
A Cryptographically Protected Phone System

Andres Erbsen Adam Yedidia

October 30, 2014

Introduction

In today’s excessively monitored and public world, privacy has become a luxury.
Intercepting phone calls, emails, and internet communications is withing the
reach of a curious middle-schooler, and the very companies who provide the
communications systems usually fund themselves through spying on us. We
are seeking to change this: to develop a phone system that cannot be silently
intercepted regardless of how the signal is transmitted or who has access to it
while maintaining a simple user experience.

To make this happen, we are going to use modern cryptography. The last
century, in addition to bringing about the technologies mentioned above for
communicating remotely (along with the technologies used to eavesdrop on
them) also brought the invention of clever cryptographic schemes for hiding
information securely. These schemes go by many names; in our implementation,
we will make use of a particular implementation the one called Diffie-Hellman
key exchange. The truly incredible thing about Diffie-Hellman key exchange
(along with a handful of other schemes which we will not use) is that it enables
two interlocutors with no prior agreements or contact to communicate securely
in the presence of an eavesdropper who can hear everything they ever say to
each other. Conditioned on the hardness of various problems which are widely
believed to in fact be very difficult to solve by the wider academic community, it
is in fact provably intractable for the eavesdropper to hear the communications.

In what follows, we will describe a hardware implementation of a telephone
system that will be cryptographically protected in a theoretically defensible way;
that is, for an attacker to be able to eavesdrop on a call using our telephone
system would require either a long-standing conjecture to be false, or would
require more vastly more computational power than is available to the world
today.

1



Planned User Experience

Two lab-kits are connected with a couple of wires. When a call is initiated using
a button, both hex displays show the same verification code. Anything spoken
into one lab-kit’s microphone is heard from the headphones of the other and
vice versa.

The users are encouraged to read the displayed verification code to each other
and check that it is indeed the same for both of them – the protection against
sophisticated man-in-the-middle attacks (described later) depends on this check
being performed correctly. However, the sole presence of that value is a hurdle for
any potential attacker, because they have to decide whether or not to intercept
a call before they learn whether the users are going to check the verification
code – and assuming the implementation does not have bugs, a verification code
mismatch is a definite indication of an ongoing attack.

Transmitting Audio

To transmit the audio across the channel, we will organize the PCM data of
the signal into packets, to be sent one at a time across the channel. It is more
efficient to perform the cryptographic calculations when the input is in available
in larger chunks than a single audio sample. Moreover, each packet requires
a header, which will contain a 128-bit cryptographic authenticator and some
minimal information. The first field will indicate whether the packet is a data
packet or some other specialized signal to the system, such as a command or a
preliminary communication. The next will be a sequence number unique to each
packet. After that, the length of the following data will be indicated. Finally,
the rest of the packet holds the encrypted audio data, followed by the 128-bit
cryptographic authenticator (similar to a checksum). The header is included
in the calculation of the authenticator and the length of the authenticator is
included in the length field.

This design allows us to vary the number of data bits in a packet, so we will be
able to tweak the number of bits we send at once because it is not immediately
obvious what the value should be; a smaller value will increase the relative
overhead of the packet header and make the cryptographic calculations less
efficient. A larger packet size, however, will increase the latency of the system,
because the system will have to accumulate more bits before it can send a packet.
We are likely to want a packet that is as small as possible without further
complicating the implementation. Packets will be assembled in BRAM.

Finally, the packets will be encrypted and transmitted to the other lab-kit. We
hope that a wire driven by the FPGA will suffice for sending a sufficiently clear
signal; if not, we will use a MAX395 chip (designed for this very purpose) instead.

2



Cryptographic protection

As it is easy for an individual to come up with a cryptosystem that they
themselves cannot break but harder to create one that will withstand attacks
from others, we will be basing our design on existing well-audited building
blocks. As we are not aware of any freely available Verilog implementations
of these algorithms, we will be implementing them and verify their correctness
by comparing the behavior of our hardware implementations to the existing
reference implementations (software).

The overall plan is as follows: in the very beginning of each call, the two commu-
nicating lab-kits will perform a Diffie-Hellman handshake to generate a shared
secret. That secret will be used to seed a pseudo-random keystream generator
and the digital audio signal will be xor-ed with the keystream. This prevents the
attacker (who does not know the shared secret or the keystream) from recovering
the audio signal. To also prevent the attacker from selectively modifying the
audio, each audio packet will be accompanied by a 128-bit authenticator that
can only be computed for a message by a party that knows the secret key – the
callers, but not the attacker.

Call Initialization: g is a public constant. Participant A chooses random a
and reveals hash(ga), receives hash(gb), reveals ga, receives gb, checks that
hash(gb) is as expected. B acts symmetrically. Finally, both have s = gab.

Encryption: encryptedi = datai ⊕ keystream(s, i)

Decryption: datai = encryptedi ⊕ keystream(s, i)

Packetization: packeti = (type, i, length(encryptedi), encryptedi)

Authentication: authenticatori = hash(s,packeti)

Auth. checking: Accept received packet iff hash(s,packeti) = authenticatori.

The described mechanisms are sufficient against an attacker that can only see
what is sent over the wire but tamper with it; for example, one might cut the
wire and connect it to their phone instead and all this would continue without
interruption. Furthermore, they might make another call to the intended recipient
and connect these calls while maintaining the ability to eavesdrop. To make
sure that the two users of ours system are indeed on the same call (and thus not
eavesdropped on), we display a value derived from the handshake inputs (ga and
gb) to both of them – if it matches, the connection hasn’t been tampered with.
Displaying just ga and gb would also work, except that each of them is 255 bits
long and comparing them would be tedious. Instead, we display the first 32 bits
of hash(ga, gb), where the hash function is such that changing just one of the
inputs would chaotically change the output. Note that it is important to have
each party to commit to the choice of their ga (resp. gb) value before seeing

3



the other party’s choice – otherwise a powerful adversary could try about 232

options for their own value until he finds one for which hash(ga, gb) coincides
with the verification code for some other conversion of their choice. If they could
do that, they could deceive two users into thinking that there is a direct call
between them, while actually the adversary is relaying all audio between two
calls.

As classical Diffie-Hellman requires hundreds of modular arithmetic operations
on multiple-thousand-bit numbers to be secure, we will be using a modern
variation where every modular multiplication is replaced with the addition of
two points on a carefully chosen elliptic curve. The other relevant properties of
elliptic curve addition are the same as for modular multiplication, we will even
continue to use the classical notation. Even though one elliptic curve addition
uses more than one modular multiplication, smaller numbers can be used without
compromising security, and this enables solid performance with relatively simple
implementations. Our choice of primitives goes as follows:

Random numbers: Hash of 100ms of microphone input.

Diffie-Hellman function: Curve25519 [3] (uses arithmetic modulo 2255 − 19).

Keystream: ChaCha20 [2] (uses 32-bit addition, xor, and rotation by constant).

Hash: BLAKE[1] (uses 32-bit addition, xor, and rotation by constant).

The last two are relatively straightforward to implement given the specification,
as is elliptic curve Diffie-Hellman if an implementation of the underlying modular
arithmetic is given. Even though efficiently implementing generic modular
arithmetic is difficult, the circuit for special case of calculating modulo a prime
that is close to a power of two turns out to be both simpler and more efficient than
one might expect based on standard reasoning about multiplication. Nevertheless,
we predict that getting all the cryptographic computation right will be the most
time-consuming part of the project. To mitigate the inherent risk of something
going wrong due to human error, we will test each subcomputation against an
independently developed software equivalent.

Security Analysis

It is the nature of practical cryptography that it is very difficult to prove the
security of your system. While we do have an informal argument that could
likely be extended to a proof, doing this is outside the scope of this class. We will
instead enumerate the widely-known attacks that have worked against similar
systems, and explain why each one cannot succeed against ours.

Computational Attacks: Computing gab given only ga and gb where g is a
point on Curve25519 was conjectured to be intractable in [3] and no noteworthy

4



progress has been made since. Computing m from m⊕keystreami is impossible if
keystreami is unknown, and as with Curve25519, the conjecture is still standing
that the ChaCha20 keystream cannot be deduced without knowing the secret
key used to generate it.

Man-in-the-Middle Attacks: This type of attack is based off the idea of
spoofing the two interlocutors into thinking that they are talking to each other,
when in fact, they are both talking to the attacker and the attacker is relaying
messages between them. No amount of security on the channel itself can protect
against an attack of this kind, since the attacker’s ability to hear the communi-
cations comes from the fact that two participants in a phone conversation can
hear the communications – something that is necessary for the basic functioning
of a telephone system. However, we can give the interlocutors the ability to
know when there is a man-in-the-middle attacker, by giving everyone access to
the public key of a given other person, and also giving them access to the public
key of the person they’re talking to. If the Alice believes herself to be speaking
to Bob, but is actually speaking to Eve, who is executing a man-in-the-middle
attack, then she will see both Bob and Eve’s public keys displayed on her phone’s
screen, and this will tell her that she is not speaking to the person she think she
is. This is the basic idea; in reality, we would display not the public key itself
(which is much too long to display) but a hash thereof, and if Bob and Eve’s
public keys were different, then the hashes would be virtually certain to also be
different (again, this is a conjectured property of the hash function).

Side-channel attacks: Unlike when designing for a cpu, circuit-level program-
ming enables fine-grained control over what computation is performed how and
thus enables us to totally avoid large classes of side-channels that have proven
disastrous for software implementations. All functions that operate on secret
inputs will be implemented in constant time, therefore the overall timing of pack-
ets will be independent of the secret key used and cannot leak any information.
We could assume that over the duration of one call the device remains in the
exclusive possession of the legitimate user and the adversary cannot make any
measurements about it. Nevertheless, we will take care not to vary the parts of
circuitry that are active based on information we aim to keep secret.

References

[1]Aumasson, J.-P., Henzen, L., Meier, W. and Phan, R.C.-W. 2010. SHA-3
proposal bLAKE. Submission to NIST (Round 3).

[2]Bernstein, D.J. 2008. ChaCha, a variant of salsa20.

[3]Bernstein, D.J. 2006. Curve25519: New diffie-hellman speed records. Public
key cryptography - pKC 2006, 9th international conference on theory and practice
of public-key cryptography (2006), 207–228.

5


	Introduction
	Planned User Experience
	Transmitting Audio
	Cryptographic protection
	Security Analysis
	References

