully contained the Diffie-Hellman-Merkle
handshake. Each packet contains a header, which serves the purpose of informing the recipient
that the packet has begun. Audio packets also contain a sequence number and the audio data;
handshake packets also contain a public key and information about whether or not the other
person’s public key has already been received.

In order to assemble a packet, we have a buffer module which accumulates the bits before
sending them all at once in packet form. The buffer makes use of the BRAMs in order to be as
efficient as possible, and because it is storing a potentially large amount of memory (so simply
using flip-flops would be a waste of valuable programmable logic).

Finally, the packets themselves are transmitted over a simple wire that connects two FPGA
labkits, after having been encrypted by the encryption module. The wire is long and has a
certain amount of noise, so we oversample (look at the value on the wire multiple times) to make
reading errors much less likely than they otherwise would be.

1.2 Cryptographic protection

As it is easy for an individual to come up with a cryptosystem that they themselves cannot
break, but harder to create one that will withstand attacks from others, we based our design
on existing well-audited building blocks. As we are not aware of any freely available Verilog
implementations of these algorithms, we implemented them and verified their correctness by
comparing the behavior of our hardware implementations to the existing reference (software)
implementations.

The overall plan is as follows: in the very beginning of each call, the two communicating
labkits perform a Diffie-Hellman-Merkle handshake to generate a shared secret. That secret is
used to seed a pseudo-random keystream generator and the digital audio signal will be xor-ed
with the keystream. This prevents the attacker (who does not know the shared secret or the
keystream) from recovering the audio signal.
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Alice g = 9 ∈ Curve25519 Bob

Randomly pick Randomly pick

a ∈ {0, 1}256. b ∈ {0, 1}256.

Send ga Send gb
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Display k ka = k = kb Display k

Figure 1.1: Commit-and-reveal Diffie-Hellman-Merkle Handshake

The described mechanisms are sufficient against an attacker that can not only see what is
sent over the wire but tamper with it; for example, one might cut the wire and connect it to their
phone instead and all this would continue without interruption. Furthermore, they might make
another call to the intended recipient and connect these calls while maintaining the ability to
eavesdrop. Currently, our labkits display the shared key gab on them; it would be more secure to
change this to displaying a hash of the interlocutor’s public key, to make sure that the two users
of ours system are indeed on the same call (and thus not eavesdropped on). Fortunately, this
can easily be done with a one-line change to the inputs to the hex display; we felt that displaying
the shared key would be more interesting for the demonstration, because it shows that the two
participants have successfully agreed upon a shared protocol.

As classical Diffie-Hellman-Merkle requires hundreds of modular arithmetic operations on
multiple-thousand-bit numbers to be secure, we use a modern variation where every modular
multiplication is replaced with the addition of two points on a carefully chosen elliptic curve.
The other relevant properties of elliptic curve addition are the same as for modular multiplication,
we will even continue to use the classical notation. Our choice of primitives goes as follows:

Random numbers: Hash of 200ms of microphone input.

Diffie-Hellman-Merkle function: Curve25519 (uses arithmetic modulo 2255 − 19)

Keystream: ChaCha20 (uses 32-bit addition, xor, and rotation by constant).

Hash: SHA3 (Keccak, ”sponge” construction using a permutation circuit)

1.3 Resulting User Experience

Two labkits are connected with a couple of wires. When a connection is established, both hex
displays show the same value. Anything spoken into one labkit’s microphone is heard from the
headphones of the other and vice versa.

1.4 Possible Attacks

It is the nature of practical cryptography that it is very difficult to prove the security of your
system. In order to prove that nobody can break your encryption in any way, it would be
necessary to prove something about the entire space of possible attacks, which is too great to
comprehend, or it would be necessary to enumerate every possible attack to the system and
show that each fails, which is impossible. Unfortunately, the best we can do at this point is
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enumerate all widely-known attacks against cryptographic systems, and explain why each one
cannot succeed against our system. It is possible (even likely) that there exists some attack not
described here that would break our system; unfortunately, the best measure of security that we
can offer against such an attack is that because people as a whole haven’t thought of it yet, it’s
likely that a potential attacker wouldn’t either.

1.4.1 Brute-Force Attacks

This class of possible attacks has as its goal to learn through algorithmic means either of the
interlocutors’ secret keys, which is enough to let the attacker compute the shared secret and the
decryption of the message. Assuming that division in the space of elliptic curve functions is com-
putationally difficult (which is widely believed in the academic community to be true) this class
of possible attacks won’t succeed against our system because of the fact that the only algorithms
able to find an interlocutor’s secret key as a function of their public key take exponential time;
moreover, our key length is long enough that no implementation of any algorithm has come close
to being able to do this.

1.4.2 Man-in-the-Middle Attacks

This type of attack is based off the idea of spoofing the two interlocutors into thinking that they
are talking to each other, when in fact, they are both talking to the attacker and the attacker is
relaying messages between them. No amount of security on the channel itself can protect against
an attack of this kind, since the attacker’s ability to hear the communications comes from the fact
that two participants in a phone conversation can hear the communications–something that is
necessary for the basic functioning of a telephone system. However, we can give t the interlocutors
the ability to know when there is a man-in-the-middle attacker, by giving everyone access to the
public key of a given other person, and also giving them access to the public key of the person
they’re talking to. If the Alice believes herself to be speaking to Bob, but is actually speaking to
Eve, who is executing a man-in-the-middle attack, then she will see both Bob and Eve’s public
keys displayed on her phone’s screen, and this will tell her that she is not speaking to the person
she think she is. This is the basic idea; in reality, we would display not the public key itself
(which is much too long to display) but a hash thereof, and if Bob and Eve’s public keys were
different, then the hashes would be virtually certain to also be different, assuming we used a
cryptographic hash function (a hash function which is computationally difficult to invert).

1.4.3 Data Manipulation Attacks

These attacks consist of manipulating the data cleverly; for example, it might be imagined that
in an insecure cryptographic system, an attacker might be able to compute the XOR of the data
on the wire from Alice to Bob and the wire from Bob to Alice, for example, and thereby gain
information. Another common potential attack is to compute the XOR of the data on the wire
with what the data was on the wire in the past.

These attacks won’t work against our system, because of the security guarantees of the
Chacha20 hash function; given the output of the hash function on one value, it is computationally
difficult to predict the output of the hash function on some different value, and in general the
Chacha20 hash function produces values that appear to have no structure. This means that
performing arithmetic operations on different snapshots of the encrypted data won’t give an
attacker any useful information about what’s being said.

However, there is another kind of attack which our system is vulnerable to; if Alice is speaking
to Bob and Eve has compromised the wire, Eve could move packets around on the wire, or could
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even remove the packets altogether and replace them with her own, encrypting them to Bob’s
public key. This does not allow Eve to find out anything about what Alice and Bob are saying,
so privacy is preserved, but it does allow Eve to make Alice appear to things that she didn’t
actually say.

To protect against this attack, a good next step would be to cryptographically sign each
packet. This would be a good future avenue for improvement.
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Chapter 2

Detailed Implementation

In this section, we give a detailed description of our design and how it works. In the pages that
follow, we provide two block diagrams that provide a visual summary of our design. In the text,
we describe in detail the working of each of the modules shown in the block diagram.

Our implementation is split into two “phases”: Phase 1, in which the handshake takes place,
and Phase 2, in which sound is exchanged between the two users and the phone conversation
takes place.

2.1 Controller

Author of section: Adam Yedidia. The module was jointly designed.

This part of the code did not have its own module, nor did it consist of very much distinct
code; however, it is present in the block diagram as a design abstraction, which controls the
flow of the system from Phase 1 (handshake) into Phase 2 (audio). Upon turning on the labkit,
it tells the Handshake FSM module to begin the handshake; upon successful completion of the
handshake, it takes the shared key output by the Handshake FSM module, feeds it into the
Chacha20 module, and begins Phase 2. It can be thought of as a very high-level state machine
with two states over the entire design.

2.2 Handshake FSM

Author of section: Adam Yedidia

This module is a finite-state machine in charge of making sure of the proper execution of
the Diffie-Hellman-Merkle handshake that communicates the shared key to both participants. It
consists of the following seven states, each one leading directly into the next:

1. Waiting for start pulse: the state machine is idle and waiting to be told to begin.
2. Computing the public key: the state machine takes as input a secret key seed, feeds it into
the Curve25519 module, and waits for the computation to terminate.
3. Sending the public key (no acknowledgement): the state machine sends its public key over
the wire in a handshake packet, with an acknowledgement byte indicating that it has not yet
received a handshake packet from its partner. It waits to receive a handshake packet from its
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Figure 2.1: A block diagram of the execution of Phase 1. Thick lines indicate external wires
(which the attacker has access to), whereas arrows indicate internal wires (which the attacker
does not have access to). For clarity, we show only the information flowing from Alice to Bob;
in reality, this entire design is duplicated in the other direction.
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Figure 2.2: A block diagram of the execution of Phase 2. Thick lines indicate external wires
(which the attacker has access to), whereas arrows indicate internal wires (which the attacker
does not have access to). For clarity, we show only the information flowing from Alice to Bob;
in reality, this entire design is duplicated in the other direction.
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partner.
4. Sending the public key (with acknowledgement): the state machine sends its public key over
the in a handshake packet, with an acknowledgement byte indicating that it has successfully
received a handshake packet from its partner. It waits to receive a handshake packet containing
an acknowledgement byte confirming successful receipt in the other direction.
5. Reading the partner’s public key: at this point, both partners have confirmed that the other
has succeeded in receiving a handshake packet. The state machine proceeds to read its partner’s
public key. 6. Computing the shared key: the state machine generates the shared key by feed-
ing both its secret key seed and its partner’s public key and feeding them into the Curve25519
module.
7. Handshake complete: the state machine is idle and outputs the shared key.

2.3 Serial Port Modules

Author of section: Adam Yedidia. This module was jointly designed.

This pair of modules, SendFrame and ReceiveFrame, are in charge of sending data over the
wire that connects the two labkits. SendFrame sends a byte of data over the wire by repeatedly
calling SendBit on both the packet header and whatever information follows.

SendBit sends a single bit over the wire, by first setting the data wire to whatever that volt-
age that bit corresponds to, and then setting the DATA READY wire to high one clock cycle later
(indicating that data is available to be read on the data line).

ReceiveFrame reads a single byte off the data wire by calling ReadBit on the data wire when-
ever the DATA READY signal goes high. ReadBit reads the data off the wire. ReceiveFrame knows
to start parsing the information on the wire as relevant as soon as a packet header is seen.

Because of the fact that our roughly 500mm-long wire is imperfect, errors in communication
routinely occur over the wire if each bit is read off the wire only once (about one to ten errors
per second). These errors are still infrequent compared to the frequency with which sound data
is sent (one byte per 20 µs), but these errors can produce unpleasant popping noises over the
phone line, and worse, if such an error is made during the Diffie-Hellman-Merkle handshake, one
of the two partners may get the wrong public key data, causing the two partners to differ about
the value of the shared key and rendering all communication impossible.

For this reason, the ReceiveBit module “oversamples” the data line, meaning that it samples
three times, and takes the bit it saw most frequently from those three samples. Because errors
happen roughly once in a million bits sent over the wire, the probability that two out of three
given samples will be erroneous (making the possibly-dubious assumption that each sample is
independent) is roughly one in 300 billion. This vastly reduced probability of error was enough
for us to never observe any popping over the wire.

2.4 Packet Structure

Our system makes use of two different types of data packets that can be sent over the wire. We
call the two types of packets handshake packets and audio packets respectively.
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Figure 2.3: The layout of the two types of packets.

Both packets begin with a packet header : a string of bits, 10101011, that gets sent over the
wire to notify the receiving labkit that transmission of the packet body is about to begin.

The packet body is different for each packet. Handshake packets contain the following com-
ponents, which make up 272 bits:

-An acknowledgement byte (8 bits), depending on whether or not the labkit sending the hand-
shake packet has yet successfully received a handshake packet from its partner. An acknowl-
edgement byte of 01100110 means “I have not yet received a handshake packet from you” and
an acknowledgement byte of 100110011 means “I have received a handshake packet from you.”
-The transmitter’s unmodified public key (256 bits). Note that because this key is being trans-
mitted over the channel without any modification, an attacker can read the public key; however,
due to modern cryptographic hardness conjectures, an attacker with access to both public keys
would not be able to find the shared key without running an algorithm that would take years
if not millenia to complete (without drastically improving state-of-the-art elliptic-curve-discrete-
logarithm algorithms).

Audio packets contain the following components, which make up 552 bits:

-A sequence number (32 bits). If this is the ith packet that has been sent over the wire during
this phone conversation, then the sequence number would have a value of i. Note that because
our sequence numbers have a fixed length of 32 bits, no more than 232 ≈ 4 billion packets can be
sent over the wire before the conversation becomes insecure; however, given that we only send
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48,000 packets per second over the wire, the phone conversation can last about 100,000 seconds
or roughly one day before it is insecure: more than the length of most any phone conversation
between two ordinary people. If this design was to be used in a situation where communication
was going to last for weeks or months, it would be wise to increase the size of this sequence
number to 64 bits.
-Encrypted audio data (512 bits). This is the result of a bitwise XOR operation that has been
performed between the audio data and the output of the Chacha20 module, which outputs the
cryptographic bit-stream. An attacker with access to this audio data and the public keys of
both participants in the conversation cannot in a practical way deduce what is being said in the
conversation.

2.5 Buffer Logic

Author of section: Adam Yedidia. This module was jointly designed.

In the code, we did not give this part of the program an actual separate module, but instead
put it directly into labkit.v. However, both the few lines contained in the execution of the logic
and our behavior in how we structured it belie its complexity; this was a very difficult module,
both to think about and to execute properly.

The idea of the module is that it must fill buffers with data (be it audio data or handshake
data), so that it can be passed, preceded by a packet header, to the serial-port code, which can
then send it over the wire. Unfortunately, this is complicated by the fact that if a buffer were
to be modified during sending, that could lead to malformed packets being sent: a potential
irritant for the user if it happens while audio data is being sent, and potentially catastrophic if
it happens during the Diffie-Hellman-Merkle handshake.

To avoid this possibility, the module uses two BRAMs acting as buffers on both the sending
and the receiving side, each with 64 slots containing one byte each. While the data from one of
the two buffers is being sent over the wire, the other buffer is free to be written into for the next
send. Then, when the send on the current buffer finishes, the two buffers switch roles, with the
first being ready to be written into and the second relaying its data to the serial port logic to be
sent.

2.6 Curve25519 Key Exchange

Author of section and module: Andres Erbsen.
As classical Diffie-Hellman-Merkle key-exchange requires hundreds of modular arithmetic opera-
tions on multiple-thousand-bit numbers to be secure, we will be using a modern variation where
every modular multiplication is replaced with the addition of two points on a carefully chosen
elliptic curve. The other relevant properties of elliptic curve addition are the same as for mod-
ular multiplication, so we will continue to use the classical notation. Even though one elliptic
curve addition uses 10 modular multiplications, the same level of security can be achieved using
numbers that are 10 times shorter. Numbers that are 10 times shorter are 100 times easier to
multiply, leading to 10 times less chip area and time usage.

The elliptic curve cryptography implementation is the most technically involved part of this
project. The paper that introduced Curve25519[8] gives explicit formulas for the elliptic curve
arithmetic in terms of operations on integers modulo the prime p = 2255 − 19. Our implemen-
tation of the Curve25519 module follows the figure presented in the appendix of that paper and
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makes use of the properties of our modular arithmetic modules to provide better performance.
The main computation consists of 255 iterations of the elliptic curve Montgomery ladder step
operation, each of which involves 10 modular multiplications and a couple of additions and sub-
tractions. To allow for a simpler and faster implementation, the intermediate results are stored
as fractions and the final output fraction is reduced to a scalar at the very end, requiring mod-
ular division. To save area, the circuit has only one copy of the modular multiplication unit
and one add/subtract unit; these are used in sequence to compute the elliptic curve operation
and the division. Furthermore, as the latency of our modular multiplication unit is twice as
high as the latency of the addition/subtraction unit, but the throughput is the same, we did
our best to keep the multiplication pipeline active at all times. This results in using 7 255-bit
registers to store the intermediate values, in addition to the internal registers of the modular
arithmetic units. All in all, our implementation requires less than 70000 cycles to perform an
elliptic curve operation (public key generation or shared key generation). Our implementation
is a trade-off between speed, circuit area, and complexity. We believe that more careful pipeline
management could offer slightly better speeds for any area, storing the intermediate values of
the elliptic curve operations in block RAM instead of registers would allow for a smaller area
at the expense of speed, and implementing a dedicated modular division (inversion) unit would
allow for significantly better performance at even larger expense of area.

2.6.1 Modular multiplication

We took advantage of the fact that the modulus (p = 2255 − 19) was known at the design
time, that it is very close to a power of two, and the availability of 18-by-18-bit multipliers to
create implement an efficient modular multiplication unit. The overall strategy is depicted in
the following figure.

1. Interpret each 255-bit input as 15 17-bit digits. While it would have been possible to use
18-bit digits, choosing 17 greatly simplifies the implementation because 255 bits can be
evenly divided into 17-bit digits but not into 18-bit digits.

2. Perform an algorithm similar to schoolbook multiplication, where

• During each clock cycle, one row of partial products is computed

• Each partial product that would eventually overflow the 255-bit result because of its
position is omitted from the calculation.

• However, the overflowing partial product is not discarded. As the modulus is not a
power of two, correct for the difference between two’s complement integer overflow
and addition mod p by adding 19 times the number of times the overflow wrapped
around to the result. Because there must be an empty low order partial product slot
for each partial product that is statically known to overflow, no addition needs to
be performed: the just system places 19 times the overflowing partial product to the
correct slot.

3. Cumulatively add up the columns of partial products, but do not handle carries between
them. The sum of each column has an upper bound of 42 bits because it is a sum of 17
products of two 17-bit numbers times 19.

4. Handle carries from the two most significant columns, adding the number of overflows times
19 to the result as before.

5. Handle all remaining carries starting from the least significant column and moving towards
towards the most significant column. The result will be between 0 and 2p.
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Figure 2.4: Overview of modular multiplication of 255-bit integers a and b. a0 is the least
significant 17-bit digit of a. Each row of the table in step 3 is computed in 1 clock cycle.
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6. If the result overflows (has a carry of 1), subtract p from it. This is not implemented as
a separate step. Instead, there are two copies of steps 4 and 5, one of which works as
described and the other subtracts the appropriate digit of p while handling each carry. The
correct output is selected amongst the two branches using the carry bit.

The breakdown of time usage is roughly as follows: step 2 takes 17 cycles, step 4 takes 1
cycle, and step 5 takes 17 cycles. As the FPGA provides fast 17-by-17-bit multipliers in dedicated
silicon, the main area usage is due to the the accumulator and operand registers, and the 42-bit
adders used for adding up columns and propagating carries.

2.6.2 Modular Addition and Subtraction

Addition and subtraction also operate on 15 17-bit digits. While a larger digit size would have
offered superior speed at the submodule level, we chose to stay consistent with the multiplier
implementation because the addition and subtraction latency is currently not the bottleneck in
the overall system. The general algorithm closely follows the schoolbook method, and can also be
seen as a ripple-carry adder where a 1-by-1-bit “full adder” is replaced with a 17-by-17-bit digit
adder. As in multiplication, we need to ensure that the result of the operation wraps modulo
p = 2255−19. Unlike multiplication, the carry (resp. borrow) can only be a single bit, so there is
no need for special handling of carries from higher digits. This allows us to implement a modular
addition (resp. subtraction) of the inputs a and b by first computing both a + b and a + b − p
(resp. a− b and a− b+ p) and selecting the one which is in the valid range to output when the
final carry (resp. borrow) bit becomes available.

Currently our system has separate circuitry for addition and subtraction, but only one of
them is used at once. We believe that it would be possible to save some circuit area at negligible
speed cost by having one circuit that allows the operation to be indicated using an input.

2.6.3 Modular Inversion (Division)

Our system computes b
a as b · 1

a . Calculating 1
a is implemented through exponentiation and

multiplication by Fermat’s little theorem (ap−2 = a−1 mod p), and exponentiation is done as

repeated squaring and multiplication: xn = x (x2)
n−1
2 if n is odd, otherwise (x2)

n
2 . While we are

aware of more complicated methods that allow to perform modular inversion faster, we chose this
one because it requires almost no additional circuit area. Currently, modular inversion accounts
for one fifth of the total modular multiplications and one fourth of the running time (because
the ladder step is pipelined and inversion is not).

2.7 ChaCha20 Stream Cipher

Author of section and module: Andres Erbsen.
ChaCha20[4] is a modern stream cipher that offers excellent performance, and so far even severely
crippled versions of it have withstood all attacks[5]. Given a secret key, it provides fast random
access to different positions of 2130-byte keystream which is XOR-ed with the data to encrypt
it. The procedure to compute a 64-byte block of keystream consists of 20 rounds, each of which
mutates a 4-by-4 table of 32-bit words by applying the quarter round function to all columns or
all diagonals. A quarter round takes 4 32-bit inputs and produces 4 32-bit outputs, mixing the
bits of the input using addition, rotation and XOR. Our circuit has four instantiations of the
quarter round module, and one of the twenty rounds is completed each clock cycle. Finally, the
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output is computed by adding the initial table entries to the final table entries (round 21 in our
implementation).

This implementation provides good performance (3 bytes/cycle), but the propagation delay
of the circuit is rather large, limiting us to clock frequencies under 50MHz. In our case it was
not an issue (we are using a 27MHz), but a higher frequency implementation would probably
need to pipeline the quarter round function.

Note that it is critical that the same part is the keystream is not used to encrypt two different
messages (in the same or different directions). To prevent this, we use the labkit identity (Alice
or Bob) indicated by switch[7] and the packet number to index into the keystream.

2.8 Keccak hash function

Author of section: Andres Erbsen.
We used an open-source Keccak (recently known as SHA3[6]) implementation by Homer Hsing[7],
available at opencores.org. The input is sent to the Keccak module in chunks of 1 to 4 bytes,
the output is a 512-bit high-quality pseudo-random blob generated as a function of the input.
The implementation we used advertises a speed of 2.4Gbit/s at 100MHz, but we used it at a
much slower rate (less than 1Mbit/s).

2.9 Conclusion

We successfully implemented a fully functional phone system that is safe from eavesdropping
against any currently-known attacks. Our phone system remains less practical than a cell phone
from a usability point of view; however, we hope that this report helps make clear that implemen-
tations of cryptography that protect communications from eavesdropping are entirely practical
to implement. There isn’t a good reason why many of our communications aren’t cryptograph-
ically protected. We hope that in the future, measures similar to the ones we implemented are
adopted.
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